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Abstract
The purpose of this paper is to study a sequence of modified generalized
f -projections in a reflexive, smooth, and strictly convex Banach space and show that
Mosco convergence of their ranges implies their pointwise convergence to the
generalized f -projection onto the limit set. Furthermore, we prove a strong
convergence theorem for a countable family of α-nonexpansive mappings in a
uniformly convex and smooth Banach space using the properties of a modified
generalized f -projection operator. Our main results generalize the results of Ziming
Wang, Yongfu Su, and Jinlong Kang and enrich the research contents of
α-nonexpansive mappings.
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1 Introduction
Let E be a real Banach space and C be a nonempty closed convex subset of E. A mapping
T : C → C is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C. (.)

Lots of iterative schemes for nonexpansive mappings have been introduced (see [–]);
furthermore, many strong convergence theorems for nonexpansive mappings have been
proved. On the other hand, there are many nonlinear mappings which are more general
than the nonexpansive mapping. Compared to the existing problem of a fixed point of
those mappings, the iterative methods for finding a fixed point are also very useful in
studying the fixed point theory and the theory of equations in other fields.
In , Gobel and Pineda [] introduced and studied a new mapping, called α-nonex-

pansive mapping. The mapping is more general than the nonexpansive mapping.

Definition . For a given multi-index, α = (α,α, . . . ,αn) satisfies αi ≥ , i = , , . . . ,n
and

∑n
i= αi = . A mapping T : C → C is said to be α-nonexpansive if

n∑
i=

αi
∥∥Tix – Tiy

∥∥ ≤ ‖x – y‖, ∀x, y ∈ C. (.)
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In order to show that the class of α-nonexpansive mappings is more general than the
one of nonexpansive mappings, we give an example [].

Example . Let E = R, and

T(x) =

⎧⎨
⎩
 if x = ;

x if x ∈ (, +∞).

Then T is not nonexpansive but α-nonexpansive.

Proof Obviously, T is not nonexpansive. Taking x = 
 , y = , by the definition of Tx, we

have

‖Tx – Ty‖ = | – | >
∣∣∣∣  – 

∣∣∣∣ = ‖x – y‖.

On the other hand, for every x, y ∈ [, +∞), we have

∥∥Tx – Ty
∥∥ = ‖x – y‖.

Therefore, we can affirm that

‖Tx – Ty‖ + ∥∥Tx – Ty
∥∥ = ‖x – y‖,

where α = (α,α) = (, ). Then T is an α-nonexpansive mapping but not a nonexpansive
one. �

If T is a nonexpansive self-mapping, we can imply that T must be an α-nonexpansive
one, where α = (α,α, . . . ,αn) = ( n , . . . ,


n ).

For technical reasons, we always assume that the first coefficient α is nonzero, that is,
α > . In this case the mapping T satisfies the Lipschitz condition

‖Tx – Ty‖ ≤ 
α

‖x – y‖, ∀x, y ∈ C.

For the α-nonexpansive mapping T , α = (α,α,α, . . .αn), it is obvious that the mapping

Tαx =
n∑
i=

αiTix, ∀x ∈ C (.)

is nonexpansive. However, the nonexpansiveness of Tα is much weaker than (.), for in-
stance, it does not entail the continuity of T (see []).
In , Klin-eam and Suantai [] introduced the relation of fixed point sets between an

α-nonexpansive operator and a Tα operator. They gave the following theorem.

Theorem . (see Theorem . of Klin-eam and Suantai []) Let C be a closed convex
subset of a Banach space E and for all n ∈ N , let α = (α,α, . . . ,αn) such that αi ≥ , i =
, , . . . ,n, α > , and

∑n
i= αi = . Let T be an α-nonexpansive mapping from C into itself.

If α > 
n–√

, then F(T) = F(Tα), where F(T) is the fixed point set of T .
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At the same time, they have succeeded in proving the demiclosedness principle for the
α-nonexpansive mappings.

Theorem . (see Theorem . of Klin-eam and Suantai []) Let C be a closed convex
subset of a Banach space E and for all n ∈ N , let α = (α,α, . . . ,αn) such that αi ≥ , i =
, , . . . ,n, α > , and

∑n
i= αi = . Let T be an α-nonexpansive mapping from C into itself.

If α > 
n–√

, if {xn} ⊂ C converges weakly to x and {xn – Txn} converges strongly to  as
n→ ∞, then x ∈ F(T).

Recently,Wang et al. [] proposed the following hybrid algorithm for an α-nonexpansive
mapping in a Banach space:

⎧⎪⎪⎨
⎪⎪⎩
yn = ( – βn)xn + βnTxn,

Cn+ = {z ∈ Cn : ‖yn – z‖ ≤ ‖xn – z‖},
xn+ =�Cn+x, n ∈N .

(.)

As we know that if C is a nonempty closed convex subset of a Hilbert spaceH and recall
that the (nearest point) projection PC fromH ontoC assigns to each x ∈H , and the unique
point PCx ∈ C satisfies the property ‖x– PCx‖ =miny∈C ‖x– y‖, it is well known that PC is
nonexpansive. This fact actually characterizes Hilbert spaces and, consequently, it is not
available in more general Banach spaces. We consider the functional defined by

φ(y,x) = ‖y‖ – 〈y, Jx〉 + ‖x‖, ∀x, y ∈ E,

where J is the normalized duality mapping and the Banach space is smooth. In this con-
nection, Alber [] introduced a generalized projection �C from E to C as follows:

�C(x) = argmin
y∈C φ(y,x), ∀x ∈ E.

It is obvious from the definition of functional φ that

(‖y‖ – ‖x‖) ≤ φ(y,x)≤ (‖y‖ + ‖x‖), ∀x, y ∈ E.

If E is a Hilbert space, then φ(y,x) = ‖y–x‖ and�C becomes the metric projection of E
onto C. The generalized projection �C : E → C is a map that assigns to an arbitrary point
x ∈ E the minimum point of the functional φ(y,x), that is, �Cx = x̄, where x̄ is the solution
to the minimization problem

φ(x̄,x) = inf
y∈C φ(y,x).

The existence and uniqueness of the operator�C follow from the properties of the func-
tional φ(y,x) and strict monotonicity of the normalized duality mapping J []. It is well
known that the metric projection operator plays an important role in nonlinear func-
tional analysis, optimization theory, fixed point theory, nonlinear programming, game
theory, variational inequality, and complementarity problems, etc. [, ]. In , Alber
[] introduced and studied the generalized projections from Hilbert spaces to uniformly
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convex and uniformly smooth Banach spaces. Moreover, Alber [] presented some appli-
cations of the generalized projections to approximately solve variational inequalities and
von Neumann intersection problem in Banach spaces. In , Li [] extended the gener-
alized projection operator from uniformly convex and uniformly smooth Banach spaces
to reflexive Banach spaces and studied some properties of the generalized projection op-
erator with applications to solve the variational inequality in Banach spaces. Later, Wu
and Huang [] introduced a new generalized f -projection operator in Banach spaces.
They extended the definition of generalized projection operators introduced by Abler []
and proved some properties of the generalized f -projection operator. In , Fan et al.
[] presented some basic results for the generalized f -projection operator and discussed
the existence of solutions and approximation of the solutions for generalized variational
inequalities in noncompact subsets of Banach spaces.
The purpose of this paper is to study a sequence ofmodified generalized f -projections in

a reflexive, smooth, and strictly convex Banach space and show thatMosco convergence of
their ranges implies their pointwise convergence to the generalized f -projection onto the
limit set. Furthermore, we prove strong convergence theorem for a countable family of α-
nonexpansive mappings in a uniformly convex and smooth Banach space using the prop-
erties of a modified generalized f -projection operator. Our main results generalize the
results of Wang et al. [] and enrich the research contents of α-nonexpansive mappings.

2 Preliminaries
A Banach space E is said to be strictly convex if ‖x+y‖

 <  for x, y ∈ E with ‖x‖ = ‖y‖ =  and
x = y. It is said to be uniformly convex if for each ε >  there is δ >  such that for x, y ∈ E
with ‖x‖,‖y‖ ≤  and ‖x– y‖ ≥ ε, ‖x+ y‖ ≤ (– δ) holds. The space E is said to be smooth
if the limit

lim
t→

‖x + ty‖ – ‖x‖
t

(.)

exists for all x, y ∈ S(E) = {x ∈ E : ‖x‖ = }. And E is said to be uniformly smooth if the limit
(.) exists uniformly for all x, y ∈ S(E).

Remark . The following basic properties of a Banach space E can be found in Cio-
ranescu []:

(i) if E is uniformly convex, then E is reflexive and strictly convex;
(ii) a Banach space E is uniformly smooth if and only if E∗ is uniformly convex;
(iii) each uniformly convex Banach space E has the Kadec-Klee property, i.e., for any

sequence {xn} ⊂ E, if xn ⇀ x ∈ E and ‖xn‖ → ‖x‖, then xn → x.

Let E be a real Banach space with the dual E∗. We denote by J the normalized duality
mapping from E to E∗ defined by

Jx =
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖ = ‖f ‖}, x ∈ E.

Many properties of the normalized duality mapping J can be found in Takahashi [] or
Vainberg []. We list some properties below for easy reference:

(i) J is a monotone and bounded operator in arbitrary Banach spaces;
(ii) J is a strictly monotone operator in strictly convex Banach spaces;

http://www.journalofinequalitiesandapplications.com/content/2014/1/305
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(iii) J is a continuous operator in smooth Banach spaces;
(iv) J is a uniformly continuous operator on each bounded set in uniformly smooth

Banach spaces;
(v) J is a bijection in smooth, reflexive, and strictly convex Banach spaces;
(vi) J is the identity operator in Hilbert spaces.
Next, we recall the concept of generalized f -projector operator, together with its prop-

erties. Let G : C × E∗ → R∪ {+∞} be a functional defined as follows:

G(ξ ,ϕ) = ‖ξ‖ – 〈ξ ,ϕ〉 + ‖ϕ‖ + ρf (ξ ), (.)

where ξ ∈ C, ϕ ∈ E∗, ρ is a positive number and f : C → R ∪ {+∞} is proper, convex, and
lower semi-continuous. From the definitions of G and f , it is easy to see the following
properties:

(i) G(ξ ,ϕ) is convex and continuous with respect to ϕ when ξ is fixed;
(ii) G(ξ ,ϕ) is convex and lower semi-continuous with respect to ξ when ϕ is fixed.

Definition . ([]) Let E be a real Banach space with its dual E∗. Let C be a nonempty,
closed, and convex subset of E. We say that �

f
C : E∗ → C is a generalized f -projection

operator if

�
f
Cϕ =

{
u ∈ C :G(u,ϕ) = inf

ξ∈CG(ξ ,ϕ)
}
, ∀ϕ ∈ E∗. (.)

For the generalized f -projection operator,Wu andHuang [] proved the following basic
properties.

Lemma . ([]) Let E be a real reflexive Banach space with its dual E∗, and let C be a
nonempty, closed, and convex subset of E. Then the following statements hold:

(i) �
f
Cϕ is a nonempty closed convex subset of C for all ϕ ∈ E∗.

(ii) If E is smooth, then for all ϕ ∈ E∗, x ∈ �
f
Cϕ if and only if

〈x – y,ϕ – Jx〉 + ρf (y) – ρf (x) ≥ , ∀y ∈ C.

(iii) If E is strictly convex and f : C → R∪ {+∞} is positive homogeneous (i.e.,
f (tx) = tf (x) for all t >  such that tx ∈ C, where x ∈ C), then �

f
C is a single-valued

mapping.

Fan et al. [] showed that the condition f is positive homogeneous, which appeared in
Lemma ., can be removed.

Lemma . ([]) Let E be a real reflexive Banach space with its dual E∗, and let C be a
nonempty, closed, and convex subset of E. Then if E is strictly convex, then �

f
C is a single-

valued mapping.

Recall that J is a single-valued mapping when E is a smooth Banach space. There exists
a unique element ϕ ∈ E∗ such that ϕ = Jx for each x ∈ E. This substitution in (.) gives

G(ξ , Jx) = ‖ξ‖ – 〈ξ , Jx〉 + ‖x‖ + ρf (ξ ). (.)

Now, we consider the second generalized f -projection operator in a Banach space.
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Definition . Let E be a real Banach space and C be a nonempty, closed, and convex
subset of E. We say that �

f
C : E → C is a generalized f -projection operator if

�
f
C(x) =

{
u ∈ C :G(u, Jx) = inf

ξ∈CG(ξ , Jx)
}
, ∀x ∈ E.

We know that the following lemmas hold for the operator �
f
C .

Lemma. ([]) Let C be a nonempty, closed, and convex subset of a smooth and reflexive
Banach space E. Then the following statements hold:

(i) �
f
Cx is a nonempty closed and convex subset of C for all x ∈ E.

(ii) For all x ∈ E, x̂ ∈ �
f
Cx if and only if

〈x̂ – y, Jx – Jx̂〉 + ρf (y) – ρf (x)≥ , ∀y ∈ C.

(iii) If E is strictly convex, then �
f
C is a single-valued mapping.

Now, we introduce a modified generalized f -projection operator. Let G : C×E∗ → R be
a functional defined as follows:

G(ξ ,ϕ) = ‖ξ‖ – 〈ξ ,ϕ〉 + ‖ϕ‖ + ρf (ξ ), (.)

where ξ ∈ C, ϕ ∈ E∗, ρ is a positive number and f : C → R is convex and weakly continu-
ous. From the definitions of G and f , it is easy to see the following properties:

(i) G(ξ ,ϕ) is convex and continuous with respect to ϕ when ξ is fixed;
(ii) G(ξ ,ϕ) is convex and weakly lower semi-continuous with respect to ξ when ϕ is

fixed.
Obviously, the other definitions and lemmas hold respectively.
Next, we give the following example [] which shows that metric projection, general-

ized projection and generalized f -projection are different.

Example . Let X = R be provided with the norm

∥∥(x,x,x)∥∥ =
√(

x + x
)
+

√(
x + x

)
.

This is a smooth strictly convex Banach space and C = {x ∈ R|x = ,x = } is a closed
and convex subset of X. It is a simple computation; we get PC(, , ) = (, , ), �C(, , ) =
(, , ).

We set ρ =  is a positive number and define f : C → R by

f (x) = – – 
√
.

Then f is convex and weakly continuous. Simple computations show that

�
f
C(, , ) = (, , ).
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Let E be a Banach space, and let C,C,C, . . . be a sequence of weakly closed subsets
of E. We denote by s–LinCn the set of limit points of {Cn}, that is, x ∈ s–LinCn if and only
if there exists {xn} ⊂ E such that {xn} converges strongly to x and that xn ∈ Cn for all n ∈N .
Similarly, we denote by w – LsnCn the set of cluster points of {Cn}, y ∈ w – LsnCn if and
only if there exists {yni} such that {yni} converges weakly to y and that {yni} ∈ Cni for all
i ∈ N . Using these definitions, we define the Mosco convergence [] of Cni . If C satisfies

s – LinCn = C = w – LsnCn, (.)

we say that Cn is a Mosco convergent sequence to C and write

C =M – lim
n→∞Cn. (.)

Notice that the inclusion s–LinCn ⊂ w–LsnCn is always true. Therefore, in order to show
the existence of M – limn→∞ Cn, it is sufficient to prove w – LsnCn ⊂ s – LinCn. For more
details, see [].

3 Main results
3.1 Generalized Mosco convergence theorems
Theorem . Let E be a smooth, reflexive, and strictly convex Banach space and C be a
nonempty closed convex subset of E. Let C,C,C, . . . be nonempty closed convex subsets
of C, f : E → R be a convex and weakly continuous mapping with C ⊂ int(D(f )). If C =
M– limn→∞ Cn exists and is nonempty, then C is a closed convex subset of C and, for each
x ∈ C, {�f

Cnx} converges weakly to �
f
C
x.

Proof It is easy to prove that C is closed and convex if Cn is a closed convex subset of C
for each n ∈N . Fix x ∈ C. For the sake of simplicity, we write xn instead of �

f
Cnx for n ∈N .

Since C =M – limn→∞ Cn, we have that for each y ∈ C, there exists {yn} ⊂ E such that
yn → y as n→ ∞ and that yn ∈ Cn for each n ∈N . From Lemma ., we have

〈xn – yn, Jx – Jxn〉 + ρf (yn) – ρf (x) ≥ .

Hence, we obtain

 ≤ 〈xn – x, Jx – Jxn〉 + 〈x – yn, Jx – Jxn〉 + ρf (yn) – ρf (x)

≤ –
(‖x‖ – ‖xn‖

) + (‖x‖ + ‖xn‖
)‖x – yn‖ + ρf (yn) – ρf (x),

thus,

(‖x‖ – ‖xn‖
) ≤ (‖x‖ + ‖xn‖

)‖x – yn‖ + ρf (yn) – ρf (x).

Suppose that {xn} is not bounded. Then there exists a subsequence {xni} of {xn} such that
‖xni‖ → ∞. It follows that

‖x‖
‖xni‖

– ‖x‖ + ‖xni‖ ≤
(
 +

‖x‖
‖xni‖

)
‖x – yni‖ +

ρf (yni ) – ρf (x)
‖xni‖

http://www.journalofinequalitiesandapplications.com/content/2014/1/305
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for a sufficiently large number i ∈ N . As i → ∞, we obtain +∞ ≤ ‖x – yni‖ < +∞. This is
a contradiction. Hence we have that {xn} is bounded.
Since {xn} is bounded, there exists a subsequence, again denoted by {xn}, such that it

converges weakly to x ∈ C. From the definition of C, we get x ∈ C.
Now, we prove that �

f
C
x = x. From weak lower semi-continuity of the norm and weak

continuity of f , we have

lim inf
n→∞ G(xn, Jx) = lim inf

n→∞ ‖xn‖ – 〈xn, Jx〉 + ‖x‖ + ρf (xn)

≥ ‖x‖ – 〈x, Jx〉 + ‖x‖ + ρf (x)

= G(x, Jx).

On the other hand, we get

lim inf
n→∞ G(xn, Jx) ≤ lim inf

n→∞ G(yn, Jx)

= lim inf
n→∞ ‖yn‖ – 〈yn, Jx〉 + ‖x‖ + ρf (yn)

= G(y, Jx).

So,

G(x, Jx) ≤G(y, Jx), ∀y ∈ C,

that is,

G(x, Jx) = inf
y∈C

G(y, Jx).

Hence we get �
f
C
x = x.

According to our consideration above, each sequence {xn} has, in turn, a subsequence
which converges weakly to the unique point�f

C
x. Therefore, the sequence {xn} converges

weakly to �
f
C
x. This completes the proof. �

A Banach space E is said to have the Kadec-Klee property if a sequence {xn} of E satis-
fying that xn ⇀ x and ‖xn‖ → ‖x‖ converges strongly to x. It is known that E∗ has a
Fréchet differentiable norm if and only if E is reflexive, strictly convex, and has the Kadec-
Klee property; see, for example, [].

Theorem . Let E be a smooth Banach space such that E∗ has a Fréchet differentiable
norm. Let C be a nonempty closed convex subset of E. Let C,C,C, . . . be nonempty
closed convex subsets of C, f : E → R be a convex and weakly continuous mapping with
C ⊂ int(D(f )). If C =M – limn→∞ Cn exists and is nonempty, then C is a closed convex
subset of C and, for each x ∈ C, {�f

Cnx} converges strongly to �
f
C
x.

Proof Fix x ∈ C arbitrarily. We write xn = �
f
Cnx and x = �

f
C
x. By Theorem ., we ob-

tain xn ⇀ x. Since E∗ has a Fréchet differentiable norm, E has the Kadec-Klee property.
Therefore, it is sufficient to prove that ‖xn‖ → ‖x‖ as n→ ∞. Since x ∈ C, there exists

http://www.journalofinequalitiesandapplications.com/content/2014/1/305
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a sequence {yn} ⊂ C such that yn → x as n → ∞ and yn ∈ Cn for each n ∈ N . It follows
that

G(x, Jx) ≤ lim inf
n→∞ G(xn, Jx)

≤ lim sup
n→∞

G(xn, Jx)

≤ lim sup
n→∞

G(yn, Jx)

= G(x, Jx).

Hence we obtain G(x, Jx) = limn→∞ G(xn, Jx). Since 〈xn, J(x)〉 converges to 〈x, J(x)〉 and f
is weakly continuous, we get

lim
n→∞‖xn‖ = ‖x‖.

Using the Kadec-Klee property of E, we obtain that {xn} converges strongly to x. This
completes the proof. �

Definition . ([]) Let C be a closed convex subset of a Banach space E, let {Tn}∞n= be
a countable family of mappings of C into itself with the nonempty common fixed point
set F . The {Tn}∞n= is said to be uniformly closed if xn → x and ‖xn –Tnxn‖ →  as n→ ∞
implies x ∈ F .

3.2 Strong convergence theorems
Lemma . (see Lemma . of Klin-eam and Suantai []) Let C be a closed convex subset
of a Banach space E and for all n ∈N , let α = (α,α, . . . ,αn) such that αi ≥ , i = , , . . . ,n,
α > , and

∑n
i= αi = . Let T be an α-nonexpansivemapping fromC into itself. If α > 

n–√
,

let {xm} be a bounded sequence in C, then ‖xm –Txm‖ →  if and only if ‖xm –Tαxm‖ → 
as m → ∞.

Lemma . ([]) Let C be a closed convex subset of a Banach space E, and for all n ∈ N ,
let α = (α,α, . . . ,αn) such that αi ≥ , i = , , . . . ,n, α > , and

∑n
i= αi = . Let T be an

α-nonexpansive mapping from C into itself. If α > 
n–√

, let {xm} ⊂ C converge strongly to
x and ‖xm – Txm‖ →  converge strongly to  as m → ∞, then x ∈ F(T).

Lemma. ([]) Let C be a closed convex subset of a uniformly convex and smooth Banach
space E, and for all n ∈N , let α = (α,α, . . . ,αn) such that αi ≥ , i = , , . . . ,n, α > , and∑n

i= αi = . Let T be an α-nonexpansive mapping from C into itself. If α > 
n–√

, then F(T)
is closed and convex.

Theorem . Let C be a closed convex subset of a uniformly convex and smooth Banach
space E, let {Tn}∞n= be a uniformly closed countable family of αn-nonexpansive mappings
of C into itself such that F :=

⋂∞
n= F(Tn) = ∅, let αn = (αn,αn, . . . ,αnN ) such that αni ≥ ,

i = , , . . . ,N, αn > , and
∑N

i= αni = . Let f : E → R be a convex and weakly continuous
mapping with C ⊂ int(D(f )). For any given Gauss x ∈ E, C = C, and x = �

f
C
x, define a

http://www.journalofinequalitiesandapplications.com/content/2014/1/305
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sequence {xn} in C by the following algorithm:

⎧⎪⎪⎨
⎪⎪⎩
yn = ( – βn)xn + βnTnxn,

Cn+ = {z ∈ Cn : ‖yn – z‖ ≤ ‖xn – z‖},
xn+ =�

f
Cn+

x, n ∈N ,

(.)

where  < a ≤ βn ≤  for all n ∈N . If αn > 
N–

√

, then {xn} converges strongly to x∗ =�

f
Fx.

Proof Step . We show that Cn is closed and convex for each n≥ .
From the definitions of Cn, it is obvious that Cn is closed for each n≥ . Moreover, since

‖yn – z‖ ≤ ‖xn – z‖ is equivalent to

‖yn – xn‖ + 〈yn – xn, Jxn – Jz〉 ≤ ,

so Cn is convex for each n≥ .
Step . We show that F ⊂ Cn for all n≥ . For all p ∈ F , we have that

‖yn – p‖ =
∥∥( – βn)xn + βnTnxn – p

∥∥
≤ ( – βn)‖xn – p‖ + βn‖Tnxn – p‖
= ( – βn)‖xn – p‖ + βn

∥∥αn(Tnxn – Tnp)

+ αn
(
Tnxn – T

np
)
+ · · · + αnN

(
Tnxn – TN

n p
)∥∥

≤ ( – βn)‖xn – p‖ + βn
 – α

N–
n

α
N–
n

‖xn – Tnp‖

≤ ( – βn)‖xn – p‖ + βn‖xn – p‖
= ‖xn – p‖.

It implies that p ∈ Cn for all n≥ . So, we have F ⊂ Cn for all n≥ .
Step . We show that limn→∞ xn = x∗ = �

f
C̄x and x∗ ∈ F , where C̄ =

⋂∞
n=Cn. Indeed,

since {Cn} is a decreasing sequence of closed convex subsets of E such that C̄ =
⋂∞

n=Cn is
nonempty, it follows that

M – lim
n→∞Cn = C̄ =

∞⋂
n=

Cn = ∅.

By Theorem ., we get

xn → x∗ as n→ ∞. (.)

Noticing that xn+ =�
f
Cn+

x ∈ Cn+, we obtain that

‖yn – xn+‖ ≤ ‖xn – xn+‖.

In view of (.), we have that

‖yn – xn+‖ →  as n→ ∞

http://www.journalofinequalitiesandapplications.com/content/2014/1/305
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and

‖yn – xn‖ ≤ ‖yn – xn+‖ + ‖xn+ – xn‖ →  as n→ ∞.

From yn = ( – βn)xn + βnTnxn, we have

‖xn – Tnxn‖ = 
βn

‖yn – xn‖.

Because of the assumption that  < a ≤ βn ≤ , we have

lim
n→∞‖xn – Tnxn‖ = .

Since {xn} is uniformly closed, then x∗ ∈ F .
Step .We show that x∗ = �

f
Fx. Since x∗ =�

f
C̄x ∈ F and F is a nonempty closed convex

subset of C̄ =
⋂∞

n=Cn, we conclude that x∗ =�
f
Fx. This completes the proof. �

Corollary . ([]) Let C be a closed convex subset of a uniformly convex and smooth
Banach space E, let T be an α-nonexpansive mapping of C into itself such that F(T) = ∅,
let α = (α,α, . . . ,αN ) such that αi ≥ , i = , , . . . ,N, α > , and

∑N
i= αi = . For any

given Gauss x ∈ E, C = C, and x = �Cx, define a sequence {xn} in C by the following
algorithm:

⎧⎪⎪⎨
⎪⎪⎩
yn = ( – βn)xn + βnTxn,

Cn+ = {z ∈ Cn : ‖yn – z‖ ≤ ‖xn – z‖},
xn+ =�Cn+x, n ∈N ,

(.)

where  < a ≤ βn ≤  for all n ∈N . If α > 
N–

√

, then {xn} converges strongly to x∗ =�Fx.

Proof Substituting T to Tn in the proof of Theorem . and putting f (x) ≡ , we can draw
from Theorem . the desired conclusion immediately. �

Remark . Theorem . extends the main results of [] from a single mapping to a
countable family of mappings and from the generalized projection operator to the modi-
fied generalized f -projection operator by a new method.
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