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Abstract
In this paper we obtain a number of interesting relations associated with some
differential inequalities in the open unit disk,U = {z : |z| < 1}. Some applications of the
main results are also obtained.
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1 Introduction
Let A denote the class of functions of the form

f (z) = z +
∞∑
n=

anzn (.)

which are analytic in the unit disc U = {z : |z| < }. Also, we denote by K the class of func-
tions f (z) ∈ A that are convex in U.
A function f (z) in the class A is said to be in the class S∗(α) of starlike functions of order

α (≤ α < ) if it satisfies

Re

(
zf ′(z)
f (z)

)
> α (z ∈ U) (.)

for some α (≤ α < ). Also, we write S() = S∗, the class of starlike functions in U.
A function f (z) ∈ A is in Sλ (|λ| < π

 ), the class of λ-spiral-like functions, if it satisfies

Re

(
eiλ

zf ′(z)
f (z)

)
>  (z ∈U). (.)

Definition . Let f (z) and F(z) be analytic functions. The function f (z) is said to be sub-
ordinate to F(z), written f (z) ≺ F(z), if there exists a function w(z) analytic in U, with
w() =  and |w(z)| ≤ , and such that f (z) = F(w(z)). If F(z) is univalent, then f (z) ≺ F(z)
if and only if f () = F() and f (U) ⊂ F(U).

Let D be the set of analytic functions q(z) injective on U\E(q), where

E(q) =
{
ζ ∈ ∂U : lim

z→ζ
q(z) = ∞

}

and q′(ζ ) 
=  for ζ ∈ ∂U\E(q). Further, let Da = {q(z) ∈D : q() = a}.
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In this paper we obtain some interesting relations associated with some differential in-
equalities in U. These relations extend and generalize the Carathéodory functions in U

which have been studied by many authors e.g., see [–].

2 Main results
To prove our results, we need the following lemma due to Miller and Mocanu [, p.].

Lemma . Let q(z) ∈Da and let

p(z) = b + bnzn + · · ·

be analytic inUwith p(z) 
= b. If p(z)⊀ q(z), then there exist points z ∈ U and ζ ∈ ∂U\E(q)
and on m ≥ n≥  for which

(i) p(z) = q(ζ),
(ii) zp′(z) =mζq′(ζ).

Theorem . Let

P :U →C

with

Re
(
aP(z)

)
>  (a ∈C).

If p is a function analytic in U with p() =  and

Re
(
p(z) + P(z)zp′(z)

)
>

E
|a|Re(aP(z)) , (.)

then

Re
(
ap(z)

)
> α,

where

E = –
(
Re(a) – α

)(
Re

(
aP(z)

))
+ Re

(
aP(z)

)[(
Im(a)

) + αRe(a)
]

+
(
Re(a) – α

)(
Im(a)

), (.)

with Re(a) > α.

Proof Let us define q(z) and h(z) as follows:

q(z) = ap(z)

and

h(z) =
a – (α – a)z

 – z
(
Re(a) > α

)
.
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The functions q and h are analytic in U with q() = h() = a ∈ C with

h(U) =
{
w : Re(w) > α

}
.

Now, we suppose that q(z)⊀ h(z). Therefore, by using Lemma ., there exist points

z ∈U and ζ ∈ ∂U\{}

such that q(z) = h(ζ) and zq′(z) =mζh′(ζ),m ≥ n≥ .
We note that

ζ = h–
(
q(z)

)
=

q(z) – a
q(z) – (α – a)

(.)

and

ζh′(ζ) =
–|q(z) – a|
Re(a – q(z))

. (.)

We have h(ζ) = α + ρi (α,ρ ∈R), therefore

Re
(
p(z) + P(z)zp′(z)

)

= Re

(

a
h(ζ) +


a
P(z)mζh′(ζ)

)

= Re

(
α + ρi
a

)
–m

|α + ρi – a|
Re(a – α)

Re

(
P(z)
a

)

≤ Re

(
α + ρi
a

)
–

|α + ρi – a|
Re(a – α)

Re

(
P(z)
a

)

= Aρ + Bρ +C

= g(ρ), (.)

where

A = –
Re(aP(z))

|a|Re(a – α)
,

B =
Im(a)
|a|

(
 +

Re(aP(z))
Re(a) – α

)

and

C =


|a|
(

αRe(a) –
α + |a| – αRe(a)Re(aP(z))

(Re(a) – α)

)
.

We can see that the function g(ρ) in (.) takes the maximum value at ρ given by

ρ = Im(a)
(
 +

Re(a) – α

Re(aP(z))

)
.
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Hence, we have

Re
(
p(z) + P(z)zp′(z)

)
≤ g(ρ)

=
E

|a|Re(aP(z)) ,

where E is defined by (.). This is in contradiction to (.). Then we obtain Re(ap(z)) > α.
�

Theorem . Let p(z) a nonzero analytic function in U with p() = . If
∣∣∣∣p(z) + zp′(z)

p(z)
– 

∣∣∣∣ < Re(a – α)
|a|

∣∣p(z)∣∣, (.)

then

Re

(
a

p(z)

)
> α,

where Re(a) > α.

Proof Let us define both q(z) and h(z) as follows:

q(z) = a/p(z)

and

h(z) =
a – (α – a)z

 – z
(
Re(a) > α

)
.

The functions q and h are analytic in U with q() = h() = a ∈ C with

h(U) =
{
w : Re(w) > α

}
.

Now, we suppose that q(z)⊀ h(z). Therefore, by using Lemma ., there exist points

z ∈U and ζ ∈ ∂U\{}

such that q(z) = h(ζ) and zq′(z) =mζh′(ζ),m ≥ n≥ .
We note that

ζh′(ζ) =
–|q(z) – a|
Re(a – q(z))

. (.)

We have h(ζ) = α + ρi (ρ ∈R); therefore,

|p(z) + zp′(z)
p(z)

– |
|p(z)| =

∣∣∣∣α + ρi
a

–
m
a

|a – α – iρ|
Re(a – α)

– 
∣∣∣∣

≥ 
|a|

∣∣∣∣m|a – α – iρ|
Re(a – α)

+Re(a – α)
∣∣∣∣
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≥ 
|a|

( |a – α – iρ|
Re(a – α)

+Re(a – α)
)

≥ 
|a|Re(a – α)

(

(
Re(a – α)

) + (
Im(a) – ρ

))

≥ Re(a – α)
|a| .

This is in contradiction to (.). Then we obtain Re( a
p(z) ) > α. �

3 Applications and examples
Putting P(z) = β (β > ; real) in Theorem . we have the following corollary.

Corollary . If p is a function analytic in U with p() =  and

Re
(
p(z) + βzp′(z)

)
>

E
β|a|Re(a) ,

then

Re
(
ap(z)

)
> α,

where

E = –
(
Re(a) – α

)
β(Re(a)) + β Re(a)

[(
Im(a)

) + αRe(a)
]
+

(
Re(a) – α

)(
Im(a)

),
with Re(a) > α (α ≥ ).

Putting β =  in Corollary ., we obtain the following corollary.

Corollary . If p is a function analytic in U with p() =  and

Re
(
p(z) + zp′(z)

)
>


Re(a)

(
Re(a) – α

)
–
Re(a)
|a|

(
Re(a) – α

)
,

then

Re
(
ap(z)

)
> α,

with Re(a) > α (α ≥ ).

Corollary . Let f (z) ∈ A, (g(z))a ∈ S∗ and

Re

(
f ′(z)
g ′(z)

)
>

E
|a|Re(a g(z)

zg′(z) )
,

then

Re

(
a
f (z)
g(z)

)
> α,

where Re(a) > α (α ≥ ) and E is defined by (.) with P(z) = g(z)
zg′(z) .
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Proof Putting p(z) = f (z)
g(z) and P(z) = g(z)

zg′(z) in Theorem ., we have

Re
(
p(z) + P(z)zp′(z)

)
= Re

(
f ′(z)
g ′(z)

)
.

Since (g(z))a ∈ S∗, which gives Re(azg′(z)
g(z) ) > , therefore, Re(aP(z)) > . This completes the

proof of the corollary. �

Example . Let f (z) ∈ A and

Re
(
f ′(z)

)
>


Re(a)

(
Re(a) – α

)
–
Re(a)
|a|

(
Re(a) – α

)
,

then

Re

(
a
f (z)
z

)
> α,

where Re(a) > α.

Example . Let f (z) ∈ A and

Re

((
 +

zf ′′(z)
f ′(z)

–
zf ′(z)
f (z)

)
zf ′(z)
f (z)

)
>


Re(a)

(
Re(a) – α

)
–
Re(a)
|a|

(
Re(a) – α

)
,

then

Re

(
a
zf ′(z)
f (z)

)
> α,

where Re(a) > α.

() Putting a = eiλ (|λ| < π
 ) and α =  in Theorem ., we have Theorem  due to Kim

and Cho [].
() Putting a = eiλ (|λ| < π

 ), P(z) = β (β > ; real) and α =  in Theorem ., we have
Corollary  due to Kim and Cho [].

() Putting a = α =  and P(z) =  in Theorem ., we have the result due to Nunokawa
et al. [].

() Putting a = eiλ (|λ| < π
 ), P(z) =  and α =  in Theorem ., we have Corollary  due

to Kim and Cho [].
Putting p(z) = zf ′(z)

f (z) in Theorem ., we have the following corollary.

Corollary . Let p(z) a nonzero analytic function in U with p() = . If
∣∣∣∣zf

′′(z)
f ′(z)

∣∣∣∣ < Re(a – α)
|a|

∣∣∣∣zf
′(z)

f (z)

∣∣∣∣,

then

Re

(

a
zf ′(z)
f (z)

)
> α,

where Re(a) > α.
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Remark
() Putting a =  and α =  in Corollary ., we have the result due to Attiya and

Nasr [].
() Putting a =  and α =  in Corollary ., we have the result due to Kim and Cho [].
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