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Abstract
In this paper, an implicit net with perturbations for solving the mixed equilibrium
problems and fixed point problems has been constructed and it is shown that the
proposed net converges strongly to a common solution of the mixed equilibrium
problems and fixed point problems. Also, as applications, some corollaries for solving
the minimum-norm problems are also included.
MSC: 47J05; 47J25; 47H09

Keywords: equilibrium problem; fixed point problem; minimization problem;
nonexpansive mapping

1 Introduction
The present paper is devoted to solving the following mixed equilibrium problem: Find
u ∈ C such that

F(u, v) + 〈Au, v – u〉 ≥  (.)

for all v ∈ C, where C is a nonempty closed convex subset of a real Hilbert space H , F :
C ×C → R is a bifunction and A : C →H is a nonlinear operator. The solution set of (.)
is denoted by S(MEP).
This problem (.) includes optimization problems, variational inequalities, minimax

problems, and Nash equilibrium problems in noncooperative games as special cases.
Case . If A =  in (.), then (.) reduces to the following equilibrium problem: Find

u ∈ C such that

F(u, v) ≥  (.)

for all v ∈ C. The solution of (.) is denoted by S(EP).
Case . If F =  in (.), then (.) reduces to the variational inequality problem: Find

z ∈ C such that

〈Au, v – u〉 ≥  (.)

for all v ∈ C. The solution of (.) is denoted by S(VI).
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In the literature, there are a large number of references associatedwith some equilibrium
problems and variational inequality problems (see, for instance, [–]).
The main purpose of the present paper is to construct the following implicit net with

perturbations for solving the mixed equilibrium (.) and the fixed point problem:

F(zt , y) +

λ

〈
y – zt , zt –

(
tut + ( – t)Tzt – λATzt

)〉 ≥ 

for all y ∈ C. Also, it is shown that the proposed net {zt} converges strongly to a common
solution of the mixed equilibrium problems and fixed point problems. As applications,
some corollaries for solving the minimum-norm problems are also included.

2 Preliminaries
LetH be a real Hilbert space with an inner product 〈·, ·〉 and a norm ‖ · ‖, respectively, and
C be a nonempty closed convex subset of a real Hilbert space H .
() A mapping T : C → C is said to be nonexpansive if

‖Tu – Tv‖ ≤ ‖u – v‖

for all u, v ∈ C. F(T) denotes the set of fixed points of T .
() A mapping A : C → H is said to be α-inverse-strongly monotone if there exists a

positive real number α >  such that

〈Au –Av,u – v〉 ≥ α‖Au –Av‖

for all u, v ∈ C. It is clear that any α-inverse-strongly monotone mapping is monotone and

α
-Lipschitz continuous.
Throughout this paper, we assume that a bifunction F : C×C → R satisfies the following

conditions:
(C) F(u,u) =  for all u ∈ C;
(C) F is monotone, i.e., F(u, v) + F(v,u)≤  for all u, v ∈ C;
(C) for each u, v,w ∈ C, limt↓ F(tw + ( – t)u, v)≤ F(u, v);
(C) for each u ∈ C, v 
→ F(u, v) is convex and lower semicontinuous.
In fact, some efforts to construct the algorithms for solving the equilibrium problems

have been carried out. For instance, Moudafi [] presented an iterative algorithm and
proved a weak convergence theorem for solving the mixed equilibrium problem (.).
Takahashi and Takahashi [] constructed the following iterative algorithm:

⎧⎨
⎩
F(zn, y) + 〈Axn, y – zn〉 + 

λn
〈y – zn, zn – xn〉 ≥ ,

xn+ = βnxn + T(αnu + ( – βn)zn)
(.)

for all y ∈ C and n ≥ , where T : C → C is a nonexpansive mapping. They proved that
the sequence {xn} generated by (.) converges strongly to z = ProjF(T)∩S(MEP)(u).
Plubtieng and Punpaeng [] introduced and considered the following two iterative

schemes for finding a common element of the set of solutions of the problem (.) and
the set of fixed points of a nonexpansive mapping in a Hilbert space H .

http://www.journalofinequalitiesandapplications.com/content/2014/1/334
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Implicit iterative algorithm {xn}:
⎧⎨
⎩
F(un, y) + 

rn 〈y – un,un – xn〉 ≥ ,

xn = αnγ f (xn) + (I – αnA)Tun
(.)

for all y ∈H and n≥ .
Explicit iterative algorithm {xn}:

⎧⎨
⎩
F(un, y) + 

rn 〈y – un,un – xn〉 ≥ ,

xn+ = αnγ f (xn) + (I – αnA)Tun
(.)

for all y ∈H and n≥ .
They proved that, under certain conditions, the sequences {xn} generated by (.) and

(.) converge strongly to the unique solution of the variational inequality:

〈
(A – γ f )z,x – z

〉 ≥ 

for all x ∈ F(T)∩ S(EP), which is the optimality condition for the minimization problem:

min
x∈F(T)∩S(EP)



〈Ax,x〉 – h(x),

where h is a potential function for γ f .
We know that there are perturbations always occurring in the iterative processes be-

cause the manipulations are inaccurate. Recently, Chuang et al. ([]) constructed the fol-
lowing iteration process with perturbations for finding a common element of the set of
solutions of the equilibrium problem and the set of fixed points for a quasi-nonexpansive
mapping with perturbation: q ∈H and

⎧⎨
⎩
xn ∈ C such that F(xn, y) + 

λn
〈y – xn,xn – qn〉 ≥ ,

qn+ = αnun + ( – αn)(βnxn + ( – βn)Txn)

for all y ∈ C and n ≥ . They shown that the sequence {qn} converges strongly to
ProjF(T)∩S(EP).
Now, we need the following useful lemmas for our main results.

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H . Let
F : C×C → R be a bifunction which satisfies the conditions (C)-(C). Let r >  and x ∈H .
Then there exists z ∈ C such that

F(z, y) +

r
〈y – z, z – x〉 ≥ 

for all y ∈ C. Further, if

Tr(x) =
{
z ∈ C : F(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
,

then the following hold:

http://www.journalofinequalitiesandapplications.com/content/2014/1/334
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() Tr is single-valued and Tr is firmly nonexpansive, i.e., for any x, y ∈H ,

‖Trx – Try‖ ≤ 〈Trx – Try,x – y〉;

() S(EP) is closed and convex and S(EP) = F(Tr).

Lemma . [] Let C, H , F , and Trx be as in Lemma .. Then the following holds:

‖Tsx – Ttx‖ ≤ s – t
s

〈Tsx – Ttx,Tsx – x〉

for all s, t >  and x ∈H .

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H . Let a
mapping A : C → H be α-inverse-strongly monotone and r >  be a constant. Then we have

∥∥(I – rA)x – (I – rA)y
∥∥ ≤ ‖x – y‖ + r(r – α)‖Ax –Ay‖

for all x, y ∈ C. In particular, if ≤ r ≤ α, then I – rA is nonexpansive.

Lemma. [] Let C be a closed convex subset of a realHilbert spaceH and let T : C → C
be a nonexpansive mapping. Then the mapping I – T is demiclosed, that is, if {xn} is a
sequence in C such that xn → u weakly and (I – T)xn → v strongly, then (I – T)u = v.

3 Convergence results
In this section, first, we give our main results.
Part I: Assumptions on the setting of C, F , A, and T :
(A) C is a nonempty closed convex subset of a real Hilbert space H ;
(A) F : C ×C → R is a bifunction satisfying the conditions (C)-(C);
(A) A : C →H is an α-inverse-strongly monotone mapping;
(A) T : C → C is a nonexpansive mapping.
Part II: Parameter restrict:
λ is a constant satisfying a ≤ λ ≤ b, where [a,b]⊂ (, α).
Part III: Perturbations:
{ut} ⊂H is a net satisfying limt→+ ut = u ∈H .

Algorithm . For any t ∈ (,  – λ
α ), define a net {zt} ⊂ C by the implicit manner:

F(zt , y) +

λ

〈
y – zt , zt –

(
tut + ( – t)Tzt – λATzt

)〉 ≥  (.)

for all y ∈ C.

Remark . We show that the net {zt} is well defined. Next, we prove that (.) can be
rewritten as

zt = Tλ

(
tut + ( – t)Tzt – λATzt

)
(.)

for all t ∈ (,  – λ
α ).

http://www.journalofinequalitiesandapplications.com/content/2014/1/334
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In fact, for any t ∈ (,  – λ
α ), ut ∈H , and x ∈H , we find z such that, for all y ∈ C,

F(z, y) +

λ

〈
y – z, z –

(
tut + ( – t)Tx – λATx

)〉 ≥ .

From Lemma ., we get immediately

z = Tλ

(
tut + ( – t)Tx – λATx

)
.

Now, we can define a mapping

ϑt := Tλ

(
tut + ( – t)T – λAT

)

for all t ∈ (,  – λ
α ). Again, from Lemma ., we know that Tλ is nonexpansive. Thus, for

any x, y ∈ C, we have

‖ϑtx – ϑty‖
=

∥∥Tλ

(
tut + ( – t)Tx – λATx

)
– Tλ

(
tut + ( – t)Ty – λATy

)∥∥
≤ ∥∥(

tut + ( – t)Tx – λATx
)
–

(
tut + ( – t)Ty – λATy

)∥∥
= ( – t)

∥∥∥∥
(
I –

λ

 – t
A

)
Tx –

(
I –

λ

 – t
A

)
Ty

∥∥∥∥. (.)

From Lemma ., I – λ
–t A is nonexpansive for all t ∈ (,  – λ

α ). Note that T is also non-
expansive. By (.), we deduce

‖ϑtx – ϑty‖ ≤ ( – t)‖x – y‖

for all x, y ∈ C. This indicates thatϑt is a contraction onC and so it has a unique fixed point,
denoted by zt , in C. That is, zt = Tλ(tut + ( – t)Tzt – λATzt). Hence {zt} is well defined.

Theorem. Suppose that F(T)∩S(MEP) �= ∅.Then the net {zt} defined by (.) converges
strongly as t → + to PF(T)∩S(MEP)(u).

Proof Pick up z ∈ F(T) ∩ S(MEP). It is obvious that z = Tλ(z – λAz) for all λ > . So, we
have

z = Tz = Tλ(z – λAz) = Tλ(Tz – λATz) = Tλ

(
tTz + ( – t)

(
Tz –

λ

 – t
ATz

))

for all t ∈ (,  – λ
α ). Then we have

‖zt – z‖

=
∥∥Tλ

(
tut + ( – t)Tzt – λATzt

)
– z

∥∥

=
∥∥∥∥Tλ

(
tut + ( – t)

(
Tzt –

λ

 – t
ATzt

))
– Tλ

(
tz + ( – t)

(
Tz –

λ

 – t
ATz

))∥∥∥∥
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≤
∥∥∥∥
(
tut + ( – t)

(
Tzt –

λ

 – t
ATzt

))
–

(
tz + ( – t)

(
Tz –

λ

 – t
ATz

))∥∥∥∥


=
∥∥∥∥( – t)

((
Tzt –

λ

 – t
ATzt

)
–

(
Tz –

λ

 – t
ATz

))
+ t(ut – z)

∥∥∥∥


. (.)

Using the convexity of ‖ · ‖ and the inverse-strong monotonicity of A, we derive

∥∥∥∥( – t)
((

Tzt –
λ

 – t
ATzt

)
–

(
Tz –

λ

 – t
ATz

))
+ t(ut – z)

∥∥∥∥


≤ ( – t)
∥∥∥∥
(
Tzt –

λ

 – t
ATzt

)
–

(
Tz –

λ

 – t
ATz

)∥∥∥∥


+ t‖ut – z‖

= ( – t)
∥∥(Tzt – Tz) – λ(ATzt –ATz)/( – t)

∥∥ + t‖ut – z‖

= ( – t)
(

‖Tzt – Tz‖ – λ
 – t

〈ATzt –ATz,Tzt – Tz〉

+
λ

( – t)
‖ATzt –ATz‖

)
+ t‖ut – z‖

≤ ( – t)
(

‖Tzt – Tz‖ – αλ

 – t
‖ATzt –ATz‖ + λ

( – t)
‖ATzt –ATz‖

)

+ t‖ut – z‖

= ( – t)
(

‖Tzt – Tz‖ + λ

( – t)
(
λ – ( – t)α

)‖ATzt –ATz‖
)
+ t‖ut – z‖

≤ ( – t)
(

‖zt – z‖ + λ

( – t)
(
λ – ( – t)α

)‖ATzt –ATz‖
)
+ t‖ut – z‖. (.)

By the assumption, we have λ – ( – t)α ≤  for all t ∈ (,  – λ
α ). Then, from (.) and

(.), it follows that

‖zt – z‖

≤ ( – t)
(

‖zt – z‖ + λ

( – t)
(
λ – ( – t)α

)‖ATzt –ATz‖
)
+ t‖ut – z‖

≤ ( – t)‖zt – z‖ + t‖ut – z‖ (.)

and so

‖zt – z‖ ≤ ‖ut – z‖. (.)

Since limt→+ ut = u, there exists a positive constant M >  such that supt{‖ut‖} ≤ M.
Then, from (.), we deduce that {zt} is bounded.Hence {Tzt} and {ATzt} are also bounded.
From (.) and (.), we obtain

‖zt – z‖ ≤ ( – t)‖zt – z‖ + λ

( – t)
(
λ – ( – t)α

)‖ATzt –Az‖ + t‖ut – z‖

and so

λ

( – t)
(
( – t)α – λ

)‖ATzt –Az‖ ≤ t‖ut – z‖ → .

http://www.journalofinequalitiesandapplications.com/content/2014/1/334


Yao et al. Journal of Inequalities and Applications 2014, 2014:334 Page 7 of 14
http://www.journalofinequalitiesandapplications.com/content/2014/1/334

This implies that

lim
t→+

‖ATzt –Az‖ = . (.)

Next, we show ‖zt –Tzt‖ → . Since Tλ is firmly nonexpansive (see Lemma .), we have

‖zt – z‖ = ∥∥Tλ

(
tut + ( – t)Tzt – λATzt

)
– z

∥∥

=
∥∥Tλ

(
tut + ( – t)Tzt – λATzt

)
– Tλ(Tz – λATz)

∥∥

≤ 〈
tut + ( – t)Tzt – λATzt – (Tz – λATz), zt – z

〉

=


(∥∥tut + ( – t)Tzt – λATzt – (Tz – λATz)

∥∥ + ‖zt – z‖

–
∥∥tut + ( – t)Tzt – λ(ATzt – λATz) – zt

∥∥).
Since I – λA/( – t) is nonexpansive, we have

∥∥tut + ( – t)Tzt – λATzt – (Tz – λATz)
∥∥

=
∥∥( – t)

((
Tzt – λATzt/( – t)

)
–

(
Tz – λATz/( – t)

))
+ t(ut – z)

∥∥

≤ ( – t)
∥∥(
Tzt – λATzt/( – t)

)
–

(
Tz – λATz/( – t)

)∥∥ + t‖ut – z‖

≤ ( – t)‖Tzt – Tz‖ + t‖ut – z‖

≤ ( – t)‖zt – z‖ + t‖ut – z‖.

Thus we have

‖zt – z‖ ≤ 

(
( – t)‖zt – z‖ + t‖ut – z‖ + ‖zt – z‖

–
∥∥tut + ( – t)Tzt – zt – λ(ATzt –ATz)

∥∥).
It follows that

 ≤ t‖ut – z‖ – ∥∥tut + ( – t)Tzt – zt – λ(ATzt –ATz)
∥∥

= t‖ut – z‖ – ∥∥tut + ( – t)Tzt – zt
∥∥

+ λ
〈
tut + ( – t)Tzt – zt ,ATzt –ATz

〉
– λ‖ATzt –ATz‖

≤ t‖ut – z‖ – ∥∥tut + ( – t)Tzt – zt
∥∥

+ λ
∥∥tut + ( – t)Tzt – zt

∥∥‖ATzt –ATz‖

and so

∥∥tut + ( – t)Tzt – zt
∥∥ ≤ t‖ut – z‖ + λ

∥∥tut + ( – t)Tzt – zt
∥∥‖ATzt –Az‖.

Since ‖ATzt –Az‖ →  by (.), we deduce

lim
t→+

∥∥tut + ( – t)Tzt – zt
∥∥ = .

http://www.journalofinequalitiesandapplications.com/content/2014/1/334


Yao et al. Journal of Inequalities and Applications 2014, 2014:334 Page 8 of 14
http://www.journalofinequalitiesandapplications.com/content/2014/1/334

Therefore, we have

lim
t→+

‖zt – Tzt‖ = . (.)

From (.), it follows that

‖zt – z‖

≤
∥∥∥∥( – t)

((
Tzt –

λ

 – t
ATzt

)
–

(
Tz –

λ

 – t
ATz

))
+ t(ut – z)

∥∥∥∥


= ( – t)
∥∥∥∥
(
Tzt –

λ

 – t
ATzt

)
–

(
Tz –

λ

 – t
ATz

)∥∥∥∥


+ t( – t)
〈
ut – z,

(
Tzt –

λ

 – t
ATzt

)
–

(
Tz –

λ

 – t
ATz

)〉
+ t‖ut – z‖

≤ ( – t)‖zt – z‖ + t( – t)
〈
ut – z,Tzt –

λ

 – t
(ATzt –Az) – z

〉
+ t‖ut – z‖

= ( – t)‖zt – z‖ + t
{
( – t)

〈
ut – z,Tzt – z –

λ

 – t
(ATzt –Az)

〉

+ t
(‖ut – z‖ + ‖zt – z‖)

}
,

which implies that

‖zt – z‖ ≤
〈
ut – z,Tzt – z –

λ

 – t
(ATzt –Az)

〉
+
t

(‖ut – z‖ + ‖zt – z‖)

+ t‖ut – z‖
∥∥∥∥Tzt – z –

λ

 – t
(ATzt –Az)

∥∥∥∥
≤ 〈z – u, z – Tzt〉 + λ

 – t
‖ut – z‖‖ATzt –Az‖ + (

t + ‖ut – u‖)M, (.)

whereM is a constant such that

sup

{
‖ut–z‖ +‖zt–z‖ +‖ut–z‖

∥∥∥∥Tzt–z– λ

 – t
(ATzt–Az)

∥∥∥∥ : t ∈
(
, –

λ

α

)}
≤ M.

Next, we show that {zt} is relatively norm-compact as t → +. Assume that {tn} ⊂ (, )
is a sequence such that tn → + as n→ ∞. Put zn := ztn . From (.), it follows that

‖zn – z‖

≤ 〈z – u, z – Tzn〉 + λ

 – tn
‖un – z‖‖ATzn –Az‖ + (

tn + ‖un – u‖)M (.)

for all z ∈ F(T)∩S(MEP). Since {zn} is bounded, without loss of generality, wemay assume
that zn ⇀ x̃ ∈ C. From (.), we have

lim
n→∞‖zn – Tzn‖ = . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/334
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We can use Lemma . to (.) to deduce x̃ ∈ F(T). Further, we show that x̃ is also in
S(MEP). Since zn = Tλ(tnun + ( – tn)Tzn – λATzn) for any y ∈ C, we have

F(zn, y) + 〈ATzn, y – zn〉 + 
λ

〈
y – zn, zn –

(
tnun + ( – tn)Tzn

)〉 ≥ .

From (C), it follows that

〈ATzn, y – zn〉 + 
λ

〈
y – zn, zn –

(
tnun + ( – tn)Tzn

)〉 ≥ F(y, zn). (.)

Put xt = ty + ( – t)x̃ for all t ∈ (,  – λ
α ) and y ∈ C. Then we have xt ∈ C and so, from

(.), it follows that

〈xt – zn,Axt〉 ≥ 〈xt – zn,Axt〉 – 〈xt – zn,ATzn〉

–

λ

〈
xt – zn, zn –

(
tnun + ( – tn)Tzn

)〉
+ F(xt , zn)

= 〈xt – zn,Axt –Azn〉 + 〈xt – zn,Azn –ATzn〉

–

λ

〈
xt – zn, zn –

(
tnun + ( – tn)Tzn

)〉
+ F(xt , zn).

Since ‖zn – Tzn‖ → , we have ‖Azn –ATzn‖ → . Further, since A is monotone, we have
〈xt – zn,Axt –Azn〉 ≥ . So, from (C), it follows that, as n→ ∞,

〈xt – x̃,Axt〉 ≥ F(xt , x̃). (.)

Also, it follows from (C), (C), and (.) that

 = F(xt ,xt)

≤ tF(xt , y) + ( – t)F(xt , x̃)

≤ tF(xt , y) + ( – t)〈xt – x̃,Axt〉
= tF(xt , y) + ( – t)t〈y – x̃,Axt〉

and hence

 ≤ F(xt , y) + ( – t)〈y – x̃,Axt〉.

Letting t → , we have

 ≤ F(x̃, y) + 〈y – x̃,Ax̃〉

for all y ∈ C. This implies x̃ ∈ EP. Therefore, we can substitute x̃ for z in (.) to get

‖zn – x̃‖ ≤ 〈x̃ – u, x̃ – Tzn〉 + λ

 – tn
‖un – x̃‖‖ATzn –Ax̃‖

+
(
tn + ‖un – x̃‖)M

http://www.journalofinequalitiesandapplications.com/content/2014/1/334
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for all x̃ ∈ F(T) ∩ S(MEP). By (.), we know that ‖ATzn – Az‖ →  for any z ∈ F(T) ∩
S(MEP). Then we get ‖ATzn –Ax̃‖ → . Consequently, the weak convergence of {zn} (and
{Tzn}) to x̃ actually implies that zn → x̃. This proves the relative norm-compactness of the
net {zt} as t → +.
Now, we return to (.) and take the limit as n→ ∞ to get

‖x̃ – z‖ ≤ 〈z – u, z – x̃〉

for all z ∈ F(T)∩ S(MEP). Equivalently, we have

〈u – x̃, z – x̃〉 ≤ 

for all z ∈ F(T)∩ S(MEP). This clearly implies that

x̃ = PF(T)∩S(MEP)(u).

Therefore, x̃ is the unique cluster point of the net {zt}. Hence the whole net {zt} converges
strongly to x̃ = PF(T)∩S(MEP)(u). This completes the proof. �

4 Induced algorithms and corollaries
(I) Taking T = I in (.), we get the following.

Algorithm . For any t ∈ (,  – λ
α ), define a net {zt} ⊂ C by the implicit manner:

F(zt , y) +

λ

〈
y – zt , zt –

(
tut + ( – t)zt – λAzt

)〉 ≥  (.)

for all y ∈ C.

Corollary . Suppose that S(MEP) �= ∅. Then the net {zt} defined by (.) converges
strongly as t → + to PS(MEP)(u).

(II) Taking F =  in (.), we get the following.

Algorithm . For any t ∈ (,  – λ
α ), define a net {zt} ⊂ C by the implicit manner:

〈
y – zt , zt –

(
tut + ( – t)zt – λAzt

)〉 ≥  (.)

for all y ∈ C.

Corollary . Suppose that S(VI) �= ∅.Then the net {zt} defined by (.) converges strongly
as t → + to PS(VI)(u).

(III) Taking A =  in (.), we get the following.

Algorithm . For any t ∈ (, ), define a net {zt} ⊂ C by the implicit manner:

F(zt , y) +
t
λ

〈y – zt , zt – ut〉 ≥  (.)

for all y ∈ C.
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Corollary . Suppose that S(EP) �= ∅.Then the net {zt} defined by (.) converges strongly
as t → + to PS(EP)(u).

5 Minimum-norm solutions
In many problems, one needs to find a solution with the minimum norm. In an abstract
way, we may formulate such problems as finding a point x† with the property:

x† ∈ C,
∥∥x†∥∥ =min

x∈C ‖x‖,

where C is a nonempty closed convex subset of a real Hilbert space H . In other words, x†

is the (nearest point or metric) projection of the origin onto C, that is,

x† = PC(),

where PC is the metric (or nearest point) projection from H onto C.
A typical example is the least-squares solution of the constrained linear inverse problem:

⎧⎨
⎩
Ax = b,

x ∈ C,

where A is a bounded linear operator from H to another real Hilbert space H and b is
a given point in H. The least-squares solution is the least-norm minimizer of the mini-
mization problem:

min
x∈C ‖Ax – b‖.

Motivated by the above least-squares solution of the constrained linear inverse prob-
lems, we study the general case of finding the minimum-norm solutions for the mixed
equilibrium problem (.), the equilibrium problem (.), the variational inequality (.),
and the fixed point problem.
Now, we state our algorithms which can be inducted from the above section.
(I) Taking ut =  for all t in (.), we get the following.

Algorithm . For any t ∈ (,  – λ
α ), define a net {zt} ⊂ C by the implicit manner:

F(zt , y) +

λ

〈
y – zt , zt –

(
( – t)Tzt – λATzt

)〉 ≥  (.)

for all y ∈ C.

Corollary . Suppose that F(T) ∩ S(MEP) �= ∅. Then the net {zt} defined by (.) con-
verges strongly as t → + to PF(T)∩S(MEP)(), which is the minimum-norm element in
F(T)∩ S(MEP).

(II) Taking ut =  for all t in (.), we get the following.
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Algorithm . For any t ∈ (,  – λ
α ), define a net {zt} ⊂ C by the implicit manner:

F(zt , y) +

λ

〈
y – zt , zt –

(
( – t)zt – λAzt

)〉 ≥  (.)

for all y ∈ C.

Corollary . Suppose that S(MEP) �= ∅. Then the net {zt} defined by (.) converges
strongly as t → + to PS(MEP)(), which is the minimum-norm element in S(MEP).

(III) Taking ut =  for all t in (.), we get the following.

Algorithm . For any t ∈ (,  – λ
α ), define a net {zt} ⊂ C by the implicit manner:

〈
y – zt , zt –

(
( – t)zt – λAzt

)〉 ≥  (.)

for all y ∈ C.

Corollary . Suppose that S(VI) �= ∅. Then the net {zt} defined by (.) converges strongly
as t → + to PS(VI)(), which is the minimum-norm element in S(VI).

(IV) Taking A =  in (.), we get the following.

Algorithm . For any t ∈ (, ), define a net {zt} ⊂ C by the implicit manner:

F(zt , y) +

λ

〈
y – zt , zt – ( – t)Tzt

〉 ≥  (.)

for all y ∈ C.

Corollary . Suppose that F(T)∩ S(EP) �= ∅. Then the net {zt} defined by (.) converges
strongly as t → + to PF(T)∩S(EP)(), which is the minimum-norm element in F(T)∩ S(EP).

(V) Taking A =  in (.), we get the following.

Algorithm . For any t ∈ (, ), define a net {zt} ⊂ C by the implicit manner:

F(zt , y) +
t
λ

〈y – zt , zt〉 ≥  (.)

for all y ∈ C.

Corollary . Suppose that S(EP) �= ∅. Then the net {zt} defined by (.) converges
strongly as t → + to PS(EP)(), which is the minimum-norm element in S(EP).
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