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Abstract
In this paper, we introduce and investigate certain subclasses of meromorphically
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1 Introduction
Let � denote the class of functions f of the form

f (z) =

z
+

∞∑
k=

akzk , (.)

which are analytic in the punctured open unit disk

U
∗ :=

{
z : z ∈C and  < |z| < 

}
=:U \ {}.

A function f ∈ � is said to be in the classMS∗(α) ofmeromorphically starlike functions
of order α if it satisfies the inequality

�
(
zf ′(z)
f (z)

)
< –α (z ∈U; � α < ).

Let P denote the class of functions p given by

p(z) =  +
∞∑
k=

pkzk (z ∈ U), (.)

which are analytic in U and satisfy the condition

�(
p(z)

)
>  (z ∈U).

For some recent investigations on analytic starlike functions, see (for example) the ear-
lier works [–] and the references cited in each of these earlier investigations.
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Given two functions f , g ∈ �, where f is given by (.) and g is given by

g(z) =

z
+

∞∑
k=

bkzk ,

the Hadamard product (or convolution) f ∗ g is defined by

(f ∗ g)(z) :=

z
+

∞∑
k=

akbkzk =: (g ∗ f )(z).

A function f ∈ � is said to be in the classH(β ,λ) if it satisfies the condition

�
(
zf ′(z)
f (z)

+ β
zf ′′(z)
f (z)

)
< βλ

(
λ +




)
+

β


– λ (z ∈U), (.)

where (and throughout this paper unless otherwise mentioned) the parameters β and λ

are constrained as follows:

β �  and


� λ < . (.)

Clearly, we have

H(,λ) =MS∗(λ).

In a recent paper, Wang et al. [] had proved that if f ∈ H(β ,λ), then f ∈ MS∗(λ),
which implies that the classH(β ,λ) is a subclass of the classMS∗(λ) of meromorphically
starlike functions of order λ.
Let H+(β ,λ) denote the subset ofH(β ,λ) such that all functions f ∈ H(β ,λ) having the

following form:

f (z) =

z
–

∞∑
k=

akzk (ak � ). (.)

In the present paper, we aim at proving some coefficient inequalities, neighborhoods,
partial sums and inclusion relationships for the function classesH(β ,λ) andH+(β ,λ).

2 Preliminary results
In order to prove our main results, we need the following lemmas.

Lemma . (See []) If the function p ∈P is given by (.), then

|pk|�  (k ∈N).
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Lemma . Let β >  and  – γ –β > . Suppose also that the sequence {Ak}∞k= is defined
by

A =
 – γ – β

 – β
and

Ak+ =
( – γ – β)

 – β + (βk + )(k + )

(
 +

k∑
l=

Al

)
(k ∈N).

(.)

Then

Ak =
 – γ – β

 – β

k–∏
j=

 – β – γ + j(βj +  – β)
 – β + (βj + )(j + )

(
k ∈N \ {}). (.)

Proof By virtue of (.), we easily get

[
 – β + (βk + )(k + )

]
Ak+ = ( – γ – β)

(
 +

k∑
l=

Al

)
, (.)

and

[
 – β + (βk +  – β)k

]
Ak = ( – γ – β)

(
 +

k–∑
l=

Al

)
. (.)

Combining (.) and (.), we obtain

Ak+

Ak
=
 – β – γ + k(βk +  – β)
 – β + (βk + )(k + )

. (.)

Thus, for k � , we deduce from (.) that

Ak =
Ak

Ak–
· · · · · A

A
· A

A
·A =

 – γ – β
 – β

k–∏
j=

 – β – γ + j(βj +  – β)
 – β + (βj + )(j + )

.

The proof of Lemma . is evidently completed. �

The following two lemmas can be derived from [, Theorem ] (see also []), we here
choose to omit the details of proof.

Lemma . Let

 + βλ

(
λ +




)
– λ –



β > . (.)

Suppose also that f ∈ � is given by (.). If

∞∑
k=

[
k + βk(k – ) + γ

]|ak| �  – γ – β , (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/29
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where (and throughout this paper unless otherwise mentioned) the parameter γ is con-
strained as follows:

γ := λ – βλ

(
λ +




)
–

β


, (.)

then f ∈H(β ,λ).

Lemma . Let f ∈ � be given by (.). Suppose also that γ is defined by (.) and the
condition (.) holds true. Then f ∈H+(β ,λ) if and only if

∞∑
k=

[
k + βk(k – ) + γ

]
ak �  – γ – β . (.)

3 Main results
We begin by proving the following coefficient estimates for functions belonging to the
classH(β ,λ).

Theorem . Let γ be defined by (.). If f ∈H(β ,λ) with  < β < /, then

|a| �  – γ – β
 – β

,

and

|ak|�  – γ – β
 – β

k–∏
j=

 – β – γ + j(βj +  – β)
 – β + (βj + )(j + )

(
k ∈ N \ {}).

Proof Suppose that

q(z) := –
zf ′(z)
f (z)

– β
zf ′′(z)
f (z)

+ βλ

(
λ +




)
+

β


– λ. (.)

Then, by the definition of the function classH(β ,λ), we know that q is analytic in U and

�(
q(z)

)
>  (z ∈ U)

with

q() =  – γ – β > .

It follows from (.) and (.) that

q(z)f (z) = –zf ′(z) – βzf ′′(z) – γ f (z). (.)

By noting that

h(z) =
q(z)

 – γ – β
∈P ,

http://www.journalofinequalitiesandapplications.com/content/2014/1/29
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if we put

q(z) = c +
∞∑
k=

ckzk (c =  – γ – β),

by Lemma ., we know that

|ck|� ( – γ – β) (k ∈N).

It follows from (.) that

(
c +

∞∑
k=

ckzk
)(


z
+

∞∑
k=

akzk
)

=

(

z
–

∞∑
k=

kakzk
)
–

(
β
z

+ β

∞∑
k=

k(k – )akzk
)
– γ

(

z
+

∞∑
k=

akzk
)
. (.)

In view of (.), we get

( – γ – β)a + c = –a – γ a (.)

and

ck+ + ( – γ – β)ak+ +
k∑
l=

alck+–l

= –(k + )ak+ – βk(k + )ak+ – γ ak+ (k ∈N). (.)

From (.), we obtain

|a| �  – γ – β
 – β

. (.)

Moreover, we deduce from (.) that

|ak+|� ( – γ – β)
 – β + (βk + )(k + )

(
 +

k∑
l=

|al|
)

(k ∈N). (.)

Next, we define the sequence {Ak}∞k= as follows:

A =
 – γ – β

 – β
and Ak+ =

( – γ – β)
 – β + (βk + )(k + )

(
 +

k∑
l=

Al

)
(k ∈N). (.)

In order to prove that

|ak|� Ak (k ∈N),

http://www.journalofinequalitiesandapplications.com/content/2014/1/29


Wang et al. Journal of Inequalities and Applications 2014, 2014:29 Page 6 of 13
http://www.journalofinequalitiesandapplications.com/content/2014/1/29

we make use of the principle of mathematical induction. By noting that

|a| � A =
 – γ – β

 – β
.

Therefore, assuming that

|al|� Al (l = , , , . . . ,k;k ∈N).

Combining (.) and (.), we get

|ak+| � ( – γ – β)
 – β + (βk + )(k + )

(
 +

k∑
l=

|al|
)

� ( – γ – β)
 – β + (βk + )(k + )

(
 +

k∑
l=

Al

)
= Ak+ (k ∈ N).

Hence, by the principle of mathematical induction, we have

|ak|� Ak (k ∈N) (.)

as desired.
By means of Lemma . and (.), we know that (.) holds true. Combining (.) and

(.), we readily get the coefficient estimates asserted by Theorem .. �

Following the earlier works (based upon the familiar concept of neighborhood of ana-
lytic functions) by Goodman [] and Ruscheweyh [], and (more recently) by Altintaş
et al. [–], Cǎtaş [], Cho et al. [], Liu and Srivastava [–], Frasin [], Keerthi
et al. [], Srivastava et al. [] andWang et al. []. Assuming that γ is given by (.) and
the condition (.) of Lemma . holds true, we here introduce the δ-neighborhood of a
function f ∈ � of the form (.) by means of the following definition:

Nδ(f ) :=

{
g ∈ � : g(z) =


z
+

∞∑
k=

bkzk and

∞∑
k=

k + βk(k – ) + γ

 – γ – β
|ak – bk|� δ (δ � )

}
. (.)

By making use of the definition (.), we now derive the following result.

Theorem . Let the condition (.) hold true. If f ∈ � satisfies the condition

f (z) + εz–

 + ε
∈H(β ,λ)

(
ε ∈C; |ε| < δ; δ > 

)
, (.)

then

Nδ(f ) ⊂H(β ,λ). (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/29
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Proof By noting that the condition (.) can be written as

∣∣∣∣
zf ′(z)
f (z) + β

zf ′′(z)
f (z) + 

zf ′(z)
f (z) + β

zf ′′(z)
f (z) + γ – 

∣∣∣∣ <  (z ∈U), (.)

we easily find from (.) that a function g ∈H(β ,λ) if and only if

zg ′(z) + βzg ′′(z) + g(z)
zg ′(z) + βzg ′′(z) + (γ – )g(z)

�= σ
(
z ∈U;σ ∈C; |σ | = 

)
,

which is equivalent to

(g ∗ h)(z)
z–

�=  (z ∈U), (.)

where

h(z) =

z
+

∞∑
k=

ckzk
(
ck :=

k + βk(k – ) +  – [k + βk(k – ) + (γ – )]σ
[β + ( – γ – β)σ ]

)
. (.)

It follows from (.) that

|ck| =
∣∣∣∣k + βk(k – ) +  – [k + βk(k – ) + (γ – )]σ

[β + ( – γ – β)σ ]

∣∣∣∣
� k + βk(k – ) +  + [k + βk(k – ) + (γ – )]|σ |

( – γ – β)|σ |

=
k + βk(k – ) + γ

 – γ – β
(|σ | = 

)
.

If f ∈ � given by (.) satisfies the condition (.), we deduce from (.) that

(f ∗ h)(z)
z–

�= –ε
(|ε| < δ; δ > 

)
,

or equivalently,

∣∣∣∣ (f ∗ h)(z)
z–

∣∣∣∣� δ (z ∈U; δ > ). (.)

We now suppose that

q(z) =

z
+

∞∑
k=

dkzk ∈Nδ(f ).

It follows from (.) that

∣∣∣∣ ((q – f ) ∗ h)(z)
z–

∣∣∣∣ =
∣∣∣∣∣

∞∑
k=

(dk – ak)ckzk+
∣∣∣∣∣ � |z|

∞∑
k=

k + βk(k – ) + γ

 – γ – β
|dk – ak| < δ. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/29
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Combining (.) and (.), we easily find that
∣∣∣∣ (q ∗ h)(z)

z–

∣∣∣∣ =
∣∣∣∣ ([f + (q – f )] ∗ h)(z)

z–

∣∣∣∣�
∣∣∣∣ (f ∗ h)(z)

z–

∣∣∣∣ –
∣∣∣∣ ((q – f ) ∗ h)(z)

z–

∣∣∣∣ > ,

which implies that

(q ∗ h)(z)
z–

�=  (z ∈U).

Therefore, we have

q(z) ∈Nδ(f ) ⊂H(β ,λ).

The proof of Theorem . is thus completed. �

Next, we derive the partial sums of the class H(β ,λ). For some recent investigations
involving the partial sums in analytic function theory, one can find in [, , , ] and
the references cited therein.

Theorem . Let f ∈ � be given by (.) and define the partial sums fn(z) of f by

fn(z) =

z
+

n∑
k=

akzk (n ∈N). (.)

If

∞∑
k=

k + βk(k – ) + γ

 – γ – β
|ak|� , (.)

where γ is given by (.) and the condition (.) holds true, then
. f ∈H(β ,λ);
.

�
(
f (z)
fn(z)

)
� n + βn(n + ) + β + γ

n + βn(n + ) +  + γ
(n ∈N; z ∈U), (.)

and

�
(
fn(z)
f (z)

)
� n + βn(n + ) +  + γ

n + βn(n + ) +  – β
(n ∈N; z ∈U). (.)

The bounds in (.) and (.) are sharp.

Proof First of all, we suppose that

f(z) =

z
.

We know that

f(z) + εz–

 + ε
=

z

∈H(β ,λ).

http://www.journalofinequalitiesandapplications.com/content/2014/1/29
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From (.), we easily find that

∞∑
k=

k + βk(k – ) + γ

 – γ – β
|ak – |� ,

which implies that f ∈N(z–). By virtue of Theorem ., we deduce that

f ∈N
(
z–

) ⊂H(β ,λ).

Next, it is easy to see that

n +  + βn(n + ) + γ

 – γ – β
>
n + βn(n – ) + γ

 – γ – β
>  (n ∈ N).

Therefore, we have

n∑
k=

|ak| + n + βn(n + ) +  + γ

 – γ – β

∞∑
k=n+

|ak|�
∞∑
k=

k + βk(k – ) + γ

 – γ – β
|ak|� . (.)

We now suppose that

h(z) =
n + βn(n + ) +  + γ

 – γ – β

(
f (z)
fn(z)

–
n + βn(n + ) + β + γ
n + βn(n + ) +  + γ

)

=  +
n+βn(n+)++γ

–γ–β
∑∞

k=n+ akzk+

 +
∑n

k= akzk+
. (.)

It follows from (.) and (.) that

∣∣∣∣h(z) – 
h(z) + 

∣∣∣∣�
n+βn(n+)++γ

–γ–β
∑∞

k=n+ |ak|
 – 

∑n
k= |ak| – n+βn(n+)++γ

–γ–β
∑∞

k=n+ |ak|
�  (z ∈U),

which shows that

�(
h(z)

)
�  (z ∈U). (.)

Combining (.) and (.), we deduce that the assertion (.) holds true.
Furthermore, if we put

f (z) =

z
–

 – γ – β
n + βn(n + ) +  + γ

zn+, (.)

then

f (z)
fn(z)

=  –
 – γ – β

n + βn(n + ) +  + γ
zn+ → n + βn(n + ) + β + γ

n + βn(n + ) +  + γ

(
z → –

)
,

which implies that the bound in (.) is the best possible for each n ∈N.

http://www.journalofinequalitiesandapplications.com/content/2014/1/29
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Similarly, we suppose that

h(z) =
n + βn(n + ) +  – β

 – γ – β

(
fn(z)
f (z)

–
n + βn(n + ) +  + γ

n + βn(n + ) +  – β

)

=  –
n+βn(n+)+–β

–γ–β
∑∞

k=n+ akzk+

 +
∑∞

k= akzk+
. (.)

In view of (.) and (.), we conclude that

∣∣∣∣h(z) – 
h(z) + 

∣∣∣∣�
n+βn(n+)+–β

–γ–β
∑∞

k=n+ |ak|
 – 

∑n
k= |ak| – n+βn(n+)+β+γ

–γ–β
∑∞

k=n+ |ak|
�  (z ∈U),

which implies that

�(
h(z)

)
�  (z ∈U). (.)

Combining (.) and (.), we readily get the assertion (.) of Theorem.. The bound
in (.) is sharp with the extremal function f given by (.). We thus complete the proof
of Theorem .. �

In what follows, we turn to quotients involving derivatives. The proof of Theorem .
below is similar to that of Theorem ., we here choose to omit the analogous details.

Theorem . Let f ∈ � be given by (.) and define the partial sums fn(z) of f by (.). If
the conditions (.) and (.) hold, where γ is given by (.), then

�
(
f ′(z)
f ′
n(z)

)
� (n + )γ + (n + )(n + )β

n + βn(n + ) +  + γ
(n ∈N; z ∈U), (.)

and

�
(
f ′
n(z)
f ′(z)

)
� n + βn(n + ) +  + γ

(n – )(n + )β + (n + ) – nγ
(n ∈N; z ∈U). (.)

The bounds in (.) and (.) are sharp with the extremal function given by (.).

Finally, we prove the following inclusion relationship for the function classH(β ,λ).

Theorem . Let

β � β �  and


� λ � λ < .

Then

H(β,λ)⊂H(β,λ). (.)

Proof Suppose that f ∈H(β,λ). Then

�
(
zf ′(z)
f (z)

+ β
zf ′′(z)
f (z)

)
< λ

[
β

(
λ +




)
– 

]
+

β


(z ∈U). (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/29
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Since β � β �  and /� λ � λ < , we find that

λ

[
β

(
λ +




)
– 

]
+

β


� λ

[
β

(
λ +




)
– 

]
+

β


. (.)

It follows from (.) and (.) that

�
(
zf ′(z)
f (z)

+ β
zf ′′(z)
f (z)

)
< λ

[
β

(
λ +




)
– 

]
+

β


(z ∈U), (.)

which shows that f ∈H(β,λ), and subsequently, we see that f ∈MS∗(λ), that is,

�
(
zf ′(z)
f (z)

)
< –λ (z ∈U). (.)

Now, by setting

μ =
β

β
,

so that

 < μ � ,

we easily find from (.) and (.) that

�
(
zf ′(z)
f (z)

+ β
zf ′′(z)
f (z)

– λ

[
β

(
λ +




)
– 

]
–

β



)

= μ�
(
zf ′(z)
f (z)

+ β
zf ′′(z)
f (z)

– λ

[
β

(
λ +




)
– 

]
–

β



)
+ ( –μ)�

(
zf ′(z)
f (z)

+ λ

)

<  (z ∈U),

that is,

f ∈H(β,λ).

Therefore, the assertion (.) of Theorem . holds true. �

From Theorem . and the definition of the function class H+(β ,λ), we easily get the
following inclusion relationship.

Corollary . Let

β � β �  and


� λ � λ < .

Then

H+(β,λ) ⊂H+(β,λ) ⊂MS∗(λ).

http://www.journalofinequalitiesandapplications.com/content/2014/1/29
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By virtue of Lemma ., we obtain the following result.

Corollary . Let f ∈ H+(β ,λ). Suppose also that γ is defined by (.) and the condition
(.) holds true. Then

ak �
 – γ – β

k + βk(k – ) + γ
.

Each of these inequalities is sharp, with the extremal function given by

fk(z) =

z
–

 – γ – β
k + βk(k – ) + γ

zk .
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