
Lou and Qian Journal of Inequalities and Applications 2014, 2014:312
http://www.journalofinequalitiesandapplications.com/content/2014/1/312

RESEARCH Open Access

Inner functions as improving multipliers and
zero sets of Besov-type spaces
Zengjian Lou* and Ruishen Qian

*Correspondence: zjlou@stu.edu.cn
Department of Mathematics,
Shantou University, Guangdong,
Shantou 515063, P.R. China

Abstract
Assume X and Y are two spaces of analytic functions in the unit disk D with X ⊆ Y . Let
θ be an inner function. If every function f ∈ X satisfying fθ ∈ Y must actually satisfy
fθ ∈ X , then θ is said to be (X ,Y)-improving. In this paper, we characterize the inner
functions in the Möbius invariant Besov-type spaces F(p,p – 2, s) as improving
multipliers for p > 1 and 0 < s < 1. Our result generalizes Peláez’s result on Qs spaces
(0 < s < 1) (Peláez in J. Funct. Anal. 255:1403-1418, 2008).
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1 Introduction
We denote the unit disk {z ∈ C : |z| < } by D and its boundary {z ∈ C : |z| = } by ∂D. Let
H(D) be the space of all analytic functions in D. An analytic function in the unit disc D is
called an inner function if it is bounded and the modulus equals  almost everywhere on
the boundary ∂D.
It is well known that every inner function has a factorization eiγB(z)S(z), where γ ∈ R,

B(z) is a Blaschke product and S(z) is a singular inner function, that is,

B(z) =
∞∏
k=

|ak|
ak

ak – z
 – ākz

and

S(z) = exp

{
–

∫ π



eit + z
eit – z

dμ(t)
}
,

where {ak}∞k= is a sequence of points in D which satisfies the Blaschke condition

∞∑
k=

(
 – |ak|

)
< ∞,

and μ is a finite positive Borel measure in [, π ), which is singular with respect to
Lebesgue measure. Let σ (θ ) denote the singular set or boundary spectrum of inner func-
tion θ . From [] we know that σ (θ ) ⊆ ∂D is the smallest closed set such that θ is analytic
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across ∂D\σ (θ ), and σ (θ ) consists of the accumulation points of zeros of θ and the closed
support of the associated singularmeasure. See [–] formore information on inner func-
tions.
Since a nontrivial inner function θ is extremely oscillatory near σ (θ ), the same should

happen to the product f θ , where f ∈H(D) is smooth in some sense on ∂D. But sometimes
the product f θ inherits the nice properties of f , and it is possible that f θ has an added
smoothness. In order to analyze this phenomenon, Dyakonov introduced the following
notion in [].
Suppose X and Y are two classes of analytic functions on D, and X ⊆ Y . Let θ be an

inner function, θ is said to be (X,Y )-improving, if every function f ∈ X satisfying f θ ∈ Y
must actually satisfy f θ ∈ X.
In this paper, we study the inner functions in the Möbius invariant Besov-type spaces

F(p,p – , s) as improving multipliers.
Let  < p < ∞, – < q < ∞, s ≥ , the F(p,q, s) space is the set of f ∈H(D) [] such that

‖f ‖F(p,q,s) =
∣∣f ()∣∣ +(

sup
a∈D

∫
D

∣∣f ′(z)
∣∣p( – |z|)qg(z,a)s dA(z)) 

p
< ∞,

where g denotes the Green function given by

g(z,a) = log


|ϕa(z)| , z,a ∈D, z �= a,

ϕa(z) = a–z
–az , dA(z) =


π
dxdy. It is easy to check that F(p,p – , s) is a Möbius invariant

Besov-type space. From [], when  < s < , F(, , s) = Qs, for more information on Qs

spaces, we refer to [] and []. When s = , F(, , s) = BMOA, the space of analytic func-
tions in theHardy spaceH(D) whose boundary functions have boundedmean oscillation.
When s > , F(, , s) = B, the Bloch space (see []).
The following result was proved by Peláez in [, Theorem ].

Theorem A Suppose that  < s <  and θ is an inner function. Then the following condi-
tions are equivalent:
() θ ∈Qs;
() θ is (Qs,BMOA)-improving;
() θ is (Qs,B)-improving.

In this paper, we extend TheoremA fromQs spaces to amore general space F(p,p–, s),
 < s < .

Theorem  Let  < p < ∞,  < s < . Suppose that θ is an inner function. Then the following
conditions are equivalent:
() θ ∈ F(p,p – , s);
() θ is (F(p,p – , s),BMOA)-improving;
() θ is (F(p,p – , s),B)-improving.

The proof of Theorem  is gave in Section . Theorem  can be farther generalized to a
more general space ABt

p ∩ F(p,p – , s), where ABt
p space is the set of functions f ∈ H(D)

http://www.journalofinequalitiesandapplications.com/content/2014/1/312


Lou and Qian Journal of Inequalities and Applications 2014, 2014:312 Page 3 of 14
http://www.journalofinequalitiesandapplications.com/content/2014/1/312

such that (see [])

‖f ‖ABtp =
∣∣f ()∣∣ +(∫

D

∣∣f ′(z)
∣∣p( – |z|)(–t)p– dA(z)) 

p
<∞.

Corollary  Let  < p < ∞,  < tp <  and  < s < . Suppose θ is an inner function. Then
the following conditions are equivalent:
() θ ∈ ABt

p ∩ F(p,p – , s);
() θ is (ABt

p ∩ F(p,p – , s),BMOA)-improving;
() θ is (ABt

p ∩ F(p,p – , s),B)-improving.

Notice the fact that F(p,p – , s) ⊂ AB
–s
p

p . The proof of Corollary  is similar to that of
Theorem  and thus is omitted.

Remark  From Theorem , we know that any inner function θ ∈ F(p,p– , s) is (F(p,p–
, s),F(p,p–, t))-improving, when p >  and  < s < t < . Conversely, by using the follow-
ing results (Theorem  and Proposition ) on zero sets of Besov-type spaces, we will prove
that there exists an inner function θ which is (F(p,p– , s),F(p,p– , t))-improving, but θ

does not belong to F(p,p – , s).

In order to state Theorem , we need a few notions.
A Blaschke product Bwith sequence of zeros {ak}∞k= is called interpolating if there exists

a positive constant δ such that

∏
j �=k

	(aj,ak) ≥ δ, k = , , . . . .

Here 	(aj,ak) = |ϕaj (ak)| denotes the pseudo-hyperbolic metric in D. We also say that
{ak}∞k= is an interpolating sequence or an uniformly separated sequence. A finite union
of interpolating sequences is usually called a Carleson-Newman sequence. Similarly,
a Carleson-Newman Blaschke product is a finite product of interpolating Blaschke prod-
ucts.
We recall that a function g ∈ H(D) is called an outer function if log |g| ∈ L(∂D) and

g(z) = η exp

(

π

∫ π


log

∣∣g(eit)∣∣ eit + z
eit – z

dt
)
,

where η ∈ ∂D.
We say thatZ = {zn} ⊂D is a zero set of an analytic function spaceX defined onD if there

is a f ∈ X that vanishes on Z and nowhere else. Although the study of zero sets for analytic
function spaces is a difficult problem, there are some excellent papers related to this ques-
tion. We may refer to Carleson [, ], Caughran [], Shapiro and Shields [], Taylor
and Williams []. Recently, Pau and Peláez obtained a theorem on zero sets of Dirichlet
spaces Ds = AB

–s


 in [, Theorem ]. In the next theorem, we characterize the zero sets
of ABt

p spaces which generalizes the Pau and Peláez’s result in []. We characterize the
Carleson-Newman sequences that are zero sets in ABt

p spaces.
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Theorem  Suppose p > ,  < t < ,  < pt <  and {ak}∞k= is a Carleson-Newman se-
quence. Then the following conditions are equivalent:
() {ak}∞k= is an ABt

p-zero set;
() there exists an outer function g ∈ ABt

p such that

∞∑
k=

∣∣g(ak)∣∣p( – |ak|
)–tp < ∞;

() there exists an outer function g ∈ ABt
p such that

∞∑
k=

(
 – |ak|

)–tp ∫
∂D

|g(eit)|p
|eit – ak| dt <∞;

() there exists an outer function g ∈ ABt
p such that

∞∑
k=

(
 – |ak|

)–tp+p(∫
∂D

|g(eit)|
|eit – ak| dt

)p

< ∞.

Using Theorem , we can deduce the following result.

Proposition  Suppose p > ,  < t < ,  < pt < . There exists a Carleson-Newman se-
quence {ak}∞k= which is not an ABt

p-zero set and with  as unique accumulation point.

The proof of Proposition  is similar to that of Theorem  of [] and is omitted here.
Applying Proposition , we can prove the following result whose proof (as well as the

proof of Theorem ) is given in Section .

Corollary  Let p >  and  < s < t < . Then there exists an inner function θ which is
(F(p,p – , s),F(p,p – , t))-improving, but θ does not belong to F(p,p – , s).

Throughout this paper, for two functions f and g , f � g means that g � f � g , that is,
there are positive constants C and C depending only on the index p, s, t, . . . , such that
Cg ≤ f ≤ Cg .

2 Preliminaries
To prove Theorem  we need some auxiliary results. Lemmas . and . should be known
to some experts, but we cannot find a reference. For the completeness of the paper, we give
proofs below.

Lemma . Let  < p <∞ and s ≥ . Then f ∈ F(p,p – , s) if and only if

sup
a∈D

∥∥f ◦ ϕa – f (a)
∥∥
AB

–s
p

p

<∞.
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Proof From Theorem . of [] and making the change of variables w = ϕa(z), we have

∥∥f – f ()
∥∥p
F(p,p–,s) = sup

a∈D

∫
D

∣∣f ′(w)
∣∣p( – |w|)p–gs(w,a)dA(w)

� sup
a∈D

∫
D

∣∣f ′(w)
∣∣p( – |w|)p–( – ∣∣ϕa(w)

∣∣)s dA(w)
= sup

a∈D

∫
D

∣∣(f ◦ ϕa)′(z)
∣∣p( – |z|)s+p– dA(z)

� sup
a∈D

∥∥f ◦ ϕa – f (a)
∥∥p

AB
–s
p

p

. �

For  < p < ∞, Hp denotes the Hardy space of f ∈H(D) with

‖f ‖pHp = sup
<r<


π

∫ π



∣∣f (reiθ )∣∣p dθ < ∞.

From [], we know that

‖f ‖BMOA =
∣∣f ()∣∣ + sup

a∈D

∥∥f ◦ ϕa – f (a)
∥∥
Hp < ∞

can be defined as a norm of BMOA space.

Lemma . Let  < p <∞,  < s < . Then F(p,p – , s) ⊆ BMOA.

Proof From Lemma . of [], we know AB
–s
p

p ⊂Hp and

‖f ‖Hp ≤ ‖f ‖
AB

–s
p

p

.

Let f ∈ F(p,p – , s). By Lemma ., we get

∥∥f – f ()
∥∥
BMOA = sup

a∈D

∥∥f ◦ ϕa – f (a)
∥∥
Hp

≤ sup
a∈D

∥∥f ◦ ϕa – f (a)
∥∥
AB

–s
p

p

� ∥∥f – f ()
∥∥
F(p,p–,s) < ∞.

That is, f ∈ BMOA. �

The following three lemmas will be used in the proof of Lemma .. Their proofs can
be found in [, Corollary .], [, Lemma .] or [, Lemma ] and [, Lemma .],
respectively.

Lemma . Let θ be an inner function and let  ≤ p < ∞, – < q < ∞ and  < s < ∞ such
that  < q + s +  < p. Then, for any f ∈H(D) and a ∈D,

∫
D

∣∣f (z)∣∣p( – ∣∣θ (z)∣∣)p( – |z|)q–p( – ∣∣ϕa(z)
∣∣)s dA(z)

�
∫
D

∣∣f (z)∣∣p∣∣θ ′(z)
∣∣p( – |z|)q( – ∣∣ϕa(z)

∣∣)s dA(z).
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Lemma . Let s > –, r, t > , and t < s +  < r. Then

∫
D

( – |w|)s
| –wz|r| –wζ |t dA(w)�

( – |z|)+s–r
| – ζ z|t , z, ζ ∈D.

Lemma . Let  < p < ∞, and a > –, b≥  with b <  + a, w ∈D. If f ∈ H(D), then

∫
D

∣∣f (z) – f ()
∣∣p ( – |z|)a

| –wz|b dA(z)�
∫
D

(
 – |z|)p∣∣f ′(z)

∣∣p ( – |z|)a
| –wz|b dA(z).

Lemma . plays an important role in the proof of Theorem , which generalizes Theo-
rem  of [], with a different proof motivated by [] and [].

Lemma . Let  < p < ∞,  < s < , f ∈ F(p,p – , s) and B be a Carleson-Newman
Blaschke product with a sequence of zeros {ak}∞k=. Then fB ∈ F(p,p – , s) if and only if

sup
a∈D

∞∑
k=

∣∣f (ak)∣∣p( – |ϕa(ak)|
)s <∞.

Proof Necessity. If fB ∈ F(p,p – , s), then it is easy to deduce that

sup
a∈D

∫
D

∣∣f (z)∣∣p∣∣B′(z)
∣∣p( – |z|)p–( – ∣∣ϕa(z)

∣∣)s dA(z) < ∞.

We will prove that

sup
a∈D

∞∑
k=

∣∣f (ak)∣∣p( – ∣∣ϕa(ak)
∣∣)s

� sup
a∈D

∫
D

∣∣f (z)∣∣p∣∣B′(z)
∣∣p( – |z|)p–( – ∣∣ϕa(z)

∣∣)s dA(z).
From the sub-mean-value property of |f |p and the estimate

 – |ak| �  – |z| � | – akz|, z ∈ E(ak , r),

for r >  (see [, p.]). Here and afterwards

E(ak , r) =
{
z :

∣∣ϕak (z)
∣∣ < r

}
.

We have

∞∑
k=

∣∣f (ak)∣∣p( – ∣∣ϕa(ak)
∣∣)s

�
∞∑
k=

(
 –

∣∣ϕa(ak)
∣∣)s ∫

E(ak ,r)

|f (z)|p
| – akz| dA(z)

�
∞∑
k=

∫
E(ak ,r)

∣∣f (z)∣∣p ( – |ak|)p( – |z|)p
| – akz|p+

(
 –

∣∣ϕa(z)
∣∣)s dA(z)

http://www.journalofinequalitiesandapplications.com/content/2014/1/312
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�
∞∑
k=

(
 – |ak|

)p ∫
E(ak ,r)

∣∣f (z)∣∣p ( – |z|)p–
| – akz|p

(
 –

∣∣ϕa(z)
∣∣)s dA(z)

�
∞∑
k=

(
 – |ak|

)p ∫
D

∣∣f (z)∣∣p ( – |z|)p–
| – akz|p

(
 –

∣∣ϕa(z)
∣∣)s dA(z)

=
∫
D

∣∣f (z)∣∣p ∞∑
k=

(
 –

∣∣ϕak (z)
∣∣)p( – |z|)–( – ∣∣ϕa(z)

∣∣)s dA(z)

�
∫
D

∣∣f (z)∣∣p
( ∞∑

k=

(
 –

∣∣ϕak (z)
∣∣))p(

 – |z|)–( – ∣∣ϕa(z)
∣∣)s dA(z). ()

Since B is a Carleson-Newman Blaschke product with a sequence of zeros {ak}∞k=, we have

sup
z∈D

∞∑
k=

(
 –

∣∣ϕz(ak)
∣∣)� .

Note that

 – r ≤ – log r,  < r ≤ ,

we have

 log
∣∣B(z)∣∣ = ∞∑

n=

log
∣∣ϕak (z)

∣∣ ≤ –
∞∑
k=

(
 –

∣∣ϕak (z)
∣∣).

Since the function (–e–x)
x is decreasing in (,∞), we get

 –
∣∣B(z)∣∣ ≥

∞∑
k=

(
 –

∣∣ϕak (z)
∣∣) – exp(– supz∈D

∑∞
k=( – |ϕak (z)|))

supz∈D
∑∞

k=( – |ϕak (z)|)

�
∞∑
k=

(
 –

∣∣ϕak (z)
∣∣).

Combining this with () and using Lemma . yield

∞∑
k=

∣∣f (ak)∣∣p( – ∣∣ϕa(ak)
∣∣)s

�
∫
D

∣∣f (z)∣∣p∣∣B′(z)
∣∣p( – |z|)p–( – ∣∣ϕa(z)

∣∣)s dA(z) < ∞.

Sufficiency. Applying the p-triangle inequality gives∫
D

∣∣(f (z)B(z))′∣∣p( – |z|)p–( – ∣∣ϕa(z)
∣∣)s dA(z)

�
∫
D

∣∣f ′(z)
∣∣p∣∣B(z)∣∣p( – |z|)p–( – ∣∣ϕa(z)

∣∣)s dA(z)
+

∫
D

∣∣f (z)∣∣p∣∣B′(z)
∣∣p( – |z|)p–( – ∣∣ϕa(z)

∣∣)s dA(z)
=: I + I.

http://www.journalofinequalitiesandapplications.com/content/2014/1/312
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Since f ∈ F(p,p – , s), B ∈ H∞, by Theorem . of [], we have

I � ‖B‖pH∞

∫
D

∣∣f ′(z)
∣∣p( – |z|)p–( – ∣∣ϕa(z)

∣∣)s dA(z)
� ‖f ‖pF(p,p–,s).

We now estimate I. Using the fact that ( – |z|)|B′(z)| ≤  and

∣∣B′(z)
∣∣ ≤

∞∑
k=

 – |ak|
| – akz| ,

and employing the p-triangle inequality again, we have

I =
∫
D

∣∣f (z)∣∣p∣∣B′(z)
∣∣p( – |z|)p–( – ∣∣ϕa(z)

∣∣)s dA(z)
�

∫
D

∣∣f (z)∣∣p∣∣B′(z)
∣∣( – |z|)–( – ∣∣ϕa(z)

∣∣)s dA(z)
�

∫
D

∣∣f (z)∣∣p
( ∞∑

k=

 – |ak|
| – akz|

)(
 – |z|)–( – ∣∣ϕa(z)

∣∣)s dA(z)

=
∞∑
k=

(
 – |ak|

)∫
D

∣∣f (z)∣∣p ( – |z|)–
| – akz|

(
 –

∣∣ϕa(z)
∣∣)s dA(z)

�
∞∑
k=

(
 – |ak|

)∫
D

∣∣f (ak)∣∣p ( – |z|)–
| – akz|

(
 –

∣∣ϕa(z)
∣∣)s dA(z)

+
∞∑
k=

(
 – |ak|

)∫
D

∣∣f (z) – f (ak)
∣∣p ( – |z|)–

| – akz|
(
 –

∣∣ϕa(z)
∣∣)s dA(z)

=: I + I.

Applying Lemma . yields

I =
∞∑
k=

(
 – |ak|

)∣∣f (ak)∣∣p
∫
D

( – |z|)–
| – akz|

(
 –

∣∣ϕa(z)
∣∣)s dA(z)

� sup
a∈D

∞∑
k=

∣∣f (ak)∣∣p( – ∣∣ϕa(ak)
∣∣)s <∞.

Let ϕλ(w) = eiτ ϕa(ϕak (w)), τ ∈ [, π ]. Making the change of variables z = ϕak (w) and using
Lemma ., we get

I �
∞∑
k=

∫
D

∣∣(f ◦ ϕak )(w) – (f ◦ ϕak )()
∣∣p ( – |ϕλ(w)|)s

( – |w|) dA(w)

=
∞∑
k=

(
 – |λ|)s ∫

D

∣∣(f ◦ ϕak )(w) – (f ◦ ϕak )()
∣∣p ( – |w|)s–

| – λw|s dA(w)

�
∞∑
k=

∫
D

∣∣(f ◦ ϕak )
′(w)

∣∣p( – |w|)p–( – ∣∣ϕλ(w)
∣∣)s dA(w)

http://www.journalofinequalitiesandapplications.com/content/2014/1/312
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=
∞∑
k=

∫
D

∣∣f ′(z)
∣∣p( – |z|)p–( – ∣∣ϕak (z)

∣∣)( – ∣∣ϕa(z)
∣∣)s dA(z)

�
∫
D

∣∣f ′(z)
∣∣p( – |z|)p–( – ∣∣ϕa(z)

∣∣)s dA(z)� ‖f ‖pF(p,p–,s).

Hence, we have f θ ∈ F(p,p – , s). �

The following well-known results will also be used in the proof of Theorem .

Lemma. ([, Theorem .]) Let  < s < .Then an inner function belongs to theMöbius
invariant Besov-type space F(p,p–, s) for all p >max{s, –s} if and only if it is the Blaschke
product associated with a sequence {ak}∞k= which satisfies

sup
a∈D

∞∑
k=

(
 –

∣∣ϕa(ak)
∣∣)s < ∞.

Lemma . ([, Lemma ]) Let {ak}∞k= be a sequence in D. Then the measure dμak =∑∞
k=( – |ak|)δak is a Carleson measure, i.e.

sup
a∈D

∞∑
k=

(
 –

∣∣ϕa(ak)
∣∣) < ∞,

if and only if {ak}∞k= is a finite union of uniformly separated sequences.

If θ is an inner function, for  < ε < , define the level set of order ε of θ as

�(θ , ε) =
{
z ∈D :

∣∣θ (z)∣∣ < ε
}
.

Lemma . ([, Theorem ]) If f ∈ BMOA and θ is an inner function, then the following
conditions are equivalent:
() f θ ∈ BMOA;
() supz∈D |f (z)|( – |θ (z)|) < ∞;
() supz∈�(θ ,ε) |f (z)| <∞, for every ε,  < ε < ;
() supz∈�(θ ,ε) |f (z)| < ∞, for some ε,  < ε < .

3 Proof of Theorem 1
()⇒ (). For inner functions θ ∈ F(p,p–, s), by Lemma ., θ is a Blaschke product with
zeros {ak}∞k=, and

sup
a∈D

∞∑
k=

(
 –

∣∣ϕa(ak)
∣∣)s < ∞,

which implies that

sup
a∈D

∞∑
k=

(
 –

∣∣ϕa(ak)
∣∣) < ∞.

http://www.journalofinequalitiesandapplications.com/content/2014/1/312
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From Lemma ., θ is a Carleson-Nemwman Blaschke product. Suppose that f ∈ F(p,p –
, s) and f θ ∈ BMOA. Lemma . gives

sup
z∈�(θ ,ε)

∣∣f (z)∣∣ < ∞,  < ε < .

Thus,

sup
a∈D

∞∑
k=

∣∣f (ak)∣∣p( – ∣∣ϕa(ak)
∣∣)s

≤
(

sup
z∈�(θ ,ε)

∣∣f (z)∣∣)p
sup
a∈D

∞∑
k=

(
 –

∣∣ϕa(ak)
∣∣)s < ∞.

Applying Lemma . implies that f θ ∈ F(p,p – , s). Hence, θ is (F(p,p – , s),BMOA)-
improving.
() ⇒ (), () ⇒ (). Their proofs are obvious.
() ⇒ (). Let θ be (F(p,p – , s),BMOA)-improving. If the inner function θ ∈ F(p,p –

, s), then θ is a Carleson-Newman Blaschke product. For f ∈ F(p,p – , s), if f θ ∈ B,
then any Carleson-Newman Blaschke product is (BMOA,B)-improving by Corollary 
of []. Therefore, f θ ∈ BMOA. Notice that θ is (F(p,p–, s),BMOA)-improving, we have
f θ ∈ F(p,p – , s). Thus, θ is (F(p,p – , s),B)-improving. The proof of Theorem  is com-
pleted.

4 Proofs of Theorem 2 and Corollary 2
In this section, we borrow the idea in [] to study the zero set of ABt

p spaces. Following
the proof of Lemma ., we have the next result.

Lemma . Let  < p < ∞,  < t < ,  < tp < . Suppose f ∈ ABt
p, B is a Carleson-Newman

Blaschke product with sequence of zeros {ak}∞k=. Then fB ∈ ABt
p if and only if

∞∑
k=

∣∣f (ak)∣∣p( – |ak|
)–tp < ∞.

When p = q, σ =  or σ = 
p in Theorem  of [], we get the following lemma.

Lemma. Let ≤ p < ∞,  < t < 
p , f ∈Hp.Then the following conditions are equivalent.

() f ∈ ABt
p;

()
∫
D
(
∫
∂D

|f (eiη) – f (z)| –|z|
|eiη–z| dη)p( – |z|)–tp– dA(z) <∞;

()
∫
D

∫
∂D

|f (eiη) – f (z)|p –|z|
|eiη–z| dη( – |z|)–tp– dA(z) < ∞.

Proof of Theorem  () ⇒ (). Since {ak}∞k= is an ABt
p-zero set, there exists f ∈ ABt

p such
that f (ak) =  nowhere else. By ABt

p ⊂ Hp, there exists a Blaschke product B, a singular
inner function S and an outer function g , such that f = BSg . Since S �= , g �= , B is a
Carleson-Newman Blaschke product with zeros {ak}∞k=, from Corollary . of [], we

http://www.journalofinequalitiesandapplications.com/content/2014/1/312
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know that ABs
p has the f -property (see [] for the definition of the f -property). Then

gB =
f
S

∈ ABt
p.

Applying Lemma ., we have ().
() ⇒ (). It is obvious from Lemma ..
() ⇒ (). By the Poisson integral formula

g(ak) =

π

∫
∂D

g
(
eiη

)  – |ak|
|eiη – ak| dη.

Applying Hölder’s inequality, we have

∣∣g(ak)∣∣p �
∫

∂D

∣∣g(eiη)∣∣p  – |ak|
|eiη – ak| dη.

The desired result follows.
() ⇒ (). By the p-triangle inequality, we obtain

∞∑
k=

(
 – |ak|

)–tp ∫
∂D

|g(eiη)|p
|eiη – ak| dη

�
∞∑
k=

(
 – |ak|

)–tp ∫
∂D

|g(ak)|p + |g(eiη) – g(ak)|p
|eiη – ak| dη.

Let

I =:
∞∑
k=

(
 – |ak|

)–tp ∫
∂D

|g(ak)|p
|eiη – ak| dη

and

I =:
∞∑
k=

(
 – |ak|

)–tp ∫
∂D

|g(eiη) – g(ak)|p
|eiη – ak| dη.

It is obvious that

I =
∞∑
k=

(
 – |ak|

)–tp∣∣g(ak)∣∣p
∫

∂D

( – |ak|)
|eiη – ak| dη

�
∞∑
k=

(
 – |ak|

)–tp∣∣g(ak)∣∣p < ∞.

We next estimate I. Since {ak}∞k= is a finite union of interpolating sequences, we can
write

{ak}∞k= =:
⋃

≤i≤n

⋃
≤j≤∞

{aij}

http://www.journalofinequalitiesandapplications.com/content/2014/1/312
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and there exist a positive integer n and δi > , i = , , . . . ,n, such that

∏
j �=l

	(aij,ail) ≥ δi.

Then for fixed i, the pseudo-hyperbolic disks {E(aij, δi
 )}∞j= are pairwise disjoint. Notice

that

G(z) =:
∫ π



∣∣g(eiη) – g(z)
∣∣p  – |z|

|eiη – z| dη

has the generalized sub-mean-value property. Therefore,

I =
n∑
i=

∞∑
j=

(
 – |aij|

)–tp ∫ π



∣∣g(eiη) – g(aij)
∣∣p  – |aij|

|eiη – aij| dη

�
n∑
i=

∞∑
j=

(
 – |aij|

)––tp ∫
E(aij ,

δi
 )
G(u)dA(u)

�
n∑
i=

∞∑
j=

∫
E(aij ,

δi
 )

G(u)
( – |u|)+tp dA(u)

�
∫
D

G(u)
( – |u|)+tp dA(u).

Bearing in mind Lemma ., we have ().
Now, we prove that G(z) has the generalized sub-mean-value property. Since |g(eiη) –

g(z)|p is subharmonic, using the sub-mean-value property, we have

∣∣g(eiη) – g(z)
∣∣p � 

|E(z, δ)|
∫
E(z,δ)

∣∣g(eiη) – g(w)
∣∣p dA(w),  < δ < .

From [, p. and Lemma .], we know

 – |z| �  – |w| � | – zw|, | – aw| � | – az|

for w ∈ E(z, δ),  < δ < , a ∈ D. Thus, it follows that

G(z)� 
|E(z, δ)|

∫
E(z,δ)

∫
∂D

∣∣g(eiη) – g(w)
∣∣p  – |w|

|eiη –w| dηdA(w)

=


|E(z, δ)|
∫
E(z,δ)

G(w)dA(w).

That is, G(z) has the generalized sub-mean-value property.
() ⇔ (). The proof is similar to that of () ⇔ () and thus is omitted. The theorem is

proved. �

Lemma . Let ≤ p < ∞ and  < s < . Suppose f = IfOf ∈ F(p,p – , s), where If andOf

are inner-outer factors. Let I be an inner function dividing If . Then f /I ∈ F(p,p – , s).

http://www.journalofinequalitiesandapplications.com/content/2014/1/312
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Proof Let f ∈ F(p,p – , s) ⊆ AB
–s
p

p . By the Möbius invariant property of F(p,p – , s), we
have f ◦ ϕa ∈ F(p,p – , s). From Corollary . of [], we get

∫
D

∣∣∣∣
(
f (z)
I(z)

)′∣∣∣∣
p(
 – |z|)p–( – ∣∣ϕa(z)

∣∣)s dA(z)
=

∫
D

∣∣∣∣
(
f ◦ ϕa(z)
I ◦ ϕa(z)

)′∣∣∣∣
p(
 – |z|)p–+s dA(z)

�
∫
D

∣∣(f ◦ ϕa)′(z)
∣∣p( – |z|)p–+s dA(z)

=
∫
D

∣∣f ′(z)
∣∣p( – |z|)p–( – ∣∣ϕa(z)

∣∣)s dA(z).
The desired result follows. �

Proof of Corollary  Taking the same sequence {ak}∞k= as in Proposition . Let B(z) be

the associated Blaschke product. Notice the fact that F(p,p – , t) ⊆ AB
–t
p

p , it implies that
{ak}∞k= is not a F(p,p– , t)-zero set. We deduce that B(z) does not belong to F(p,p– , s).
Combining this with Lemma ., the proof of the rest is similar to that of Theorem of []
and thus is omitted. �
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