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Abstract
In this paper, first, we define fuzzy C∗-algebras and fuzzy Lie C∗-algebras; then, using
fixed point methods, we prove the generalized Hyers-Ulam stability of
homomorphisms in fuzzy C∗-algebras and fuzzy Lie C∗-algebras for anm-variable
additive functional equation.
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1 Introduction and preliminaries
The stability problem of functional equations originated with a question of Ulam [] con-
cerning the stability of group homomorphisms: let (G,∗) be a group and let (G,�,d) be
a metric group with the metric d(·, ·). Given ε > , does there exist a δ(ε) >  such that if a
mapping h :G →G satisfies the inequality d(h(x∗ y),h(x)�h(y)) < δ for all x, y ∈G, then
there is a homomorphism H :G → G with d(h(x),H(x)) < ε for all x ∈ G? If the answer
is affirmative, we would say that the equation of homomorphism H(x ∗ y) = H(x) � H(y)
is stable. We recall a fundamental result in fixed-point theory. Let � be a set. A function
d :� × � → [,∞] is called a generalized metric on � if d satisfies
() d(x, y) =  if and only if x = y;
() d(x, y) = d(y,x) for all x, y ∈ �;
() d(x, z)≤ d(x, y) + d(y, z) for all x, y, z ∈ �.

Theorem . [] Let (�,d) be a complete generalized metric space and let J : � → � be
a contractive mapping with Lipschitz constant L < . Then for each given element x ∈ �,
either d(Jnx, Jn+x) = ∞ for all nonnegative integers n or there exists a positive integer n
such that
() d(Jnx, Jn+x) <∞, ∀n≥ n;
() the sequence {Jnx} converges to a fixed point y∗ of J ;
() y∗ is the unique fixed point of J in the set � = {y ∈ � | d(Jnx, y) < ∞};
() d(y, y∗) ≤ 

–Ld(y, Jy) for all y ∈ �.

In this paper, using the fixed pointmethod, we prove the generalizedHyers-Ulam stabil-
ity of homomorphisms and derivations in fuzzy Lie C∗-algebras for the following additive
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functional equation []:
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We use the definition of fuzzy normed spaces given in [–] to investigate a fuzzy ver-
sion of the Hyers-Ulam stability for the Cauchy-Jensen functional equation in the fuzzy
normed algebra setting (see also [–]).

Definition . [] Let X be a real vector space. A function N : X ×R → [, ] is called a
fuzzy norm on X if for all x, y ∈ X and all s, t ∈R,

(N) N(x, t) =  for t ≤ ;
(N) x =  if and only if N(x, t) =  for all t > ;
(N) N(cx, t) =N(x, t

|c| ) if c 
= ;
(N) N(x + y, s + t)≥min{N(x, s),N(y, t)};
(N) N(x, ·) is a non-decreasing function of R and limt→∞ N(x, t) = ;
(N) for x 
= , N(x, ·) is continuous on R.

The pair (X,N) is called a fuzzy normed vector space.

Definition . [] () Let (X,N) be a fuzzy normed vector space. A sequence {xn} in X is
said to be convergent or converge if there exists an x ∈ X such that limn→∞ N(xn – x, t) = 
for all t > . In this case, x is called the limit of the sequence {xn} and we denote it by
N-limn→∞ xn = x.
() Let (X,N) be a fuzzy normed vector space. A sequence {xn} in X is called Cauchy if

for each ε >  and each t >  there exists an n ∈ N such that for all n ≥ n and all p > ,
we have N(xn+p – xn, t) >  – ε.

It is well-known that every convergent sequence in a fuzzy normed vector space is
Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be com-
plete and the fuzzy normed vector space is called a fuzzy Banach space.
We say that a mapping f : X → Y between fuzzy normed vector spaces X and Y is con-

tinuous at a point x ∈ X if for each sequence {xn} converging to x inX, then the sequence
{f (xn)} converges to f (x). If f : X → Y is continuous at each x ∈ X, then f : X → Y is said
to be continuous on X (see [, ]).

Definition . [] A fuzzy normed algebra (X,μ,∗,∗′) is a fuzzy normed space (X,N ,∗)
with algebraic structure such that

(N) N(xy, ts) ≥ N(x, t) ∗ N(y, s) for all x, y ∈ X and all t, s > , in which ∗′ is a continuous
t-norm.

Every normed algebra (X,‖ · ‖) defines a fuzzy normed algebra (X,N ,min), where

N(x, t) =
t

t + ‖x‖
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for all t >  iff

‖xy‖ ≤ ‖x‖‖y‖ + s‖y‖ + t‖x‖ (x, y ∈ X; t, s > ).

This space is called the induced fuzzy normed algebra.

Definition . () Let (X,N ,∗) and (Y ,N ,∗) be fuzzy normed algebras. AnR-linear map-
ping f : X → Y is called a homomorphism if f (xy) = f (x)f (y) for all x, y ∈ X.
() An R-linear mapping f : X → X is called a derivation if f (xy) = f (x)y + xf (y) for all

x, y ∈ X.

Definition . Let (U ,N ,∗,∗′) be a fuzzy Banach algebra, then an involution on U is a
mapping u→ u∗ from U into U which satisfies

(i) u∗∗ = u for u ∈ U ;
(ii) (αu + βv)∗ = αu∗ + βv∗;
(iii) (uv)∗ = v∗u∗ for u, v ∈ U .
If, in addition N(u∗u, ts) = N(u, t) ∗ N(u, s) for u ∈ U and t > , then U is a fuzzy C∗-

algebra.

2 Stability of homomorphisms in fuzzy C∗-algebras
Throughout this section, assume that A is a fuzzy C∗-algebra with norm NA and that B is
a fuzzy C∗-algebra with norm NB.
For a given mapping f : A → B, we define

Dμf (x, . . . ,xm) :=
m∑
i=

μf

(
mxi +

m∑
j=,j 
=i

xj

)
+ f

(
μ
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i=

xi

)
– f

(
μ

m∑
i=

mxi

)

for all μ ∈ T
 := {ν ∈ C : |ν| = } and all x, . . . ,xm ∈ A.

Note that aC-linear mappingH : A→ B is called a homomorphism in fuzzy C∗-algebras
if H satisfies H(xy) =H(x)H(y) and H(x∗) =H(x)∗ for all x, y ∈ A.
We prove the generalizedHyers-Ulam stability of homomorphisms in fuzzyC∗-algebras

for the functional equation Dμf (x, . . . ,xm) = .

Theorem . Let f : A→ B be a mapping for which there are functions ϕ : Am × (,∞) →
[, ], ψ : A × (,∞)→ [, ] and η : A× (,∞) → [, ] such that

NB
(
Dμf (x, . . . ,xm), t

) ≥ ϕ(x, . . . ,xm, t), (.)

lim
j→∞ϕ

(
mjx, . . . ,mjxm,mjt

)
= , (.)

NB
(
f (xy) – f (x)f (y), t

) ≥ ψ(x, y, t), (.)

lim
j→∞ψ

(
mjx,mjy,mjt

)
= , (.)

NB
(
f
(
x∗) – f (x)∗, t

) ≥ η(x, t), (.)

lim
j→∞η

(
mjx,mjt

)
=  (.)
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for all μ ∈ T
, all x, . . . ,xm,x, y ∈ A and t > . If there exists an L <  such that

ϕ(mx, , . . . , ,mLt) ≥ ϕ(x, , . . . , , t) (.)

for all x ∈ A and t > , then there exists a unique homomorphism H : A→ B such that

NB
(
f (x) –H(x), t

) ≥ ϕ
(
x, , . . . , , (m –mL)t

)
(.)

for all x ∈ A and t > .

Proof Consider the set X := {g : A → B} and introduce the generalized metric on X:

d(g,h) = inf
{
C ∈R+ :NB

(
g(x) – h(x),Ct

) ≥ ϕ(x, , . . . , , t),∀x ∈ A, t > 
}
.

It is easy to show that (X,d) is complete. Now, we consider the linear mapping J : X → X
such that Jg(x) := 

mg(mx) for all x ∈ A. By Theorem . of [], d(Jg, Jh) ≤ Ld(g,h) for all
g,h ∈ X. Letting μ = , x = x and x = · · · = xm =  in equation (.), we get

NB
(
f (mx) –mf (x), t

) ≥ ϕ(x, , . . . , , t) (.)

for all x ∈ A and t > . Therefore

NB

(
f (x) –


m
f (mx), t

)
≥ ϕ(x, , . . . , ,mt)

for all x ∈ A and t > . Hence d(f , Jf ) ≤ 
m . By Theorem ., there exists a mappingH : A →

B such that
() H is a fixed point of J , i.e.,

H(mx) =mH(x) (.)

for all x ∈ A. The mapping H is a unique fixed point of J in the set

Y =
{
g ∈ X : d(f , g) < ∞}

.

This implies that H is a unique mapping satisfying equation (.) such that there exists
C ∈ (,∞) satisfying

NB
(
H(x) – f (x),Ct

) ≥ ϕ(x, , . . . , , t)

for all x ∈ A and t > .
() d(Jnf ,H) →  as n→ ∞. This implies the equality

lim
n→∞

f (mnx)
mn =H(x) (.)

for all x ∈ A.
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() d(f ,H) ≤ 
–Ld(f , Jf ), which implies the inequality d(f ,H) ≤ 

m–mL . This implies that
the inequality (.) holds.
It follows from equations (.), (.), and (.) that

NB

( m∑
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H
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+H
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, t

)
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+ f
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– f
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)
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(
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)
= 

for all x, . . . ,xm ∈ A and t > . So

m∑
i=

H

(
mxi +

m∑
j=,j 
=i

xj

)
+H

( m∑
i=

xi

)
= H

( m∑
i=

mxi

)

for all x, . . . ,xm ∈ A.
By a similar method to above, we get μH(mx) = H(mμx) for all μ ∈ T

 and all x ∈ A.
Thus one can show that the mapping H : A→ B is C-linear.
It follows from equations (.), (.), and (.) that

NB
(
H(xy) –H(x)H(y), t

)
= lim

n→∞NB
(
f
(
mnxy

)
– f

(
mnx

)
f
(
mny

)
,mnt

)
≤ lim

n→∞ψ
(
mnx,mny,mnt

)
= 

for all x, y ∈ A. So H(xy) = H(x)H(y) for all x, y ∈ A. Thus H : A → B is a homomorphism
satisfying equation (.), as desired.
Also by equations (.), (.), (.), and by a similar method we have H(x∗) = H(x)∗.

�

3 Stability of homomorphisms in fuzzy Lie C∗-algebras
A fuzzy C∗-algebra C , endowed with the Lie product

[x, y] :=
xy – yx



on C , is called a fuzzy Lie C∗-algebra (see [–]).

Definition . Let A and B be fuzzy Lie C∗-algebras. A C-linear mapping H : A → B is
called a fuzzy Lie C∗-algebra homomorphism if H([x, y]) = [H(x),H(y)] for all x, y ∈ A.

Throughout this section, assume thatA is a fuzzy Lie C∗-algebra with normNA and that
B is a fuzzy Lie C∗-algebra with norm NB.
We prove the generalized Hyers-Ulam stability of homomorphisms in fuzzy Lie C∗-

algebras for the functional equation Dμf (x, . . . ,xm) = .

http://www.journalofinequalitiesandapplications.com/content/2014/1/33


Vahidi and Lee Journal of Inequalities and Applications 2014, 2014:33 Page 6 of 8
http://www.journalofinequalitiesandapplications.com/content/2014/1/33

Theorem . Let f : A→ B be a mapping for which there are functions ϕ : Am × (,∞) →
[, ] and ψ : A × (,∞)→ [, ] such that

lim
j→∞ϕ

(
mjx, . . . ,mjxm,mjt

)
= , (.)

NB
(
Dμf (x, . . . ,xm), t

) ≥ ϕ(x, . . . ,xm, t), (.)

NB
(
f
(
[x, y]

)
–

[
f (x), f (y)

]
, t

) ≥ ψ(x, y, t), (.)

lim
j→∞ψ

(
mjx,mjy,mjt

)
=  (.)

for all μ ∈ T
, all x, . . . ,xm,x, y ∈ A and t > . If there exists an L <  such that

ϕ(mx, , . . . , ,mlt)≥ ϕ(x, , . . . , , t)

for all x ∈ A and t > , then there exists a unique homomorphism H : A→ B such that

NB
(
f (x) –H(x), t

) ≥ ϕ
(
x, , . . . , , (m –mL)t

)
(.)

for all x ∈ A and t > .

Proof By the same reasoning as the proof of Theorem ., we can find that the mapping
H : A→ B is given by

H(x) = lim
n→∞

f (mnx)
mn

for all x ∈ A.
It follows from equation (.) that

NB
(
H

(
[x, y]

)
–

[
H(x),H(y)

]
, t

)
= lim

n→∞NB
(
f
(
mn[x, y]

)
–

[
f
(
mnx

)
, f

(
mny

)]
,mnt

)
≥ lim

n→∞ψ
(
mnx,mny,mnt

)
= 

for all x, y ∈ A and t > . So

H
(
[x, y]

)
=

[
H(x),H(y)

]
for all x, y ∈ A.
Thus H : A → B is a fuzzy Lie C∗-algebra homomorphism satisfying equation (.), as

desired. �

Corollary . Let  < r <  and θ be nonnegative real numbers, and let f : A → B be a
mapping such that

NB
(
Dμf (x, . . . ,xm), t

) ≥ t
t + θ (‖x‖rA + ‖x‖rA + · · · + ‖xm‖rA)

, (.)

NB
(
f
(
[x, y]

)
–

[
f (x), f (y)

]
, t

) ≥ t
t + θ · ‖x‖rA · ‖y‖rA

(.)
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for all μ ∈ T
, all x, . . . ,xm,x, y ∈ A and t > . Then there exists a unique homomorphism

H : A→ B such that

NB
(
f (x) –H(x), t

) ≤ t
t + θ

m–mr ‖x‖rA
for all x ∈ A and t > .

Proof The proof follows from Theorem . by taking

ϕ(x, . . . ,xm, t) =
t

t + θ (‖x‖rA + ‖x‖rA + · · · + ‖xm‖rA)
,

ψ(x, y, t) :=
t

t + θ · ‖x‖rA · ‖y‖rA
for all x, . . . ,xm,x, y ∈ A and t > . Putting L =mr–, we get the desired result. �
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