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Abstract
The paper studies the linear regression model

yt = xTt β + εt , t = 1, 2, . . . ,n,

where

dεt = λ(μ – εt)dt + σ dBt ,

with parameters λ,σ ∈ R+, μ ∈ R and {Bt , t ≥ 0} the standard Brownian motion. Firstly,
the maximum likelihood (ML) estimators of β , λ and σ 2 are given. Secondly, under
general conditions, the asymptotic properties of the ML estimators are investigated.
And then, limiting distributions for likelihood ratio test statistics of the hypothesis are
also given. Lastly, the validity of the method are illuminated by two real examples.
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1 Introduction
Consider the following linear regression model

yt = xTt β + εt , t = , , . . . ,n, (.)

where yt ’s are scalar response variables, xt ’s are explanatory variables, β is an m-dimen-
sional unknown parameter, and {εt} is an Ornstein-Uhlenbeck process, which satisfies the
linear stochastic differential equation (SDE)

dεt = λ(μ – εt)dt + σ dBt (.)

with parameters λ,σ ∈ R+, μ ∈ R and {Bt , t ≥ } the standard Brownian motion.
It is well known that a linear regression model is the most important and popular model

in the statistical literature, which attracts many people to investigate the model. For an
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ordinary linear regression model (when the errors are independent and identically dis-
tributed (i.i.d.) random variables), Wang and Zhou [], Anatolyev [], Bai and Guo [],
Chen [], Gil et al. [], Hampel et al. [], Cui [], Durbin [] and Li and Yang [] used
various estimation methods to obtain estimators of the unknown parameters in (.) and
discussed some large or small sample properties of these estimators. Recently, linear re-
gressionwith serially correlated errors has attracted increasing attention from statisticians
and economists. One case of considerable interest is that the errors are autoregressive
processes; Hu [], Wu [], and Fox and Taqqu [] established its asymptotic normal-
ity with the usual pn-normalization in the case of long memory stationary Gaussian ob-
servations errors. Giraitis and Surgailis [] extended this result to non-Gaussian linear
sequences. Koul and Surgailis [] established the asymptotic normality of the Whittle
estimator in linear regression models with non-Gaussian long memory moving average
errors. Shiohama and Taniguchi [] estimated the regression parameters in a linear re-
gression model with autoregressive process. Fan [] investigated moderate deviations for
M-estimators in linear models with φ-mixing errors.
The Ornstein-Uhlenbeck process was originally introduced by Ornstein and Uhlenbeck

[] as amodel for particle motion in a fluid. In physical sciences, the Ornstein-Uhlenbeck
process is a prototype of a noisy relaxation process, whose probability density function
f (x, t) can be described by the Fokker-Planck equation (see Janczura et al. [], Debbasch
et al. [], Gillespie [], Ditlevsen and Lansky [], Garbaczewski and Olkiewicz [],
Plastino and Plastino []):

∂f (x, t)
∂t

=
∂

∂x
(
λ(x –μ)f (x, t)

)
+

σ 


∂f (x, t)

∂x
.

This process is now widely used in many areas of application. The main characteristic of
the Ornstein-Uhlenbeck process is the tendency to return towards the long-term equilib-
rium μ. This property, known as mean-reversion, is found in many real life processes, e.g.,
in commodity and energy price processes (see Fasen [], Yu [], Geman []). There
are a number of papers concerned with the Ornstein-Uhlenbeck process, for example,
Janczura et al. [], Zhang et al. [], Rieder [], Iacus [], Bishwal [], Shimizu [],
Zhang and Zhang [], Chronopoulou and Viens [], Lin and Wang [] and Xiao et al.
[]. It is well known that the solution of model (.) is an autoregressive process. For a
constant or functional or random coefficient autoregressive model, many people (for ex-
ample, Magdalinos [], Andrews and Guggenberger [], Fan and Yao [], Berk [],
Goldenshluger and Zeevi [], Liebscher [], Baran et al. [], Distaso [] and Harvill
and Ray []) used various estimation methods to obtain estimators and discussed some
asymptotic properties of these estimators, or investigated hypotheses testing.
By (.) and (.), we can obtain that the more general process satisfies the SDE

dyt = λ
(
L(t,λ,μ,β) – yt

)
dt + σ dBt , (.)

where L(t,λ,μ,β) is a time-dependent mean reversion level with three parameters. Thus,
model (.) is a general Ornstein-Uhlenbeck process. Its special cases have gained much
attention and have been applied to many fields such as economics, physics, geography,
geology, biology and agriculture. Dehling et al. [] considered the model with maxi-
mum likelihood estimate, and proved strong consistency and asymptotic normality. Lin

http://www.journalofinequalitiesandapplications.com/content/2014/1/301


Hu et al. Journal of Inequalities and Applications 2014, 2014:301 Page 3 of 31
http://www.journalofinequalitiesandapplications.com/content/2014/1/301

and Wang [] established the existence of a successful coupling for a class of stochastic
differential equations given by (.). Bishwal [] investigated the uniform rate of weak
convergence of the minimum contrast estimator in the Ornstein-Uhlenbeck process (.).
The solution of model (.) is given by

εt = e–λtε +μ
(
 – e–λt) + σ

∫ t


eλ(s–t) dBt , (.)

where
∫ t
 e

λ(s–t) dBt ∼N(, –exp
–λt

λ ).
The process observed in discrete time is more relevant in statistics and economics.

Therefore, by (.), the Ornstein-Uhlenbeck time series for t = , , . . . ,n is given by

εt = e–λdεt– +μ
(
 – e–λd) + σ

√
 – e–λd

λ
ηt , (.)

where ηt ∼ N(, ) i.i.d. random errors and with equidistant time lag d, fixed in advance.
Models (.) and (.) include many special cases such as a linear regression model with
constant coefficient autoregressive processes (when μ = ; see Hu [], Wu [], Maller
[], Pere [] and Fuller []), Ornstein-Uhlenbeck time series or processes (when β = ;
see Rieder [], Iacus [], Bishwal [], Shimizu [] andZhang andZhang []), constant
coefficient autoregressive processes (when μ = , β = ; see Chambers [], Hamilton
[], Brockwell and Davis [] and Abadir and Lucas [], etc.).
The paper discusses models (.) and (.). The organization of the paper is as follows.

In Section  some estimators of β , θ and σ  are given by the quasi-maximum likelihood
method. Under general conditions, the existence and consistency of the quasi-maximum
likelihood estimators as well as asymptotic normality are investigated in Section . The
hypothesis testing is given in Section . Some preliminary lemmas are presented in Sec-
tion . The main proofs of theorems are presented in Section , with two real examples in
Section .

2 Estimationmethod
Without of loss generality, we assume that μ = , ε =  in the sequel. Write the ‘true’
model as

yt = xTt β + et , t = , , . . . ,n (.)

and

et = exp(–λd)et– + σ

√
 – exp(–λd)

λ
ηt , (.)

where ηt ∼N(, ) i.i.d.
By (.), we have

et = σ

√
 – exp(–λd)

λ

t∑
j=

exp
{
–λd(t – j)

}
ηj. (.)
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Thus et is measurable with respect to the σ -field H generated by η,η, . . . ,ηt , and

Eet = , Var(et) = σ 

 – exp(–λd)

λ
exp
{
–λdt(t – )

}
. (.)

Using similar arguments as those of Rieder [] orMaller [], we get the log-likelihood
of y, y, . . . , yn conditional on y,


n
(
β ,λ,σ ) = logLn

= –


(n – ) log

(
πσ 

λ

)
–


(n – ) log

(
 – exp(–λd)

)

–
λ

σ ( – exp(–λd))

n∑
t=

(
εt – exp(–λd)εt–

). (.)

We maximize (.) to obtain QML estimators denoted by σ̂ 
n , β̂n, λ̂n (when they exist).

Then the first derivatives of 
n may be written as

∂
n

∂σ  = –
n – 
σ  +

λ

σ ( – exp(–λd))

n∑
t=

(
εt – exp(–λd)εt–

), (.)

∂
n

∂λ
=
n – 
λ

–
(n – )d exp(–λd)
 – exp(–λd)

–
dλ exp(–λd)

σ ( – exp(–λd))

n∑
t=

(
εt – exp(–λd)εt–

)
εt–

–
 – ( + dλ) exp(–λd)

σ ( – exp(–λd))

n∑
t=

(
εt – exp(–λd)εt–

) (.)

and

∂
n

∂β
=

λ
σ ( – exp(–λd))

n∑
t=

(
εt – exp(–λd)εt–

)(
xt – exp(–λd)xt–

)
. (.)

Thus σ̂ 
n , β̂n, λ̂n satisfy the following estimation equations:

σ̂ 
n =

λ̂n

(n – )( – exp(–λ̂nd))

n∑
t=

(
ε̂t – exp(–λ̂nd)ε̂t–

), (.)

σ̂ 
n ( – ( + dλ̂n) exp(–λ̂nd))

λ̂n
–
dλ̂n exp(–λ̂nd)

n – 

n∑
t=

(
ε̂t – exp(–λ̂nd)ε̂t–

)
ε̂t–

–
 – ( + dλ̂n) exp(–λ̂nd)
( – exp(–λ̂nd))(n – )

n∑
t=

(
ε̂t – exp(–λ̂nd)ε̂t–

) =  (.)

and

n∑
t=

(
ε̂t – exp(–λ̂nd)ε̂t–

)(
xt – exp(–λ̂nd)xt–

)
= , (.)

where

ε̂t = yt – xTt β̂n. (.)
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To obtain our results, the following conditions are sufficient (see Maller []).
(A) Xn =

∑n
t= xtxTt is positive definite for sufficiently large n and

lim
n→∞ max

≤t≤n
xTt X

–
n xt = . (.)

(A)

lim sup
n→∞

|λ̃|max
(
X– 


n ZnX

– T


n
)
< , (.)

where Zn = 

∑n

t=(xtxTt– + xt–xTt ), |λ̃|max(·) denotes the maximum in absolute
value of the eigenvalues of a symmetric matrix.

For ease of exposition, we shall introduce the following notations which will be used
later in the paper.
Let (m + )-vector θ = (β ,λ). Define

Sn(θ ) = σ  ∂
n

∂θ
= σ 

(
∂
n

∂β
,
∂
n

∂λ

)
, Fn(θ ) = –σ  ∂
n

∂θ ∂θT . (.)

By (.) and (.), we get the components of Fn(θ )

–σ  ∂
n

∂β ∂βT =
λ

 – exp(–λd)

n∑
t=

(
xt – exp(–λd)xt–

)(
xt – exp(–λd)xt–

)T

=
λ

 – exp(–λd)
Xn(λ), (.)

–σ  ∂
n

∂β ∂λ
= –

dλ exp(–λd)
 – exp(–λd)

n∑
t=

(
εt–xt + εtxt– –  exp(–λd)xt–εt–

)

–
 – ( + dλ) exp(–λd)

( – exp(–λd))

·
n∑
t=

(
εt – exp(–λd)εt–

)(
xt – exp(–λd)xt–

)
(.)

and

–σ  ∂
n

∂λ =
σ (n – )

λ –
σ (n – )d exp(–λd)

( – exp(–λd))
+
dλ exp(–λd)
 – exp(–λd)

n∑
t=

εt–

+
d( – dλ – ( + dλ) exp(–λd)) exp(–λd)

( – exp(–λd))

n∑
t=

(
εt – exp(–λd)εt–

)
εt–

+
d exp(–λd)[ – ( + dλ) exp(–λd)]

( – exp(–λd))

n∑
t=

(
εt – exp(–λd)εt–

)
εt–

+
d exp(–λd)[dλ –  + ( + dλ) exp(–λd)]

( – exp(–λd))

n∑
t=

(
εt – exp(–λd)εt–

)

=
σ (n – )

λ –
σ (n – )d exp(–λd)

( – exp(–λd))
+
dλ exp(–λd)
 – exp(–λd)

n∑
t=

εt–
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+
d exp(–λd)[( – dλ) – dλ exp(–λd)]

( – exp(–λd))

n∑
t=

(
εt – exp(–λd)εt–

)
εt–

+
d exp(–λd)[dλ –  + ( + dλ) exp(–λd)]

( – exp(–λd))

·
n∑
t=

(
εt – exp(–λd)εt–

). (.)

Hence we have

Fn(θ ) =

(
λ

–exp(–λd)Xn(λ) –σ  ∂
n
∂β ∂λ

∗ –σ  ∂
n
∂λ

)
, (.)

where the ∗ indicates that the elements are filled in by symmetry. By (.), we have

E
{
–σ  ∂
n

∂λ

∣∣∣∣
θ=θ

}
= (n – )σ 



{


λ

+
d exp(–λd)[– + ( + dλ) exp(–λd)]

λ( – exp(–λd))

}

+
dλ exp(–λd)
 – exp(–λd)

n∑
t=

Eet–

= (n – )σ 

[ – ( + dλ) exp(–λd)]

λ
( – exp(–λd))

+
dλ exp(–λd)
 – exp(–λd)

n∑
t=

Eet–

= �n(θ,σ) =O(n). (.)

Thus,

Dn = E
(
Fn(θ)

)
=

(
λ

–exp(–λd)
Xn(λ) 

 �n(θ,σ).

)
(.)

3 Large sample properties of the estimators
Theorem . Suppose that conditions (A)-(A) hold. Then there is a sequence An ↓ 
such that, for each A > , as n→ ∞, the probability

P
{
there are estimators θ̂n, σ̂ 

n with Sn(θ̂n) = ,and
(
θ̂n, σ̂ 

n
) ∈N ′

n(A)
}→ . (.)

Furthermore,

(
θ̂n, σ̂ 

n
)→p

(
θ,σ 


)
, n→ ∞, (.)

where, for each n = , , . . . , A >  and An ∈ (,σ 
 ), define neighborhoods

Nn(A) =
{
θ ∈ Rm+ : (θ – θ)TDn(θ – θ) ≤ A} (.)
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and

N ′
n(A) =Nn(A)∩

{
σ  ∈ [σ 

 –An,σ 
 +An

]}
. (.)

Theorem . Suppose that conditions (A)-(A) hold. Then


σ̂n

F
T

n (θ̂n)(θ̂n – θ) →D N(, Im+), n→ ∞. (.)

In the following, we will investigate some special cases in models (.) and (.). From
Theorem . and Theorem ., we obtain the following results. Here we omit their proofs.

Corollary . If β = , then

√
�n(θ,σ)

σ̂n
(λ̂n – λ) →D N(, ), n→ ∞. (.)

Corollary . If β = , then

√
n(λ̂n – λ) →D N

(
,σ 


)
, n→ ∞. (.)

4 Hypothesis testing
In order to fit a data set {yt , t = , , . . . ,n}, we may use model (.) or an Ornstein-
Uhlenbeck process with a constant mean level model

dyt = λ(μ – yt)dt + σ dBt . (.)

If β = , then we use model (.), namely models (.) and (.). If β = , then we use
model (.). How to know β =  or β = ? In the section, we shall consider the question
about hypothesis testing and obtain limiting distributions for likelihood ratio (LR) test
statistics (see Fan and Jiang []).
Under the null hypothesis

H: β = , λ > , σ > , (.)

let β̂n, λ̂n, σ̂ 
n be the corresponding ML estimators of β , λ, σ . Also let

L̂n = –
n
(
β̂n, λ̂n, σ̂ 

n
)

(.)

and

L̂n = –
n
(
β̂n, λ̂n, σ̂ 

n
)
. (.)

By (.) and (.), we have that

L̂n = (n – ) log
(

πσ̂ 
n

λ̂n

)
+ (n – ) log

(
 – exp(–λ̂nd)

)

+
λ̂n

σ̂ 
n ( – exp(–λ̂nd))

n∑
t=

(
ε̂t – exp(–λ̂nd)ε̂t–

)

http://www.journalofinequalitiesandapplications.com/content/2014/1/301
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= (n – ) log
(

πσ̂ 
n

λ̂n

)
+ (n – ) log

(
 – exp(–λ̂nd)

)
+ (n – )

= (n – ) log(π + ) + (n – ) log
(
σ̂ 
n
)

+ (n – )
(
log
(
 – exp(–λ̂nd)

)
– log(λ̂n)

)
. (.)

And similarly,

L̂n = (n – ) log(π + ) + (n – ) log
(
σ̂ 
n
)

+ (n – )
(
log
(
 – exp(–λ̂nd)

)
– log(λ̂n)

)
. (.)

By (.) and (.), we have

d̃(n) = L̂n – L̂n

= (n – ) log
(

σ̂ 
n

σ̂ 
n

)
+ (n – )

(
log

(
 – exp(–λ̂nd)
 – exp(–λ̂nd)

)
– log

(
λ̂n

λ̂n

))

= (n – )
(

σ̂ 
n

σ̂ 
n
– 
)
+ (n – )

(
 – exp(–λ̂nd)
 – exp(–λ̂nd)

–
λ̂n

λ̂n

)
+ op()

= (n – )
σ̂ 
n – σ̂ 

n
σ 


+ (n – )
(
 – exp(–λ̂nd)
 – exp(–λ̂nd)

–
λ̂n

λ̂n

)
+ op()

= (n – )
σ̂ 
n – σ̂ 

n
σ 


+ op(). (.)

Large values of d̃(n) suggest rejection of the null hypothesis.

Theorem . Suppose that conditions (A)-(A) hold. If H holds, then

d̃(n) →D χ(m), n→ ∞. (.)

5 Some lemmas
Throughout this paper, let C denote a generic positive constant which could take differ-
ent value at each occurrence. To prove our main results, we first introduce the following
lemmas.

Lemma . If condition (A) holds, then for any λ ∈ R+ thematrix Xn(λ) is positive definite
for large enough n, and

lim
n→∞ max

≤t≤n
xTt X

–
n (λ)xt = .

Proof Let λ̃ and λ̃m be the smallest and largest roots of |Zn – λ̃Xn| = . Then from Ex. .
of Rao [],

λ̃ ≤ uTZnu
uTXnu

≤ λ̃m

http://www.journalofinequalitiesandapplications.com/content/2014/1/301
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for unit vectors u. Thus by (.) there are some δ ∈ (, ) and n(δ) such that n ≥ N

implies

∣∣uTZnu
∣∣≤ ( – δ)uTXnu. (.)

By (.) and (.), we have

uTXn(λ)u =
n∑
t=

(
uT
(
xt – exp(–λd)xt–

))

≥
n∑
t=

(
uTxt

) +min
λ

exp(–λd)
n∑
t=

(
uTxt–

)
–max

λ
exp(–λd)uTZnu

≥ uTXnu +min
λ

exp(–λd)uTXnu – uTZnu

≥
(
 +min

λ
exp(–λd) – ( – δ)

)
uTXnu

=
(
min

λ
exp(–λd) + δ

)
uTXnu = C(λ, δ)uTXnu. (.)

By Rao [, p.] and (.), we have

(uTxt)

uTXnu
→ . (.)

From (.) and C(λ, δ) > ,

xTt X
–
n (λ)xt = sup

u

(
(uTxt)

uTXn(λ)u

)
≤ sup

u

(
(uTxt)

C(λ, δ)uTXnu

)
→ . (.)

�

Lemma . The matrix Dn is positive definite for large enough n, E(Sn(θ)) =  and
Var(Sn(θ)) = σ 

Dn.

Proof Note that Xn(λ) is positive definite and �n(θ,σ) > . It is easy to show that the
matrix Dn is positive definite for large enough n. By (.), we have

σ 
E
(

∂
n

∂β

∣∣∣∣
θ=θ

)
=

λ

 – exp(–λd)

·
n∑
t=

E
(
et – exp(–λd)et–

)(
xt – exp(–λd)xt–

)

=
λ

 – exp(–λd)
σ

√
 – exp(dλ)

λ

·
n∑
t=

(
xt – exp(–λd)xt–

)
Eηt

= . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/301
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Note that et– and ηt are independent, so we have E(ηtet–) = . Thus, by (.) and Eηt = ,
we have

E
(

∂
n

∂λ

∣∣∣∣
θ=θ

)
=
n – 
λ

–
(n – )d exp(–λd)
 – exp(–λd)

– 

–
 – ( + dλ) exp(–λd)

σ 
 ( – exp(–λd))

σ 

 – exp(dλ)

λ

n∑
t=

Eη
t

=
n – 
λ

–
(n – )d exp(–λd)
 – exp(–λd)

–
 – ( + dλ) exp(–λd)

λ( – exp(–λd))
(n – )

= . (.)

Hence, from (.) and (.),

E
(
Sn(θ)

)
= σ 

E
(

∂
n

∂β

∣∣∣∣
θ=θ

,
∂
n

∂λ

∣∣∣∣
θ=θ

)
= . (.)

By (.) and (.), we have

Var

(
σ 

∂
n

∂β

∣∣∣∣
θ=θ

)

=Var

{
λ

 – exp(–λd)

n∑
t=

(
et – exp(–λd)et–

)(
xt – exp(–λd)xt–

)}

=
σ 

λ

 – exp(–λd)
Var

{ n∑
t=

(
xt – exp(–λd)xt–

)
ηt

}

=
σ 

λ

 – exp(–λd)
Xn(λ). (.)

Note that {ηtet–,Ht} is a martingale difference sequence with

Var(ηtet–) = Eη
t Ee


t– = Eet–,

so

Var

(
σ 

∂
n

∂λ

∣∣∣∣
θ=θ

)
= E

{
σd exp(–λd)

√
λ

 – exp(–λd)

n∑
t=

ηtet–

}

+ E

{
σ 
 [ – ( + dλ) exp(–dλ)]

λ( – exp(–λd))

n∑
t=

(
η
t – 

)}

+
√
σ 

d exp(–λd)[ – ( + dλ) exp(–dλ)]√
λ( – exp(–λd))




· E
{ n∑

t=

ηtet–
n∑
t=

(
η
t – 

)}

=
λσ


d exp(–λd)

 – exp(–λd)

n∑
t=

Eet–
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+
{

σ 
 [ – ( + dλ) exp(–dλ)]

λ( – exp(–λd))

}
(n – )

(
Eη

t – 
)

+
√
σ 

d exp(–λd)[ – ( + dλ) exp(–dλ)]√
λ( – exp(–λd))




·
( n∑

t=

E
((

η
t – 

)
ηtet–

)
+
∑
t =k

E
(
ηtet–

(
η
k – 

)))

=
λσ


d exp(–λd)

 – exp(–λd)

n∑
t=

Eet–

+ (n – )
{

σ 
 [ – ( + dλ) exp(–dλ)]

λ( – exp(–λd))

}
= σ 

�n(θ,σ). (.)

By (.), (.), and noting that et– and ηt are independent, we have

Cov

(
σ 

∂
n

∂β
,σ 


∂
n

∂λ

)∣∣∣∣
θ=θ

= –σ 

 – ( + dλ) exp(–λd)√
λ( – exp(–λd)) 

· E
( n∑

t=

η
t

n∑
t=

ηt
(
xt – exp(–λd)xt–

))

= –σ 

 – ( + dλ) exp(–λd)√
λ( – exp(–λd)) 

Eη
t

·
n∑
t=

(
xt – exp(–λd)xt–

)
= . (.)

From (.)-(.), it follows that Var(Sn(θ)) = σ 
Dn. The proof is completed. �

Lemma . (Maller []) Let Wn be a symmetric random matrix with eigenvalues λ̃j(n),
≤ j ≤ d. Then

Wn →p I ⇔ λ̃j(n) →p , n → ∞.

Lemma . For each A > ,

sup
θ∈Nn(A)

∥∥D– 


n Fn(θ )D
– T


n –�n

∥∥→p , n→ ∞ (.)

and also

�n →D �, (.)

lim
c→

lim sup
A→∞

lim sup
n→∞

P
{

inf
θ∈Nn(A)

λmin
(
D– 


n Fn(θ )D

– T


n
)≤ c

}
= , (.)

where

�n =

⎛
⎝ λ(–exp(–dλ))

λ(–exp(–dλ)) Im 


–σ ∂
n

∂λ
|θ=θ

�n(θ,σ)

⎞
⎠ , � = Im+. (.)
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Proof Let Xn(λ) = X


n (λ)X

T

n (λ) be a square root decomposition of Xn(λ). Then

Dn =

⎛
⎝
√

λ
–exp(–dλ)

X


n (λ) 


√

�n(θ,σ)

⎞
⎠

·
⎛
⎝
√

λ
–exp(–dλ)

X
T

n (λ) 


√

�n(θ,σ)

⎞
⎠

= D


n D

T

n . (.)

Let θ ∈Nn(A). Then

(θ – θ)TDn(θ – θ) =
λ

 – exp(–dλ)
(β – β)TXn(λ)(β – β)

+ (λ – λ)�n(θ,σ)≤ A. (.)

From (.), (.) and (.),

D– 


n Fn(θ )D
– T


n –�n =

(
W W

W

)
, (.)

where

W =
λ( – exp(–dλ))
λ( – exp(–dλ))

{
X– 


n (λ)Xn(λ)X

– T


n (λ) – Im
}
, (.)

W =

√
–exp(–dλ)

λ
X– 


n (λ)(–σ  ∂
n

∂β ∂λ
)

√
�n(θ,σ)

(.)

and

W =
–σ  ∂
n

∂λ
– σ  ∂
n

∂λ
|θ=θ

�n(θ,σ)
. (.)

Let

Nβ
n (A) =

{
β :

λ

 – exp(–dλ)
∣∣(β – β)TX



n (λ)

∣∣ ≤ A
}

(.)

and

Nλ
n (A) =

{
θ : |λ – λ| ≤ A√

�n(θ,σ)

}
. (.)

As the first step, we will show that, for each A > ,

sup
θ∈Nθ

n (A)
‖W‖ → , n→ ∞. (.)
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In fact, note that

W =
λ( – exp(–dλ))
λ( – exp(–dλ))

X– 


n (λ)
(
Xn(λ) –Xn(λ)

)
X– T


n (λ)

=
λ( – exp(–dλ))
λ( – exp(–dλ))

X– 


n (λ)(T + T – T)X
– T


n (λ), (.)

where

T =
n∑
t=

(
exp(–dλ) – exp(–dλ)

)
xt–
(
xt – exp(–dλ)xt–

)T ,
T =

n∑
t=

(
exp(–dλ) – exp(–dλ)

)(
xt – exp(–dλ)xt–

)
xTt

and

T =
n∑
t=

(
exp(–dλ) – exp(–dλ)

)xt–xTt–.

Let u, v ∈ Rd , |u| = |v| = , and let uTn = uTX– 


n (λ), vTn = X– T


n (λ)v. By the Cauchy-
Schwarz inequality, Lemma . and noting Nλ

n (A), we have

∣∣uTn Tvn
∣∣ =
∣∣∣∣∣(exp(–dλ) – exp(–dλ)

) n∑
t=

uTn xt–
(
xt – exp(–dλ)xt–

)Tvn
∣∣∣∣∣

≤ max
∣∣exp(–dλ) – exp(–dλ)

∣∣( n∑
t=

uTn xtx
T
t un

) 


·
( n∑

t=

vTn
(
xt – exp(–dλ)xt–

)(
xt – exp(–dλ)xt–

)Tvn
) 



≤ d|λ – λ| · √n max
≤t≤n

(
xTt X

–
n (λ)xt

) · 
≤ C

√
n

�n(θ,σ)
o() → . (.)

Similar to the proof of T, we easily obtain

∣∣uTn Tvn
∣∣→ . (.)

By the Cauchy-Schwarz inequality, Lemma . and noting Nλ
n (A), we have

∣∣uTn Tvn
∣∣ =
∣∣∣∣∣uTn

n∑
t=

(
exp(–dλ) – exp(–dλ)

)xt–xTt–vn
∣∣∣∣∣

≤ max
∣∣exp(–dλ) – exp(–dλ)

∣∣

·
( n∑

t=

uTn xtx
T
t un

n∑
t=

vTn xtx
T
t vn

) 


http://www.journalofinequalitiesandapplications.com/content/2014/1/301


Hu et al. Journal of Inequalities and Applications 2014, 2014:301 Page 14 of 31
http://www.journalofinequalitiesandapplications.com/content/2014/1/301

≤ n|λ – λ| max
≤t≤n

(
xTt X

–
n (λ)xt

)

≤ nA

�n(θ,σ)
o() → . (.)

Hence, (.) follows from (.)-(.).
For the second step, we will show that

W →p . (.)

Note that

εt = yt – xTt β = xTt (β – β) + et (.)

and

εt – exp(–dλ)εt– =
(
xt – exp(–dλ)xt–

)T (β – β) + σ

√
 – exp(–dλ)

λ
ηt . (.)

Write

J =

√
 – exp(–dλ)

λ
X– 


n (λ)

(
–σ  ∂
n

∂β ∂λ

)

= –

√
 – exp(–dλ)

λ
X– 


n (λ)

dλ exp(–λd)
 – exp(–λd)

·
n∑
t=

(
εt–xt + εtxt– –  exp(–λd)xt–εt–

)

–

√
 – exp(–dλ)

λ
X– 


n (λ)

 – ( + dλ) exp(–λd)
( – exp(–λd))

·
n∑
t=

(
εt – exp(–λd)εt–

)(
xt – exp(–λd)xt–

)

= –

√
 – exp(–dλ)

λ

dλ exp(–λd)
 – exp(–λd)

X– 


n (λ)(T + T + T + T + T)

–

√
 – exp(–dλ)

λ

 – ( + dλ) exp(–λd)
( – exp(–λd))

X– 


n (λ)T, (.)

where

T =
n∑
t=

xTt–(β – β)
(
xt – exp(–λd)xt–

)
,

T =
n∑
t=

(
xt – exp(–λd)xt–

)T (β – β)xt–,

T =
n∑
t=

(
exp(–λd) – exp(–λd)

)
xTt–(β – β)xt–,
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T = σ

√
 – exp(–λd)

λ

n∑
t=

ηtxt–, T =
n∑
t=

et–xt–,

T = σ

√
 – exp(–λd)

λ

n∑
t=

ηt
(
xt – exp(–λd)xt–

)
.

For β ∈Nβ
n (A) and each A > , we have

∣∣(β – β)Txt
∣∣ = (β – β)TX



n (λ)X

– 


n (λ)xtxTt X
– T


n (λ)X

T

n (λ)(β – β)

≤ max
≤t≤n

(
xTt X

–
n (λ)xt

)
(β – β)TXn(λ)(β – β)

≤ A max
≤t≤n

(
xTt X

–
n (λ)xt

)
. (.)

By (.) and Lemma ., we have

sup
β∈Nβ

n (A)

max
≤t≤n

∣∣(β – β)Txt
∣∣→ , n→ ∞,A > . (.)

Using the Cauchy-Schwarz inequality and (.), we obtain

uTn T =
n∑
t=

uTn x
T
t–(β – β)

(
xt – exp(–λd)xt–

)

≤
{ n∑

t=

(
xTt–(β – β)

)} 


·
{ n∑

t=

uTn
(
xt – exp(–λd)xt–

)(
xt – exp(–λd)xt–

)Tun
} 



≤ √
n max
≤t≤n

∣∣(β – β)Txt
∣∣ = o(

√
n). (.)

Using a similar argument as T, we obtain that

uTn T = op(
√
n). (.)

By the Cauchy-Schwarz inequality and (.), (.), we get

uTn T =
n∑
t=

(
exp(–λd) – exp(–λd)

)
xTt–(β – β)uTn xt–

≤
{ n∑

t=

(
exp(–λd) – exp(–λd)

)(xTt–(β – β)
) n∑

t=

(
uTn xt–

)} 


≤ C|λ – λ|
{ n∑

t=

(
xTt–(β – β)

) n∑
t=

(
uTn xt–

)} 


≤ C
A√

�n(θ,σ)
√
no()o(

√
n) = o(

√
n). (.)
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By (.), we have

Var
(
uTn T

)
= σ   – exp(–λd)

λ

n∑
t=

(
uTn xt–

) = o(n). (.)

Thus, by the Chebychev inequality and (.),

uTn T = op(
√
n). (.)

By Lemma . and (.), we have

Var
(
uTn T

)
= Var

( n∑
t=

uTn xtet–

)

= σ 

 – exp(–λd)

λ

·Var
{ n–∑

j=

( n∑
t=j+

uTn xt exp
{
–λd(t –  – j)

})
ηj

}

= σ 

 – exp(–λd)

λ

n–∑
j=

( n∑
t=j+

uTn xt exp
{
–λd(t –  – j)

})

≤ σ 

 – exp(–λd)

λ
max
≤t≤n

∣∣uTn xt∣∣

·
n–∑
j=

( n∑
t=j+

exp
{
–λd(t –  – j)

})

≤ C max
≤t≤n

∣∣uTn xt∣∣n = o(n). (.)

Thus, by the Chebychev inequality and (.),

uTn T = op(
√
n). (.)

Using a similar argument as T, we obtain

uTn T = op(
√
n). (.)

Thus (.) follows immediately from (.), (.)-(.), (.), (.) and (.).
For the third step, we will show that

W →p . (.)

Write that

J = –σ  ∂
n

∂λ – σ  ∂
n

∂λ

∣∣∣∣
θ=θ

=
σ (n – )

λ –
σ (n – )d exp(–λd)

( – exp(–λd))
+
dλ exp(–λd)
 – exp(–λd)

n∑
t=

εt–
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+
d exp(–λd)[( – dλ) – dλ exp(–λd)]

( – exp(–λd))

n∑
t=

(
εt – exp(–λd)εt–

)
εt–

+
d exp(–λd)[dλ –  + ( + dλ) exp(–λd)]

( – exp(–λd))

n∑
t=

(
εt – exp(–λd)εt–

)

–
σ 
 (n – )
λ


+
σ 

 (n – )d exp(–λd)
( – exp(–λd))

–
dλ exp(–λd)
 – exp(–λd)

n∑
t=

et–

–
d exp(–λd)[( – dλ) – dλ exp(–λd)]

( – exp(–λd))

n∑
t=

(
et – exp(–λd)et–

)
et–

–
d exp(–λd)[dλ –  + ( + dλ) exp(–λd)]

( – exp(–λd))

·
n∑
t=

(
et – exp(–λd)et–

). (.)

By (.) and (.), we obtain that

T =
σ (n – )

λ –
σ 
 (n – )
λ



=
n – 
λλ



(
σ (λ

 – λ) + λ(σ  – σ 

))

= o(n) (.)

and

T =
σ 

 (n – )d exp(–λd)
( – exp(–λd))

–
σ (n – )d exp(–λd)

( – exp(–λd))

=
d(n – )

( – exp(–λd))( – exp(–λd))
{
σ
(
exp(–λd) – exp(–λd)

)
+ exp(–λd)(σ – σ ) + exp(–λd – λd)

· [σ (exp(–λd) – exp(–λd)
)
+ exp(–λd)(σ – σ)

]}
· (σ exp(–λd)

(
 – exp(–λd)

)
+ σ exp(–λd)

(
 – exp(–λd)

))
= o(n). (.)

By (.), we have

T =
dλ exp(–λd)
 – exp(–λd)

n∑
t=

εt– –
dλ exp(–λd)
 – exp(–λd)

n∑
t=

et–

=
dλ exp(–λd)
 – exp(–λd)

n∑
t=

{(
xTt (β – β)

) + xTt (β – β)et + et
}

–
dλ exp(–λd)
 – exp(–λd)

n∑
t=

et–

=
dλ exp(–λd)
 – exp(–λd)

n∑
t=

(
xTt (β – β)

) + dλ exp(–λd)
 – exp(–λd)

n∑
t=

xTt (β – β)et
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+
{
dλ exp(–λd)
 – exp(–λd)

–
dλ exp(–λd)
 – exp(–λd)

} n∑
t=

et–

=
dλ exp(–λd)
 – exp(–λd)

T +
dλ exp(–λd)
 – exp(–λd)

T + T. (.)

By (.), it is easy to show that

T = o(n). (.)

By Lemma ., (.) and (.), we have

Var(T) = Var

( n∑
t=

xTt (β – β)et

)

= Var

{ n–∑
j=

( n∑
t=j+

xTt (β – β) exp
{
–λd(t –  – j)

})
ηj

}

=
n–∑
j=

( n∑
t=j+

xTt (β – β) exp
{
–λd(t –  – j)

})

≤ max
≤t≤n

∣∣xTt (β – β)
∣∣ n–∑

j=

( n∑
t=j+

exp
{
–λd(t –  – j)

})

≤ C max
≤t≤n

∣∣xTt (β – β)
∣∣n = o(n). (.)

Thus by the Chebychev inequality and (.),

T = op(
√
n). (.)

Write

dλ exp(–λd)
 – exp(–λd)

–
dλ exp(–λd)
 – exp(–λd)

=
d

( – exp(–λd))( – exp(–λd))
U , (.)

where

U = λ exp(–λd)
(
 – exp(–λd)

)
– λ exp(–λd)

(
 – exp(–λd)

)
.

Note that

U = λ exp(–λd)
(
exp(–λd) – exp(–λd)

)
+
(
λ
(
exp(–λd) – exp(–λd)

)
+ (λ – λ) exp(–λd)

)(
 – exp(–λd)

)
= o(), (.)

so we have

T = o(n). (.)
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Thus, by (.), (.), (.) and (.), we have

T = o(n). (.)

By (.), we have

T =
d exp(–λd)[( – dλ) – dλ exp(–λd)]

( – exp(–λd))

n∑
t=

(
εt – exp(–λd)εt–

)
εt–

–
d exp(–λd)[( – dλ) – dλ exp(–λd)]

( – exp(–λd))

n∑
t=

(
et – exp(–λd)et–

)
et–

=
d exp(–λd)[( – dλ) – dλ exp(–λd)]

( – exp(–λd))
σ

√
 – exp(–λd)

λ

n∑
t=

xTt–(β – β)ηt

+
{
d exp(–λd)[( – dλ) – dλ exp(–λd)]

( – exp(–λd))
σ

√
 – exp(–λd)

λ

–
d exp(–λd)[( – dλ) – dλ exp(–λd)]

( – exp(–λd))

· σ
√
 – exp(–λd)

λ

} n∑
t=

ηtet–

= T + T. (.)

It is easy to show that

T = o(n). (.)

Note that {ηtet–,Ht} is a martingale difference sequence, so we have

Var

( n∑
t=

ηtet–

)
=

n∑
t=

Eet– =�n(θ,σ).

Hence,

T = o(n). (.)

By (.)-(.), we have

T = o(n). (.)

It is easily proved that

T =
d exp(–λd)[dλ –  + ( + dλ) exp(–λd)]

( – exp(–λd))

n∑
t=

(
εt – exp(–λd)εt–

)

–
d exp(–λd)[dλ –  + ( + dλ) exp(–λd)]

( – exp(–λd))

n∑
t=

(
et – exp(–λd)et–

)
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=
{
d exp(–λd)[dλ –  + ( + dλ) exp(–λd)]

( – exp(–λd))
σ

√
 – exp(–λd)

λ

–
d exp(–λd)[dλ –  + ( + dλ) exp(–λd)]

( – exp(–λd))

· σ

√
 – exp(–λd)

λ

} n∑
t=

η
t = o(n). (.)

Hence, (.) follows immediately from (.)-(.), (.), (.) and (.). This com-
pletes the proof of (.) from (.), (.), (.) and (.).
It is well known that λ(–exp(–dλ))

λ(–exp(–dλ)) →  as n→ ∞. To prove (.), we need to show that

–σ  ∂
n
∂λ

|θ=θ

�n(θ,σ)
→p , n→ ∞.

This follows immediately from (.) and the Markov inequality.
Finally, we will prove (.). By (.) and (.), we have

D– 


n F(θ )D– T


n →p Im, n→ ∞ (.)

uniformly in θ ∈Nn(A) for each A > . Thus, by Lemma .,

λmin
(
D– 


n F(θ )D– T


n
)→p , n→ ∞. (.)

This implies (.). �

Lemma . (Hall and Heyde []) Let {Sni,Fni,  ≤ i ≤ kn,n ≥ } be a zero-mean,
square-integrable martingale array with differences Xni, and let η be an a.s. finite
random variable. Suppose that

∑
i E{X

niI(|Xni| > ε)|Fn,i–} →p  for all ε → , and∑
i E{X

ni|Fn,i–} →p η. Then

Snkn =
∑
i

Xni →D Z,

where the r.v. Z has the characteristic function E{exp(– 
η

t)}.

6 Proof of theorems
Proof of Theorem . Take A > , let

Mn(A) =
{
θ ∈ Rm+ : (θ – θ)TDn(θ – θ) = A} (.)

be the boundary of Nn(A), and let θ ∈ Mn(A). Using (.) and the Taylor expansion, for
each σ  > , we have


n
(
θ ,σ ) = 
n

(
θ,σ ) + (θ – θ)T

∂
n(θ,σ )
∂θ

+


(θ – θ)T

∂
n(θ,σ )
∂θ ∂θT (θ – θ)

=

σ  
n

(
θ,σ ) + (θ – θ)TSn(θ) –


σ  (θ – θ)TFn(θ̃ )(θ – θ), (.)

where θ̃ = aθ + ( – a)θ for some ≤ a≤ .
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Let Qn(θ ) = 
 (θ – θ)TFn(θ̃ )(θ – θ) and vn(θ ) = 

AD
T

n (θ – θ). Take c >  and θ ∈ Mn(A),

and by (.), we obtain that

P
{

n
(
θ ,σ )≥ 
n

(
θ,σ ) for some θ ∈Mn(A)

}
≤ P
{
(θ – θ)TSn(θ) ≥Qn(θ ),Qn(θ ) > cA for some θ ∈Mn(A)

}
+ P
{
Qn(θ )≤ cA for some θ ∈Mn(A)

}
≤ P
{
vTn (θ )D

– 


n Sn(θ) > cA for some θ ∈Mn(A)
}

+ P
{
vTn (θ )D

– 


n Fn(θ̃ )D
– T


n vn(θ ) ≤ c for some θ ∈Mn(A)

}
≤ P
{∣∣D– 


n Sn(θ)

∣∣ > cA
}

+ P
{

inf
θ∈Nn(A)

λmin
(
D– 


n Fn(θ̃ )D

– T


n
)≤ c

}
. (.)

By Lemma . and the Chebychev inequality, we obtain

P
{∣∣D– 


n Sn(θ)

∣∣ > cA
}≤ Var(D– 


n Sn(θ))
cA =

σ 


cA . (.)

Let A→ ∞, then c ↓ , and using (.), we have

P
{

inf
ϕ∈Nn(A)

λmin
(
D– 


n Fn(θ̃ )D

– T


n
)≤ c

}
→ . (.)

By (.)-(.), we have

lim
A→∞

lim inf
n→∞ P

{

n
(
θ ,σ ) <
n

(
θ,σ ) for all θ ∈ Mn(A)

}
= . (.)

By Lemma ., λmin(Xn(θ)) → ∞ as n → ∞. Hence λmin(Dn) → ∞. Moreover, from
(.), we have

inf
θ∈Nn(A)

λmin
(
Fn(θ )

)→p ∞.

This implies that 
n(θ ,σ ) is concave on Nn(A). Noting this fact and (.), we get

lim
A→∞

lim inf
n→∞ P

{
sup

θ∈Mn(A)

n
(
θ ,σ ) <
n

(
θ,σ ),
n

(
θ ,σ ) is concave on Nn(A)

}

= . (.)

On the event in the brackets, the continuous function 
n(θ ,σ ) has a unique maximum
in θ over the compact neighborhood Nn(A). Hence

lim
A→∞

lim inf
n→∞ P

{
Sn
(
θ̂n(A)

)
=  for a unique θ̂n(A) ∈Nn(A)

}
= .

Moreover, there is a sequence An → ∞ such that θ̂n = θ̂ (An) satisfies

lim inf
n→∞ P

{
Sn(θ̂n) =  and θ̂n maximizes 
n

(
θ ,σ ) uniquely in Nn(A)

}
= .
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This θ̂n = (β̂n, λ̂n) is a QML estimator for θ. It is clearly consistent, and

lim
A→∞

lim inf
n→∞ P

{
θ̂n ∈Nn(A)

}
= .

Since θ̂n = (β̂n, λ̂n) are ML estimators for θ, σ̂ 
n is an ML estimator for σ 

 from (.).
To complete the proof, we will show that σ̂ 

n → σ 
 as n → ∞. If θ̂n ∈ Nn(A), then β̂n ∈

Nβ
n (A) and λ̂n ∈Nλ

n (A).
By (.) and (.), we have

ε̂t – exp(–λ̂nd)ε̂t– =
(
xt – exp(–λ̂nd)xt–

)T (β – β̂n) +
(
et – exp(–λ̂nd)et–

)
. (.)

By (.), (.) and (.), we have

(n – )σ̂ 
n =

λ̂n

 – exp(–λ̂nd)

n∑
t=

(
ε̂t – exp(–λ̂nd)ε̂t–

)

=
λ̂n

 – exp(–λ̂nd)

n∑
t=

(
ε̂t – exp(–λ̂nd)ε̂t–

)

· {(xt – exp(–λ̂nd)xt–
)T (β – β̂n) +

(
et – exp(–λ̂nd)et–

)}
=

λ̂n

 – exp(–λ̂nd)

n∑
t=

(
ε̂t – exp(–λ̂nd)ε̂t–

)(
xt – exp(–λ̂nd)xt–

)T (β – β̂n)

+
λ̂n

 – exp(–λ̂nd)

n∑
t=

(
ε̂t – exp(–λ̂nd)ε̂t–

)(
et – exp(–λ̂nd)et–

)

=
λ̂n

 – exp(–λ̂nd)

n∑
t=

(
ε̂t – exp(–λ̂nd)ε̂t–

)(
et – exp(–λ̂nd)et–

)
. (.)

From (.), it follows that

n∑
t=

{(
xt – exp(–λ̂nd)xt–

)T (β – β̂n)
}

=
n∑
t=

(
ε̂t – exp(–λ̂nd)ε̂t–

)

– 
n∑
t=

(
ε̂t – exp(–λ̂nd)ε̂t–

)(
et – exp(–λ̂nd)et–

)

+
n∑
t=

(
et – exp(–λ̂nd)et–

). (.)

From (.), we get

n∑
t=

(
et – exp(–λ̂nd)et–

)

=
n∑
t=

(
exp(–λd)et– + σ

√
 – exp(–λd)

λ
ηt – exp(–λ̂nd)et–

)
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= σ 

 – exp(–λd)

λ

n∑
t=

η
t

+
n∑
t=

(
exp(–λd) – exp(–λ̂nd)

)et–
+ σ

√
 – exp(–λd)

λ

n∑
t=

(
exp(–λd) – exp(–λ̂nd)

)
ηtet–. (.)

By (.)-(.), we have

(n – )σ̂ 
n =

λ̂n

 – exp(–λ̂nd)

n∑
t=

(
et – exp(–λ̂nd)et–

)

–
λ̂n

 – exp(–λ̂nd)

n∑
t=

((
xt – exp(–λ̂nd)xt–

)T (β – β̂n)
)

=
λ̂n

 – exp(–λ̂nd)
· σ 


 – exp(–λd)

λ

n∑
t=

η
t

+
λ̂n

 – exp(–λ̂nd)
·

n∑
t=

(
exp(–λd) – exp(–λ̂nd)

)et–
+ 

λ̂n

 – exp(–λ̂nd)
· σ

√
 – exp(–λd)

λ

·
n∑
t=

(
exp(–λd) – exp(–λ̂nd)

)
ηtet–

–
λ̂n

 – exp(–λ̂nd)

n∑
t=

((
xt – exp(–λ̂nd)xt–

)T (β – β̂n)
)

= T + T + T – T. (.)

By the law of large numbers and λ̂n →p λ, we have


n – 

T =
λ̂n

 – exp(–λ̂nd)
·  – exp(–λd)

λ
σ 
 · 

n – 

n∑
t=

η
t

→p σ 


λn

 – exp(–λnd)
·  – exp(–λd)

λ

= σ 
 (n→ ∞). (.)

By the Markov inequality, and noting that ET ≤ CA, we obtain


n – 

T →p  (n→ ∞). (.)

Since {(exp(–λd) – exp(–λ̂nd))ηtet–,Ht–} is a martingale difference sequence with

Var
{(
exp(–λd) – exp(–λ̂nd)

)
ηtet–

}
=
(
exp(–λd) – exp(–λ̂nd)

)Eet–,
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so we have

Var(T) =
n∑
t=

E
((
exp(–λd) – exp(–λ̂nd)

)
ηtet–

)

=
n∑
t=

(
exp(–λd) – exp(–λ̂nd)

)Eet–
≤ C(λ – λ̂n)

n∑
t=

Eet– ≤ CA. (.)

By the Chebychev inequality, we have


n – 

T →p  (n→ ∞). (.)

By (.), we have

T =
n∑
t=

((
xTt (β – β̂n) – exp(–λ̂nd)xt–

)T (β – β̂n)
)

≤ 
n∑
t=

(
xTt (β – β̂n)

) + n∑
t=

(
exp(–λ̂nd)xTt–(β – β̂n)

)
= o(n). (.)

From (.)-(.), (.) and (.), we have σ̂ 
n → σ 

 .
We therefore complete the proof of Theorem .. �

Proof of Theorem . It is easy to know that Sn(θ̂n) =  and Fn(θ̂n) is nonsingular from
Theorem .. By the Taylor expansion, we have

 = Sn(θ̂n) = Sn(θ) – Fn(θ̃n)(θ̂n – θ). (.)

Since θ̂n ∈Nn(A), also θ̃n ∈Nn(A). By (.), we have

Fn(θ̃n) =D


n (�n + Ãn)D

T

n , (.)

where Ãn is a symmetric matrix with Ãn →p . By (.) and (.), we have

D
T

n (θ̂n – θ) =D

T

n F–

n (θ̃n)Sn(θ) = (�n + Ãn)–D
– 


n Sn(θ). (.)

Similar to (.), we have

Fn(θ̂n) = D


n (�n + Ân)D

T

n

=
(
D



n (�n + Ân)



)(
(�n + Ân)

T
 D

T

n
)

= F


n (θ̂n)F

T

n (θ̂n). (.)
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Here Ân →p . By (.), (.), and noting that σ̂ 
n →p σ 

 and D– 


n Sn(θ) = Op(), we
obtain that

F
T

n (θ̂n)(θ̂n – θ)/σ̂n = (�n + Ân)


 (�n + Ãn)–D

– 


n Sn(θ)/σ̂n

= �
– 


n D– 


n Sn(θ)/σ + op(). (.)

From (.) and (.), we have

Sn(θ)
σ

=

√
λ

 – exp(–λd)

{ n∑
t=

ηt
(
xt – exp(–λd)xt–

)
,

– d exp(–λd)
n∑
t=

ηtet–

–

√
λ

 – exp(–λd)
σ[ – ( + dλ) exp(–λd)]

λ


n∑
t=

(
η
t – 

)}
. (.)

From (.) and (.), we have

�
– 


n D– 


n =

⎛
⎝( λ(–exp(–dλ))

λ(–exp(–dλ)) )
– 
 Id 


√

�n(θ,σ)
–σ ∂
n

∂λ
|θ=θ

⎞
⎠

·
⎛
⎝( λ

–exp(–dλ)
)– 

X– 


n (λ) 
 √

�n(θ,σ)

⎞
⎠

=

⎛
⎜⎝(

λ
–exp(–dλ) )

– 
X– 


n (λ) 

 √
–σ ∂
n

∂λ
|θ=θ

⎞
⎟⎠ . (.)

By (.) and (.), we have

�
– 


n D– 


n Sn(θ)/σ

=

√
λ

 – exp(–λd)

{(
λ

 – exp(–dλ)

)– 
 n∑

t=

ηtX
– 


n (θ)
(
xt – exp(–λd)xt–

)
,

√
–σ  ∂
n

∂λ
|θ=θ

·
[
–d exp(–λd)

n∑
t=

ηtet–

–

√
λ

 – exp(–λd)
σ[ – ( + dλ) exp(–λd)]

λ


n∑
t=

(
η
t – 

)]}
. (.)

Let u ∈ Rd with |u| = , and

atn = u
(

λ
 – exp(–dλ)

)– 

X– 


n (λ)

(
xt – exp(–λd)xt–

)
.
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Then max≤t≤n atn = o(), and we will consider the limiting distribution of the following
-vector

√
λ

 – exp(–λd)

{ n∑
t=

atnηt , –
√

–σ  ∂
n
∂λ

|θ=θ

[
d exp(–λd)

n∑
t=

ηtet–

+

√
λ

 – exp(–λd)
σ[ – ( + dλ) exp(–λd)]

λ


n∑
t=

(
η
t – 

)]}
. (.)

Note that

–σ  ∂
n

∂λ

∣∣∣∣
θ=θ

=Op
(
�n(θ,σ)

)
=Op(n).

Hence, by the Cramer-Wold device, it will suffice to find the asymptotic distribution of the
following random

√
λ

 – exp(–λd)

n∑
t=

{
uatnηt –

u√
�n(θ,σ)

[
d exp(–λd)ηtet–

+

√
λ

 – exp(–λd)
σ[ – ( + dλ) exp(–λd)]

λ


(
η
t – 

)]}

=
n∑
t=

ζt , (.)

where (u,u) ∈ R with u + u = . Note that

E{ζt|Ht–} =
√

λ

 – exp(–λd)

{
uatnE(ηt) –

u√
�n(θ,σ)

[
d exp(–λd)E(ηt)et–

+

√
λ

 – exp(–λd)
σ[ – ( + dλ) exp(–λd)]

λ


E
(
η
t – 

)]}

= , a.s., (.)

so the sums in (.) are partial sums of a martingale triangular array to Ht , and we will
verify the Lindeberg conditions for their convergence to normality.
By (.), and noting that Eη

t = , Eη
t =  and λ ∈Nλ

n (A), we have

n∑
t=

E
(
ζ 
t |Ht–

)
=

λ

 – exp(–λd)

{
u

n∑
t=

atn + u


�n(θ,σ)

[
d exp(–λd)

n∑
t=

et–

+
λ

 – exp(–λd)
σ 
 [ – ( + dλ) exp(–λd)]

λ


n∑
t=

E
(
η
t – 

)]

– 
n∑
t=

u
u√
n
d exp(–λd)atnet–

+ 
u
n
d exp(–λd)

√
λ

 – exp(–λd)
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· σ[ – ( + dλ) exp(–λd)]
λ


E
(
ηt
(
η
t – 

))
et–

– uatn
u√
n

√
λ

 – exp(–λd)

· σ[ – ( + dλ) exp(–λd)]
λ


E
(
ηt
(
η
t – 

))}

= uu
 λ

 – exp(–λd)

(
λ

 – exp(–dλ)

)–

+ u + op() +  + 

= u + u + op() =  + op(). (.)

Let ãtn =min{atn, √
�n(θ,σ)

} and ζt = ãtnζ̃t . Then ãtn = o().
For any c > ,

n∑
t=

E
{
ζ 
t I
(|ζt| > c

)|Ht–
}
=

∞∑
t=

∫ ∞

c
y dP

{|ãtnζ̃t| ≤ y|Ht–
}

=
n∑
t=

ãtn
∫ ∞

c
ãtn

y dp
{|ζ̃t| ≤ y|Ht–

}

= o()
n∑
t=

ãtn = o()Op() → , n→ ∞. (.)

This verifies the Lindeberg conditions, and by Lemma ., we have

n∑
t=

ζt →D N(, ).

Thus we complete the proof of Theorem .. �

Proof of Theorem . Note that λ̂n → λ, λ̂n → λ. Similarly to the proof of Theo-
rem .() in Maller [], by (.) and Theorem ., we have

d̃(n) =

σ 


{(
λ̂n

 – exp(–λ̂nd)
–

λ̂n

 – exp(–λ̂nd)

)
σ 

 – exp(–λd)

λ

n∑
t=

η
t

+
n∑
t=

{
λ̂n

 – exp(–λ̂nd)
(
exp(–λd) – exp(–λ̂nd)

)

–
λ̂n

 – exp(–λ̂nd)
(
exp(–λd) – exp(–λ̂nd)

)}et–
+ σ

√
 – exp(–λd)

λ

n∑
t=

{
λ̂n

 – exp(–λ̂nd)
(
exp(–λd) – exp(–λ̂nd)

)

–
λ̂n

 – exp(–λ̂nd)
(
exp(–λd) – exp(–λ̂nd)

)}
ηtet–

+
λ̂n

 – exp(–λ̂nd)

n∑
t=

((
xt – exp(–λ̂nd)xt–

)T (β – β̂n)
)}
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=

σ 


λ̂n

 – exp(–λ̂nd)

n∑
t=

((
xt – exp(–λ̂nd)xt–

)T (β – β̂n)
) + o()

→D χ(m). (.)
�

7 Empirical examples
In the section, we consider two empirical examples. The first one (β is a one-dimensional
unknown parameter, namely m = ) is water flowing in the Kootenay River in January,
which is taken from Hampel et al. [, p.]. The second one (β is a -dimensional un-
known parameter, namely m = ) is the consumption of spirits in the United Kingdom,
which is taken from Fuller [].

7.1 Water flowing in the Kootenay river
By the ordinary least squares method, we obtain that

ŷt = . + .xt + ε̂t (.)

and

εt = .εt– + ηt , t = , , . . . , , (.)

where ηt is a sequence of uncorrelated (, .) random variables.
By the Huber-Dutter (HD) method, we obtain the following model (see Hu []):

ŷt = . + .xt + ε̂t (.)

and

εt = .εt– + ηt , (.)

where ηt is a sequence of uncorrelated (, .) random variables.
By the ML method (take d =  and starting values for λ() = , (σ )() = ., β () = .;

here we use pattern search algorithms), we obtain the following model:

ŷt = . + .xt + ε̂t (.)

and

εt = exp(–.)εt– + .ηt , (.)

where ηt is a sequence of uncorrelated (, ) random variables.
By model (.), we obtain a general process {yt} satisfying the following SDE:

d(yt – .) = (.xt + . – yt)dt + .dBt . (.)

Since . > . > ., our results excel the results of HD and the least
squares method in mean squares error (MSE).
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By (.), we obtain d̃() = . > . = χ
–.(). It is shown that β =  at the

significant level α = .. Thus we should apply the linear regression model (.) with
Ornstein-Uhlenbeck process instead of only theOrnstein-Uhlenbeck process for the data.
It is shown that our estimation method and testing approach are valid in the case of

m = . For a multidimensional parameter β , it is true in the following example.

7.2 Consumption of spirits in the UK
Wewill use the data studied by Fuller []. The data pertain to the consumption of spirits
in the United Kingdom from  to . The dependent variable yt is the annual per
capita consumption of spirits in the United Kingdom. The explanatory variables xt and
xt are per capita income and price of spirits, respectively, both deflated by a general price
index. All data are in logarithms. The model suggested by Prest can be written as follows:

yt = β + βxt + βxt + βxt + βxt + εt , (.)

where  is the origin for t, xt = t
 , xt =

(t–)
 , and assume that εt is a stationary time

series.
Fuller [] obtained the estimated generalized least squares equation

ŷt = . + .xt – .xt – .xt – .xt (.)

and

εt = .εt– + ηt ,

where ηt is a sequence of uncorrelated (, .) random variables.
Take d =  and starting values for

λ() = .,
(
σ )() = ., β () = (.,–.,–.,–.)T .

Using our method, we obtain the following models:

ŷt = . + .xt – .xt – .xt – .xt (.)

and

εt = exp(–.)εt– + .ηt , (.)

where ηt is a sequence of uncorrelated (, ) random variables; or

dεt = –.εt dt + .dBt . (.)

Since . > ., our results excel the results of Fuller [] in MSE.
By (.), we obtain d̃() = . > . = χ

–.(). It is shown that β =  at the
significant level α = ..
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