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Abstract
In this paper, we investigate the properties of meromorphic solutions of Painlevé III
difference equations. In particular, the difference equation www(w – 1) =μ with μ
being a non-zero constant is studied. We show that the rational solutions of the
equation assume only one form and the transcendental solutions have at most one
Borel exceptional value. We also show that the difference equation
ww(w – 1)2 = (w – λ)2 does not have nonconstant rational solution, where λ ( �= 0, 1) is
a constant.
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1 Introduction
Let w be ameromorphic function in the complex plane. The z-dependence is supposed by
writing w≡ w(z+ ) and w ≡ w(z– ). We assume that the reader is familiar with the stan-
dard notations and results of Nevanlinna value distribution theory (see, e.g., [–]). ρ(w),
λ(w) and λ(/w) denote the order, the exponents of convergence of zeros and poles of w,
respectively. Furthermore, we denote by S(r,w) any quantity satisfying S(r,w) = o(T(r,w))
for all r outside of a set with finite logarithmic measure and by

S(w) =
{
α meromorphic : T(r,α) = S(r,w)

}

the field of small functions with respect to w. A meromorphic solution w of a difference
equation is called admissible if all coefficients of the equation are in S(w). For example,
if a difference equation has only rational coefficients, then all non-rational meromorphic
solutions are admissible; if an admissible solution is rational, then all the coefficients must
be constants.
Recently, with the development of Nevanlinna value distribution theory on difference

expressions [–], Halburd and Korhonen [] gave the full classification of the family in-
cluding Painlevé I and II difference equations. As for the family including Painlevé III
difference equations, we recall the following.
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Theorem A ([]) Assume that the equation

ww = R(z,w) (.)

has an admissible meromorphic solution w of hyper-order less than one, where R(z,w) is
rational and irreducible in w and meromorphic in z, then either w satisfies a difference
Riccati equation

w =
αw + β

w + γ
,

where α,β ,γ ∈ S(w) are algebroid functions, or equation (.) can be transformed to one of
the following equations:

ww =
ηw – λw +μ

(w – )(w – ν)
, (.a)

ww =
ηw – λw
(w – )

, (.b)

ww =
η(w – λ)
(w – )

, (.c)

ww = hwm. (.d)

In (.a), the coefficients satisfy κμμ = μ, λμ = κλμ, κλλ = κλλ and one of the following:

() η ≡ , νν = , κ = ν; () η = η = ν, κ ≡ .

In (.b), ηη =  and λλ = λλ. In (.c), the coefficients satisfy one of the following:
() η ≡  and either λ = λλ or λ

[]
λ[] = λλ;

() λλ = λλ, ηλ = λη, ηη = ηη[];
() ηη = ηη, λ = η;

() λ
[]

λ[] = λλλ, ηλ = ηη,

where λ
[] ≡ λ(z + ) and λ[] ≡ λ(z – ). In (.d), h ∈ S(w) and m ∈ Z, |m| ≤ .

In , Chen and Shon [] started the topic of researching the properties of finite-order
meromorphic solutions of difference Painlevé I and II equations. In fact, they showed that
if w is a transcendental finite-order meromorphic solution of the equation

w +w =
(az + a)w + a

 –w or w +w =
az + a

w
+ a,

where aj (≤ j ≤ ) are constants with aaa �= , then w has at most one non-zero finite
Borel exceptional value.
The present author and Yang [] improved the above result and verified that w does

not have any Borel exceptional value. And they also considered the difference Painlevé III
equations (.d) with the constant coefficients. The difference equations (.b) and (.c)
are studied by the present author in the following.
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Theorem B ([]) If w is a transcendental finite-order meromorphic solution of

ww(w – ) = ηw or ww(w – ) = w – λw,

where η ( �= ), λ ( �= , ) are constants, then
(i) λ(w) = ρ(w);
(ii) w has at most one non-zero Borel exceptional value for ρ(w) > .

The purpose of this paper is to study the remaining difference equation (.a) with con-
stant coefficients. As it is complicated to discuss meromorphic solutions of (.a) when
λμ �= , we will consider the following special cases.

Theorem . Suppose that w is a nonconstant rational solution of

www(w – ) = μ, (.)

where μ is a non-zero constant. Then μ = – 
 and w assumes the only form of

w(z) =
(z + b)

(z + b + )(z + b – )

with any constant b.

Remark Equation (.) is a special case of (.a) in the option () as η = λ = ν = . From
the proof of Theorem ., we shall see that the degrees of numerator and denominator of
w(z) must be . Here, the coefficient 

 is determined. We think that it is because there is
a – in (.).

Theorem . Suppose that w is a transcendental finite-order meromorphic solution of
(.). Then

(i) λ(w) = ρ(w);
(ii) w has at most one Borel exceptional value for ρ(w) > .

Example . The function w(z) = (eπ iz+z)
(eπ iz+z+)(eπ iz+z–) is a solution of the difference equa-

tionwww(w–) = – 
 . It is easy to see that λ(w) = ρ(w). Sincew – 

 = 
(eπ iz+z+)(eπ iz+z–) ,

then 
 is a Picard exceptional value of w. This shows that the conclusions of Theorem .

may occur.

Remark In w in Example ., the function eπ iz can be replaced by any finite-order func-
tion with period . For example, sin(πz), tan(πz) and so on.

Theorem . Suppose that w is a nonconstant meromorphic solution of

ww(w – ) = (w – λ), (.)

where λ ( �= , ) is a constant. Then w must be transcendental.

http://www.journalofinequalitiesandapplications.com/content/2014/1/330
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Theorem . Suppose that w is a transcendental finite-order meromorphic solution of
(.). If a and b are two Borel exceptional values of w, then

(i) a + b = , ab = λ;
(ii) w = w;
(iii) w satisfies the difference Riccati equation w = w–λ

w– .

Example . The transcendental function w(z) = eiπz–
eiπz+ is a solution of both the differ-

ence equation ww(w – ) = (w + ) and the Riccati equation w = w+
w– . Noting that w(z)

has two Picard exceptional values  and –, we see that the conclusions in Theorem .
may occur.

2 Some lemmas
Halburd and Korhonen [] and Chiang and Feng [] investigated the value distribution
theory of difference expressions, a key result of which is a difference analogue of the log-
arithmic derivative lemma. With the help of the lemma, the difference analogues of the
Clunie and Mohon’ko lemmas are obtained.

Lemma . ([]) Let f be a transcendental meromorphic solution of finite order ρ of a
difference equation of the form

U(z, f )P(z, f ) =Q(z, f ),

where U(z, f ), P(z, f ) and Q(z, f ) are difference polynomials such that the total degree
degf U(z, f ) = n in f (z) and its shifts, and degf Q(z, f ) ≤ n. If U(z, f ) contains just one term
of maximal total degree in f (z) and its shifts, then, for each ε > ,

m
(
r,P(z, f )

)
=O

(
rρ–+ε

)
+ S(r, f ),

possibly outside of an exceptional set of finite logarithmic measure.

Lemma . ([, ]) Let w be a transcendental meromorphic solution of finite order of the
difference equation

P(z,w) = ,

where P(z,w) is a difference polynomial in w(z). If P(z,a) �≡  for a meromorphic function
a ∈ S(w), then

m
(
r,


w – a

)
= S(r,w).

We conclude this section by the following lemma.

Lemma . (see, e.g., [, pp.-]) Let fj (j = , . . . ,n) (n ≥ ) be meromorphic functions,
gj (j = , . . . ,n) be entire functions. If

(i)
∑n

j= fj(z)e
gj(z) ≡ ;

(ii) gh(z) – gk(z) is not a constant for ≤ h < k ≤ n;
(iii) T(r, fj) = S(r, egh(z)–gk (z)) for ≤ j ≤ n and ≤ h < k ≤ n,

then fj(z) ≡  (j = , . . . ,n).
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3 Proofs of theorems

Proof of Theorem . Suppose that w = P(z)
Q(z) , where P(z) andQ(z) are relatively prime poly-

nomials with degrees p and q respectively. It follows from (.) that

P(z + )
Q(z + )

P(z – )
Q(z – )

P(z)
Q(z)

P(z) –Q(z)
Q(z)

= μ. (.)

Without loss of generality, we assume that the coefficients of the highest degree terms
of P(z) and Q(z) are a and  respectively. Let s = p – q.
If s > , then P(z)

Q(z) = azs( + o()) as z tends to infinity, where a is a non-zero constant.
And (.) gives

a(z + )s(z – )szs
(
 + o()

)(
azs

(
 + o()

)
– 

)
= μ,

which is a contradiction since the left-hand side of the above equation goes to infinity as
r tends to infinity, while the right-hand side is a constant.
If s < , we have P(z)

Q(z) = o() and P(z±)
Q(z±) = o() as z tends to infinity. Equation (.) yields

o() = μ, z → ∞,

which contradicts μ �= .
Thus s =  and p = q. Noting that the zeros of Q(z) are not the zeros of P(z) and P(z) –

Q(z), we get from (.) that all the zeros of Q(z) are the zeros of P(z + )P(z – ). As the
degrees of Q(z) and P(z + )P(z – ) are both p, we obtain

P(z + )P(z – ) = aQ(z), (.)

P(z)
(
P(z) –Q(z)

)
= a(a – )Q(z + )Q(z – ). (.)

Now, we aim to prove that the orders of all the zeros of P(z) are even. Otherwise, assume
that z is a zero of P(z) with the order k, and k is an odd integer. Then P(z) has the term
(z – z)k , and P(z + )P(z – ) has the term

(z – z + )k(z – z – )k (.)

caused by z. It means that z –  and z +  are both zeros of P(z+)P(z–) with the order
at least k.
On the other hand, it follows from (.) thatQ(z+)Q(z–) has the term (z–z)k exactly.

Suppose thatQ(z+) andQ(z–) have the terms (z– z)m and (z– z)l respectively, where
m and l are non-negative integers satisfyingm+ l = k. ThenQ(z) has term (z– z – )m(z–
z + )l exactly, i.e., Q(z) has the term (z – z – )m(z – z + )l . By (.), P(z + )P(z – )
has the term

(z – z + )l(z – z – )m. (.)

Without loss of generality, assume thatm < l. Obviously, m < k and l > k. Then z +  is a
zero of P(z + )P(z– ) with the order m < k, which is a contradiction by (.). Therefore,
all the zeros of P(z) have even orders.

http://www.journalofinequalitiesandapplications.com/content/2014/1/330
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Denote P(z) = ar(z), where

r(z) = zn +An–zn– +An–zn– + · · · +Az +A. (.)

Noting that the coefficient of the highest degree term of Q(z) is , it is easy to see from
(.) and (.) that Q = rr and ar – rr = (a – )rr. Let

φ = ar – rr – (a – )rr.

Then φ(z) ≡ . If deg r = n ≥ , substituting r by (.) in the right-hand side of the last
equation, we have that the coefficients of terms zn–, zn– and zn– of φ(z) are

Bn– = n(a – ),

Bn– = (n – )(a – )An–,

Bn– = ( – a)C
n + (n – )(a – )An– + (n – )(a – )A

n–.

We deduce fromBn– =  that a = 
 . And thenBn– = C

n �= , thus deg r = . Let r = z+b.
Then

w(z) =
P(z)
Q(z)

=
(z + b)

(z + b + )(z + b – )
,

and μ = – 
 . �

Proof of Theorem . Assume to the contrary that w is a nonconstant rational function.
Denote w = P(z)

Q(z) , where P(z) and Q(z) are relatively prime polynomials with degrees p and
q respectively. It follows from (.) that

P(z + )
Q(z + )

P(z – )
Q(z – )

(
P(z)
Q(z)

– 
)

=
(
P(z)
Q(z)

– λ

)

. (.)

By the same reasoning as in the proof of Theorem ., we have p = q. We also assume
that the coefficients of the highest degree terms of P(z) and Q(z) are a and  respectively.
Let z → ∞, it follows from (.) that

a(a – ) = (a – λ). (.)

Obviously, a /∈ {, ,λ}. Rewriting (.) as

P(z + )
Q(z + )

P(z – )
Q(z – )

=
(
P(z) – λQ(z)
P(z) –Q(z)

)

,

and noting that the degrees of P(z) – λQ(z) and P(z) –Q(z) are both p, we have

(a – λ)P(z + )P(z – ) = a
(
P(z) – λQ(z)

), (.)

(a – )Q(z + )Q(z – ) =
(
P(z) –Q(z)

). (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/330
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Suppose that z is a zero of P(z) with the order k, and k is an odd integer. Then z – 
is a zero of P(z + ) with the order k. However, since all the zeros of P(z + )P(z – ) have
even orders by (.), z –  must be a zero of P(z – ) with the odd order l. Thus, z –  is
a zero of P(z) with the odd order l. Therefore, z – m are all zeros of P(z) by induction,
which is impossible. Then all the zeros of P(z) have even orders. Similarly, all the zeros of
Q(z) have even orders too.
Denote P(z) = ar(z) and Q(z) = t(z), where

r(z) = zn +An–zn– +An–zn– + · · · +Az +A, (.)

t(z) = zn + Bn–zn– + Bn–zn– + · · · + Bz + B. (.)

We obtain from (.) and (.) that

(a – λ)rr = ar – λs,

(a – )ss = ar – s.

Substituting r and t by (.) and (.) respectively in the last two equations and compar-
ing the coefficients of terms zn– and zn–, we have An– = Bn– and

–n(a – λ) = λ(An– – Bn–),

–n(a – ) = a(An– – Bn–).

It is easy to see that An– �= Bn– by a �= . Then

a(a – λ) = λ(a – ).

Combining the above equation with (.), we get that a =  or a = , a contradiction. �

Proof of Theorem . Rewriting the difference equation (.) as

www = www –ww + (w – λ),

we have from Lemma . that m(r,w) = S(r,w), then N(r,w) = T(r,w) + S(r,w) and ∞ is
not the Borel exceptional value of w. Thus, a and b are finite complex numbers.
Let

P(z,w) = ww(w – ) – (w – λ).

It is easy to see that P(z, ) = –λ �= . Lemma . tells us that

N
(
r,


w

)
= T(r,w) + S(r,w),

and then ab �= .

http://www.journalofinequalitiesandapplications.com/content/2014/1/330
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Set

f (z) =
w(z) – a
w(z) – b

. (.)

Then ρ(f ) = ρ(w), λ(f ) = λ(w – a) < ρ(f ) and λ(/f ) = λ(w – b) < ρ(f ). Since f is of finite
order, we suppose that

f (z) = g(z)edz
n
, (.)

where d ( �= ) is a constant, n (≥ ) is an integer, g(z) is meromorphic and satisfies

ρ(g) < ρ(f ) = n. (.)

Then

f (z + ) = g(z + )g(z)edz
n , f (z – ) = g(z – )g(z)edz

n , (.)

where g(z) = endzn–+···+d and g(z) = e–ndzn–+···+(–)nd .
We get from (.) that w = bf –a

f – . By (.) and (.), we have

A(z)edz
n
+ B(z)edz

n
+C(z)edz

n
+Dedz

n
+ E = , (.)

where

A(z) =
[
b(b – ) – (b – λ)

]
ggggg,

B(z) =
[
b(b – )( – a) – (b – λ)(λ – a)

]
ggggg

+
[
(b – λ) – ab(b – )

]
g(gg + gg),

C(z) =
[
a(b – ) – (b – λ)

]
g +

[
b(a – ) – (a – λ)

]
(gggg)

+ 
[
(b – λ)(λ – a) + ab(b – )(a – )

]
g(gg + gg),

D(z) = 
[
a(b – )( – a) – (b – λ)(λ – a)

]
g

+
[
(λ – a) – ab( – a)

]
(gg + gg),

E = a(a – ) – (a – λ).

From (.), we apply Lemma . to (.), resulting in all the coefficients vanish. We de-
duce from A(z) =  and E =  that

a(a – ) = (a – λ), b(b – ) = (b – λ).

Thus

a – λ =±a(a – ), b – λ =±b(b – ).

Define G = g , G = gg and G = gg. We discuss the following three cases.

http://www.journalofinequalitiesandapplications.com/content/2014/1/330
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Case . Suppose that

a – λ = a(a – ), b – λ = b(b – ).

It follows from the above equations that a and b are distinct zeros of the equation

z – z + λ = .

Then

a + b = , ab = λ. (.)

From B(z) = , D(z) =  and (.), we have

b(b – )( – a)GG = b(b – )G(G +G),

a(b – )(a – b)G = –a(b – )(a – b)(G +G).

If b = , we get from (.) that a = , which is a contradiction to a �= b. Then b �= . Noting
that ab �= , the last two equations yield

–GG =G(G +G),

–G =G +G.

Combining with the last two equations, we have GG = (G +G), which means, with
–G =G +G, that

G =G = –G.

From (.) and (.), it is easy to see that f = f = –f and w = w. We deduce from (.)
that

w =
bf – a
f – 

=
bf + a
f + 

=
b(w–a)
w–b + a
w–a
w–b + 

=
w – ab
w – 

,

i.e., w = w–λ
w– .

Case . Suppose that

a – λ = –a(a – ), b – λ = –b(b – ).

Then a = λ and b = λ. Without loss of generality, we assume

a =
√

λ, b = –
√

λ. (.)

From B(z) = , D(z) =  and (.), we have

b(b – )( – a)GG = b(b – )G(G +G),

a(b – )( – a)G = –a(a – )(G +G).

http://www.journalofinequalitiesandapplications.com/content/2014/1/330
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If a =  or b = , we get from (.) that λ = , which is a contradiction. Then a �=  and
b �= . Noting that ab �= , the last two equations mean

(a – )GG = (b – )G(G +G),

(b – )G = (a – )(G +G).

We deduce from the above two equations that (G –G) = , which is G =G, and both
are equal to b–

a–G by the last equation. From (.) and (.), we obtain that

f =
b – 
a – 

f and f =
b – 
a – 

f ,

which yield (a – ) = (b – ), a contradiction since a + b = .
Case . Suppose that

a – λ = a(a – ), b – λ = –b(b – ). (.)

Then b = λ. Since λ �= , it is easy to see that a �=  and b �=  by (.). Noting that ab �= ,
we get from B(z) = , C(z) =  and D(z) =  that

( – a)(a + b)GG = (b – )(a – b)G(G +G), (.)
(
a – b

)[
(b – )G – (a – )GG

]
= ab(b – )( – a)G(G +G), (.)

(b – )(a + b)G = (a – )(a – b)(G +G). (.)

Combining (.) with (.) and (.) respectively, we obtain

(a – b)(b – )G = (a – )
[
(a – b) + ab

]
GG,

(b – )G = –(a – )GG.

Then

(a – b) = –(a – b) – ab,

which is a + b = . Thus a = –b = ±√
λ. Substituting a by ±√

λ in the first equation of
(.), we get that λ =  or λ = , both are impossible. �

Proof of Theorem . Let P(z,w) = www(w–)–μ. Then P(z, ) = –μ �= .We deduce from
Lemma. thatm(r, /w) = S(r,w), and thenN(r, /w) = T(r,w)+S(r,w). Thus λ(w) = ρ(w).
Assume to the contrary thatw has two Borel exceptional values a and b ( �= a). Obviously,

ab �=  by λ(w) = ρ(w). Let f be given by (.). Thenwe still have (.)-(.). Substituting
w = bf –a

f – in (.), we obtain

A(z)edz
n + B(z)edz

n +C(z)edz
n +D(z)edz

n + E = , (.)

where

A(z) =
[
b(b – ) –μ

]
ggggg,

http://www.journalofinequalitiesandapplications.com/content/2014/1/330
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B(z) =
[
b(a + b – ab) + μ

]
ggggg +

[
ab( – b) +μ

]
g(gg + gg),

C(z) =
[
ab(a – ) –μ

]
gggg –

[
ab(a + b – ab) + μ

]
g(gg + gg)

+
[
ab(b – ) –μ

]
g,

D(z) =
[
μ – ab(a – )

]
(gg + gg) +

[
a(a + b – ab) + μ

]
g,

E = a(a – ) –μ.

Lemma . tells us that all the coefficients of (.) vanish. By a similar way to the above,
we deduce from A(z) =  and E =  that

a(a – ) = μ, b(b – ) = μ. (.)

Denote G = g , G = gg and G = gg. From B(z) = , C(z) =  and (.), and noting that
a �= b, we have

( – b)GG = (b – )G(G +G),

( – a)G = (a – )(G +G).

Since the last two equations are both homogeneous, there exist two non-zero constants α

and β such that G = αG and G = βG. Then

( – b)αβ = (b – )(α + β), (.)

( – a) = (a – )(α + β). (.)

If α + β = , then a = b = 
 by (.) and (.), which is a contradiction. Thus α + β �= .

On the other hand, combining (.) with (.), we have

f = αf , f = βf ,

which yield αβ = . It follows from (.) and (.) that

 – b
 – a

=
b – 
a – 

,

which means a = b, a contradiction. �
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