RESEARCH

Open Access

Stability of homomorphisms on fuzzy Lie C^* -algebras via fixed point method

Javad Vahidi¹ and Sung Jin Lee^{2*}

*Correspondence: hyper@daejin.ac.kr ²Department of Mathematics, Daejin University, Kyeonggi, 487-711, Korea Full list of author information is available at the end of the article

Abstract

In this paper, first, we define fuzzy C*-algebras and fuzzy Lie C*-algebras; then, using fixed point methods, we prove the generalized Hyers-Ulam stability of homomorphisms in fuzzy C*-algebras and fuzzy Lie C*-algebras for an *m*-variable additive functional equation.

MSC: Primary 39A10; 39B52; 39B72; 46L05; 47H10; 46B03

Keywords: fuzzy normed spaces; additive functional equation; fixed point; homomorphism in C*-algebras and Lie C*-algebras; generalized Hyers-Ulam stability

1 Introduction and preliminaries

The stability problem of functional equations originated with a question of Ulam [1] concerning the stability of group homomorphisms: let $(G_1, *)$ be a group and let (G_2, \diamond, d) be a metric group with the metric $d(\cdot, \cdot)$. Given $\epsilon > 0$, does there exist a $\delta(\epsilon) > 0$ such that if a mapping $h: G_1 \to G_2$ satisfies the inequality $d(h(x * y), h(x) \diamond h(y)) < \delta$ for all $x, y \in G_1$, then there is a homomorphism $H: G_1 \to G_2$ with $d(h(x), H(x)) < \epsilon$ for all $x \in G_1$? If the answer is affirmative, we would say that the equation of homomorphism $H(x * y) = H(x) \diamond H(y)$ is stable. We recall a fundamental result in fixed-point theory. Let Ω be a set. A function $d: \Omega \times \Omega \to [0, \infty]$ is called a *generalized metric* on Ω if d satisfies

- (1) d(x, y) = 0 if and only if x = y;
- (2) d(x, y) = d(y, x) for all $x, y \in \Omega$;
- (3) $d(x,z) \le d(x,y) + d(y,z)$ for all $x, y, z \in \Omega$.

Theorem 1.1 [2] Let (Ω, d) be a complete generalized metric space and let $J : \Omega \to \Omega$ be a contractive mapping with Lipschitz constant L < 1. Then for each given element $x \in \Omega$, either $d(J^nx, J^{n+1}x) = \infty$ for all nonnegative integers n or there exists a positive integer n_0 such that

- (1) $d(J^n x, J^{n+1} x) < \infty, \forall n \ge n_0;$
- (2) the sequence $\{J^n x\}$ converges to a fixed point y^* of J;
- (3) y^* is the unique fixed point of J in the set $\Gamma = \{y \in \Omega \mid d(J^{n_0}x, y) < \infty\};$
- (4) $d(y, y^*) \leq \frac{1}{1-L} d(y, Jy)$ for all $y \in \Gamma$.

In this paper, using the fixed point method, we prove the generalized Hyers-Ulam stability of homomorphisms and derivations in fuzzy Lie C^* -algebras for the following additive

©2014 Vahidi and Lee; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. functional equation [3]:

$$\sum_{i=1}^{m} f\left(mx_i + \sum_{j=1, j \neq i}^{m} x_j\right) + f\left(\sum_{i=1}^{m} x_i\right) = 2f\left(\sum_{i=1}^{m} mx_i\right) \quad (m \in \mathbb{N}, m \ge 2).$$
(1.1)

We use the definition of fuzzy normed spaces given in [4-10] to investigate a fuzzy version of the Hyers-Ulam stability for the Cauchy-Jensen functional equation in the fuzzy normed algebra setting (see also [11-16]).

Definition 1.2 [4] Let *X* be a real vector space. A function $N : X \times \mathbb{R} \to [0,1]$ is called a *fuzzy norm* on *X* if for all *x*, *y* \in *X* and all *s*, *t* $\in \mathbb{R}$,

 $(N_1) N(x,t) = 0$ for $t \le 0$;

 (N_2) x = 0 if and only if N(x, t) = 1 for all t > 0;

- (N₃) $N(cx, t) = N(x, \frac{t}{|c|})$ if $c \neq 0$;
- $(N_4) \ N(x+y,s+t) \ge \min\{N(x,s),N(y,t)\};$
- (*N*₅) $N(x, \cdot)$ is a non-decreasing function of \mathbb{R} and $\lim_{t\to\infty} N(x, t) = 1$;
- (*N*₆) for $x \neq 0$, $N(x, \cdot)$ is continuous on \mathbb{R} .

The pair (X, N) is called a *fuzzy normed vector space*.

Definition 1.3 [4] (1) Let (X, N) be a fuzzy normed vector space. A sequence $\{x_n\}$ in X is said to *be convergent* or *converge* if there exists an $x \in X$ such that $\lim_{n\to\infty} N(x_n - x, t) = 1$ for all t > 0. In this case, x is called the *limit* of the sequence $\{x_n\}$ and we denote it by N-lim_{$n\to\infty$} $x_n = x$.

(2) Let (X, N) be a fuzzy normed vector space. A sequence $\{x_n\}$ in X is called *Cauchy* if for each $\varepsilon > 0$ and each t > 0 there exists an $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$ and all p > 0, we have $N(x_{n+p} - x_n, t) > 1 - \varepsilon$.

It is well-known that every convergent sequence in a fuzzy normed vector space is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be *complete* and the fuzzy normed vector space is called a *fuzzy Banach space*.

We say that a mapping $f : X \to Y$ between fuzzy normed vector spaces X and Y is continuous at a point $x_0 \in X$ if for each sequence $\{x_n\}$ converging to x_0 in X, then the sequence $\{f(x_n)\}$ converges to $f(x_0)$. If $f : X \to Y$ is continuous at each $x \in X$, then $f : X \to Y$ is said to be *continuous* on X (see [4, 10]).

Definition 1.4 [12] A *fuzzy normed algebra* $(X, \mu, *, *')$ is a fuzzy normed space (X, N, *) with algebraic structure such that

(*N*₇) $N(xy, ts) \ge N(x, t) * N(y, s)$ for all $x, y \in X$ and all t, s > 0, in which *' is a continuous *t*-norm.

Every normed algebra $(X, \|\cdot\|)$ defines a fuzzy normed algebra (X, N, \min) , where

$$N(x,t) = \frac{t}{t + \|x\|}$$

for all t > 0 iff

$$||xy|| \le ||x|| ||y|| + s||y|| + t||x||$$
 $(x, y \in X; t, s > 0).$

This space is called the induced fuzzy normed algebra.

Definition 1.5 (1) Let (X, N, *) and (Y, N, *) be fuzzy normed algebras. An \mathbb{R} -linear mapping $f : X \to Y$ is called a *homomorphism* if f(xy) = f(x)f(y) for all $x, y \in X$.

(2) An \mathbb{R} -linear mapping $f : X \to X$ is called a *derivation* if f(xy) = f(x)y + xf(y) for all $x, y \in X$.

Definition 1.6 Let $(\mathcal{U}, N, *, *')$ be a fuzzy Banach algebra, then an involution on \mathcal{U} is a mapping $u \to u^*$ from \mathcal{U} into \mathcal{U} which satisfies

- (i) $u^{**} = u$ for $u \in \mathcal{U}$;
- (ii) $(\alpha u + \beta v)^* = \overline{\alpha} u^* + \overline{\beta} v^*$;
- (iii) $(uv)^* = v^*u^*$ for $u, v \in \mathcal{U}$.

If, in addition $N(u^*u, ts) = N(u, t) * N(u, s)$ for $u \in U$ and t > 0, then U is a fuzzy C^* -algebra.

2 Stability of homomorphisms in fuzzy C*-algebras

Throughout this section, assume that A is a fuzzy C^* -algebra with norm N_A and that B is a fuzzy C^* -algebra with norm N_B .

For a given mapping $f : A \rightarrow B$, we define

$$D_{\mu}f(x_{1},...,x_{m}) := \sum_{i=1}^{m} \mu f\left(mx_{i} + \sum_{j=1, j \neq i}^{m} x_{j}\right) + f\left(\mu \sum_{i=1}^{m} x_{i}\right) - 2f\left(\mu \sum_{i=1}^{m} mx_{i}\right)$$

for all $\mu \in \mathbb{T}^1 := \{ \nu \in \mathbb{C} : |\nu| = 1 \}$ and all $x_1, \dots, x_m \in A$.

Note that a \mathbb{C} -linear mapping $H : A \to B$ is called a *homomorphism* in fuzzy C^* -algebras if H satisfies H(xy) = H(x)H(y) and $H(x^*) = H(x)^*$ for all $x, y \in A$.

We prove the generalized Hyers-Ulam stability of homomorphisms in fuzzy C^* -algebras for the functional equation $D_{\mu}f(x_1, \dots, x_m) = 0$.

Theorem 2.1 Let $f : A \to B$ be a mapping for which there are functions $\varphi : A^m \times (0, \infty) \to [0,1], \psi : A^2 \times (0, \infty) \to [0,1]$ and $\eta : A \times (0, \infty) \to [0,1]$ such that

 $N_B(D_\mu f(x_1,\ldots,x_m),t) \ge \varphi(x_1,\ldots,x_m,t), \tag{2.1}$

$$\lim_{j \to \infty} \varphi\left(m^j x_1, \dots, m^j x_m, m^j t\right) = 1, \tag{2.2}$$

 $N_B(f(xy) - f(x)f(y), t) \ge \psi(x, y, t),$ (2.3)

 $\lim_{i \to \infty} \psi\left(m^{i} x, m^{j} y, m^{2j} t\right) = 1, \tag{2.4}$

 $N_B(f(x^*) - f(x)^*, t) \ge \eta(x, t),$ (2.5)

$$\lim_{j \to \infty} \eta(m^j x, m^j t) = 1$$
(2.6)

for all $\mu \in \mathbb{T}^1$, all $x_1, \ldots, x_m, x, y \in A$ and t > 0. If there exists an L < 1 such that

$$\varphi(mx, 0, \dots, 0, mLt) \ge \varphi(x, 0, \dots, 0, t) \tag{2.7}$$

for all $x \in A$ and t > 0, then there exists a unique homomorphism $H : A \rightarrow B$ such that

$$N_B(f(x) - H(x), t) \ge \varphi(x, 0, \dots, 0, (m - mL)t)$$

$$(2.8)$$

for all $x \in A$ and t > 0.

Proof Consider the set $X := \{g : A \rightarrow B\}$ and introduce the *generalized metric* on X:

$$d(g,h) = \inf \left\{ C \in \mathbb{R}_+ : N_B(g(x) - h(x), Ct) \ge \varphi(x, 0, \dots, 0, t), \forall x \in A, t > 0 \right\}.$$

It is easy to show that (X, d) is complete. Now, we consider the linear mapping $J : X \to X$ such that $Jg(x) := \frac{1}{m}g(mx)$ for all $x \in A$. By Theorem 3.1 of [17], $d(Jg, Jh) \leq Ld(g, h)$ for all $g, h \in X$. Letting $\mu = 1, x = x_1$ and $x_2 = \cdots = x_m = 0$ in equation (2.1), we get

$$N_B(f(mx) - mf(x), t) \ge \varphi(x, 0, \dots, 0, t)$$

$$(2.9)$$

for all $x \in A$ and t > 0. Therefore

$$N_B\left(f(x)-\frac{1}{m}f(mx),t\right)\geq\varphi(x,0,\ldots,0,mt)$$

for all $x \in A$ and t > 0. Hence $d(f, Jf) \le \frac{1}{m}$. By Theorem 1.1, there exists a mapping $H : A \to B$ such that

(1) *H* is a fixed point of *J*, *i.e.*,

$$H(mx) = mH(x) \tag{2.10}$$

for all $x \in A$. The mapping *H* is a unique fixed point of *J* in the set

$$Y = \{g \in X : d(f,g) < \infty\}.$$

This implies that *H* is a unique mapping satisfying equation (2.10) such that there exists $C \in (0, \infty)$ satisfying

$$N_B(H(x)-f(x),Ct) \geq \varphi(x,0,\ldots,0,t)$$

for all $x \in A$ and t > 0.

(2) $d(J^n f, H) \to 0$ as $n \to \infty$. This implies the equality

$$\lim_{n \to \infty} \frac{f(m^n x)}{m^n} = H(x) \tag{2.11}$$

for all $x \in A$.

(3) $d(f, H) \leq \frac{1}{1-L}d(f, Jf)$, which implies the inequality $d(f, H) \leq \frac{1}{m-mL}$. This implies that the inequality (2.8) holds.

It follows from equations (2.1), (2.2), and (2.11) that

$$N_B\left(\sum_{i=1}^m H\left(mx_i + \sum_{j=1, j \neq i}^m x_j\right) + H\left(\sum_{i=1}^m x_i\right) - 2H\left(\sum_{i=1}^m mx_i\right), t\right)$$
$$= \lim_{n \to \infty} N_B\left(\sum_{i=1}^m f\left(m^{n+1}x_i + \sum_{j=1, j \neq i}^m m^n x_j\right) + f\left(\sum_{i=1}^m m^n x_i\right) - 2f\left(\sum_{i=1}^m m^{n+1}x_i\right), m^n t\right)$$
$$\leq \lim_{n \to \infty} \varphi(m^n x_1, \dots, m^n x_m, m^n t) = 1$$

for all $x_1, \ldots, x_m \in A$ and t > 0. So

$$\sum_{i=1}^{m} H\left(mx_i + \sum_{j=1, j \neq i}^{m} x_j\right) + H\left(\sum_{i=1}^{m} x_i\right) = 2H\left(\sum_{i=1}^{m} mx_i\right)$$

for all $x_1, \ldots, x_m \in A$.

By a similar method to above, we get $\mu H(mx) = H(m\mu x)$ for all $\mu \in \mathbb{T}^1$ and all $x \in A$. Thus one can show that the mapping $H : A \to B$ is \mathbb{C} -linear.

It follows from equations (2.3), (2.4), and (2.11) that

$$N_B(H(xy) - H(x)H(y), t) = \lim_{n \to \infty} N_B(f(m^n xy) - f(m^n x)f(m^n y), m^n t)$$
$$\leq \lim_{n \to \infty} \psi(m^n x, m^n y, m^{2n} t) = 1$$

for all $x, y \in A$. So H(xy) = H(x)H(y) for all $x, y \in A$. Thus $H : A \to B$ is a homomorphism satisfying equation (2.7), as desired.

Also by equations (2.5), (2.6), (2.11), and by a similar method we have $H(x^*) = H(x)^*$.

3 Stability of homomorphisms in fuzzy Lie C*-algebras

A fuzzy C^* -algebra C, endowed with the Lie product

$$[x,y] := \frac{xy - yx}{2}$$

on C, is called a *fuzzy Lie* C^* -algebra (see [18–20]).

Definition 3.1 Let *A* and *B* be fuzzy Lie *C*^{*}-algebras. A \mathbb{C} -linear mapping $H : A \to B$ is called a *fuzzy Lie C*^{*}-*algebra homomorphism* if H([x, y]) = [H(x), H(y)] for all $x, y \in A$.

Throughout this section, assume that A is a fuzzy Lie C^* -algebra with norm N_A and that B is a fuzzy Lie C^* -algebra with norm N_B .

We prove the generalized Hyers-Ulam stability of homomorphisms in fuzzy Lie C^* -algebras for the functional equation $D_{\mu}f(x_1, \ldots, x_m) = 0$.

Theorem 3.2 Let $f : A \to B$ be a mapping for which there are functions $\varphi : A^m \times (0, \infty) \to [0,1]$ and $\psi : A^2 \times (0, \infty) \to [0,1]$ such that

$$\lim_{j \to \infty} \varphi\left(m^j x_1, \dots, m^j x_m, m^j t\right) = 1, \tag{3.1}$$

$$N_B(D_\mu f(x_1,\ldots,x_m),t) \ge \varphi(x_1,\ldots,x_m,t), \tag{3.2}$$

$$N_B(f([x,y]) - [f(x),f(y)],t) \ge \psi(x,y,t),$$

$$(3.3)$$

$$\lim_{j \to \infty} \psi\left(m^{j} x, m^{j} y, m^{2j} t\right) = 1$$
(3.4)

for all $\mu \in \mathbb{T}^1$, all $x_1, \ldots, x_m, x, y \in A$ and t > 0. If there exists an L < 1 such that

$$\varphi(mx, 0, \dots, 0, mlt) \ge \varphi(x, 0, \dots, 0, t)$$

for all $x \in A$ and t > 0, then there exists a unique homomorphism $H : A \rightarrow B$ such that

$$N_B(f(x) - H(x), t) \ge \varphi(x, 0, \dots, 0, (m - mL)t)$$

$$(3.5)$$

for all $x \in A$ and t > 0.

Proof By the same reasoning as the proof of Theorem 2.1, we can find that the mapping $H: A \rightarrow B$ is given by

$$H(x) = \lim_{n \to \infty} \frac{f(m^n x)}{m^n}$$

for all $x \in A$.

It follows from equation (3.3) that

$$N_B(H([x,y]) - [H(x),H(y)],t) = \lim_{n \to \infty} N_B(f(m^{2n}[x,y]) - [f(m^n x),f(m^n y)],m^{2n}t)$$
$$\geq \lim_{n \to \infty} \psi(m^n x,m^n y,m^{2n}t) = 1$$

for all $x, y \in A$ and t > 0. So

$$H([x,y]) = [H(x),H(y)]$$

for all $x, y \in A$.

Thus $H : A \to B$ is a fuzzy Lie C^* -algebra homomorphism satisfying equation (3.5), as desired.

Corollary 3.3 Let 0 < r < 1 and θ be nonnegative real numbers, and let $f : A \to B$ be a mapping such that

$$N_B(D_{\mu}f(x_1,\ldots,x_m),t) \ge \frac{t}{t+\theta(\|x_1\|_A^r+\|x_2\|_A^r+\cdots+\|x_m\|_A^r)},$$
(3.6)

$$N_B(f([x,y]) - [f(x),f(y)],t) \ge \frac{t}{t + \theta \cdot ||x||_A^r \cdot ||y||_A^r}$$
(3.7)

for all $\mu \in \mathbb{T}^1$, all $x_1, \ldots, x_m, x, y \in A$ and t > 0. Then there exists a unique homomorphism $H : A \to B$ such that

$$N_B(f(x) - H(x), t) \leq \frac{t}{t + \frac{\theta}{m - m^r} \|x\|_A^r}$$

for all $x \in A$ and t > 0.

Proof The proof follows from Theorem 3.2 by taking

$$\varphi(x_1,...,x_m,t) = \frac{t}{t + \theta(\|x_1\|_A^r + \|x_2\|_A^r + \dots + \|x_m\|_A^r)},$$

$$\psi(x,y,t) := \frac{t}{t + \theta \cdot \|x\|_A^r \cdot \|y\|_A^r}$$

for all $x_1, \ldots, x_m, x, y \in A$ and t > 0. Putting $L = m^{r-1}$, we get the desired result.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors read and approved the final manuscript.

Author details

¹Department of Mathematics, Iran University of Science and Technology, Tehran, Iran. ²Department of Mathematics, Daejin University, Kyeonggi, 487-711, Korea.

Received: 20 August 2013 Accepted: 17 December 2013 Published: 24 Jan 2014

References

- 1. Ulam, SM: A Collection of the Mathematical Problems. Interscience, New York (1960)
- Diaz, J, Margolis, B: A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 74, 305-309 (1968)
- 3. Eskandani, GZ: On the Hyers-Ulam-Rassias stability of an additive functional equation in quasi-Banach spaces. J. Math. Anal. Appl. 345(1), 405-409 (2008)
- 4. Saadati, R, Vaezpour, SM: Some results on fuzzy Banach spaces. J. Appl. Math. Comput. 17(1-2), 475-484 (2005)
- Saadati, R, Park, C: Non-Archimedian *L*-fuzzy normed spaces and stability of functional equations. Comput. Math. Appl. 60(8), 2488-2496 (2010)
- Agarwal, RP, Cho, YJ, Saadati, R, Wang, S: Nonlinear *L*-fuzzy stability of cubic functional equations. J. Inequal. Appl. 2012, 77 (2012)
- 7. Saadati, R: On the "On some results in fuzzy metric spaces". J. Comput. Anal. Appl. 14(6), 996-999 (2012)
- 8. Park, C, Jang, SY, Saadati, R: Fuzzy approximate of homomorphisms. J. Comput. Anal. Appl. 14(5), 833-841 (2012)
- Mirmostafaee, AK, Mirzavaziri, M, Moslehian, MS: Fuzzy stability of the Jensen functional equation. Fuzzy Sets Syst. 159, 730-738 (2008)
- 10. Mirmostafaee, AK, Moslehian, MS: Fuzzy approximately cubic mappings. Inf. Sci. 178, 3791-3798 (2008)
- Kang, JI, Saadati, R: Approximation of homomorphisms and derivations on non-Archimedean random Lie C*-algebras via fixed point method. J. Inegual. Appl. 2012, 251 (2012) MR3017309
- 12. Park, C, Eshaghi Gordji, M, Saadati, R: Random homomorphisms and random derivations in random normed algebras via fixed point method. J. Inequal. Appl. 2012, 194 (2012) MR3015424
- 13. Ebadian, A, Eshaghi Gordji, M, Khodaei, H, Saadati, R, Sadeghi, G: On the stability of an *m*-variables functional
- equation in random normed spaces via fixed point method. Discrete Dyn. Nat. Soc. **2012**, Article ID 346561 (2012) 14. Rassias, JM, Saadati, R, Sadeghi, G, Vahidi, J: On nonlinear stability in various random normed spaces. J. Inequal. Appl. **2011**, 62 (2011) MR2837916
- Cho, YJ, Saadati, R: Lattictic non-Archimedean random stability of ACQ functional equation. Adv. Differ. Equ. 2011, 31 (2011) MR2835985
- Mihet, D, Saadati, R: On the stability of the additive Cauchy functional equation in random normed spaces. Appl. Math. Lett. 24(12), 2005-2009 (2011)
- 17. Cădariu, L, Radu, V: Fixed points and the stability of Jensen's functional equation. J. Inequal. Pure Appl. Math. 4(1), Article ID 4 (2003)
- Park, C: Lie *-homomorphisms between Lie C*-algebras and Lie *-derivations on Lie C*-algebras. J. Math. Anal. Appl. 293, 419-434 (2004)
- Park, C: Homomorphisms between Lie JC*-algebras and Cauchy-Rassias stability of Lie JC*-algebra derivations. J. Lie Theory 15, 393-414 (2005)
- 20. Park, C: Homomorphisms between Poisson JC*-algebras. Bull. Braz. Math. Soc. 36, 79-97 (2005)

10.1186/1029-242X-2014-33

Cite this article as: Vahidi and Lee: **Stability of homomorphisms on fuzzy Lie** C*-algebras via fixed point method. *Journal of Inequalities and Applications* **2014**, **2014**:33

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com