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1 Introduction
A prototypical example of self-normalized random variables is Student’s t-statistic which
replaces the population standard deviation σ in the standardized sample mean

√
n(X̄n –

μ)/σ by the sample standard deviation. Generally, a self-normalized process is of the form
At/Bt , in which Bt is a random variable that estimates some dispersion measure of At . If
At is normalized by nonrandom bt instead, the moment conditions are needed. However,
for self-normalized process, the moment conditions can be deleted, for example, Shao
[] obtained the large deviation of self-normalized sums of i.i.d. random variables with-
out moment conditions. In addition, there has been increasing interest in limit theorems
and moment bounds for self-normalized sums of i.i.d. zero-mean random variables Xi.
Bentkus and Götze [] gave a Berry-Esseen bound for Student’s t-statistic. Giné et al. []
proved that the t-statistic has a limiting standard normal distribution if and only if X

is in the domain of attraction of a normal law. We refer to De la Peña et al. [] for the
comprehensive review of the state of the art of the theory and it applications in statistical
inference.
In this paper, we concentrate on the exponential inequalities of the self-normalized

martingale. Let (Mn) be a locally square integrable real martingale adapted to a filtration
F = (Fn) withM = . The predictable quadratic variation and the total quadratic variation
of (Mn) are, respectively, given by

〈M〉n =
n∑
k=

E
[
�(Mk)|Fk–

]

and

[M]n =
n∑
k=

�(Mk),
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where�Mn =Mn–Mn–. In [], Bercu andTouati established the following results without
any assumptions on (Mn).

Theorem . [, Theorem .] Let (Mn) be a locally square integrable martingale. Then,
for all x, y > ,

P
(|Mn| ≥ x, [M]n + 〈M〉n ≤ y

) ≤  exp
(
–
x

y

)
. ()

Theorem . [, Theorem .] Let (Mn) be a locally square integrable martingale. Then,
for all x, y > , a >  and b > ,

P

( |Mn|
a + b〈M〉n ≥ x, 〈M〉n ≥ [M]n + y

)
≤  exp

(
–x

(
ab +

by


))
. ()

Moreover, we also have

P

( |Mn|
a + b〈M〉n ≥ x, [M]n ≤ y〈M〉n

)

≤  inf
p>

(
E

[
exp

(
–(p – )

x

( + y)

(
ab +

b


〈M〉n

))]) 
p
.

It is necessary to point out that, to calculate the above exponential bounds, the following
canonical assumption is important. For a pair of random variables (A,B) with B > , if the
following inequality holds:

E

[
exp

(
λA –

λB



)]
≤ , λ ∈R,

then (A,B) are called satisfying canonical assumption. For such a pair (A,B), De la Pen̂a
andPang [] proved the following exponential bounds (in their inequalities, there are some
misprints, so we state a correction as follows).

Theorem . [, Theorem .] Let (A,B) be a pair of random variables with B >  in
the probability space (�,F ,P) satisfying the canonical assumption. Suppose E|A|p <∞ for
some p > . Then, for any x >  and for q ≥  such that 

p +

q = ,

P

( |A|√
q–
q (B + [E|A|p] p )

≥ x
)

≤
(

q
q – 

) q
(q–)

x–
q

q– e–
x
 .

In particular, if EA <∞,

P

( |A|√

 (B +E[|A|])

≥ x
)

≤
(



) 

x–


 e–

x
 , for x > ,

and if E|A| < ∞,

P

( |A|√
(B + (E|A|)) ≥ x

)
≤ –


 x–


 e–

x
 , for x > .
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Moreover, if B satisfies E[B] = E[A] < ∞, the upper bound becomes

min
[



 e–

x
 , (/)


 x–


 e–

x

]
, for x > .

Here we want to mention the works in Bercu [], which provided some other different
inequality forms.
The purpose of this paper is to establish several exponential inequalities motivated by

the above works. In Section , we shall propose exponential inequalities for martingales
and self-normalized martingales, and, in the last section, the deviation bound of the least-
square estimate of the unknown parameter in a linear regressive model is established.

2 Exponential inequalities
2.1 Exponential inequalities for martingales
In this subsection we will give some exponential inequalities involving 〈M〉n and [M]n.

Theorem . Let (Mn) be a locally square integrable martingale. Then, for all x, y > ,

P

(
|Mn| ≥ x,



[M]n + 〈M〉n ≤ y

)
≤  exp

(
–
x

y

)
. ()

Remark . There is no assumption on (Mn) in the above result. Since, for any x, y > ,

P
(|M| ≥ x, [M]n + 〈M〉n ≤ y

)
≤ P

(
|Mn| ≥ x,



[M]n + 〈M〉n ≤ y

)

≤  exp
(
–
x

y

)
≤  exp

(
–
x

y

)
,

the inequality () is more precise than the inequality (). Therefore, Theorem . improves
the works of Bercu and Touati [, Theorem .].

For self-normalizedmartingales, we can obtain the following inequality which improves
the well-known Theorem ..

Theorem . Let (Mn) be a locally square integrable martingale. Then, for all x, y > ,
a ≥ , b≥ ,

P

( |Mn|
a + b〈M〉n ≥ x, 〈M〉n ≥ 


[M]n + y

)
≤  exp

(
–x

(
ab +

b


y
))

. ()

Moreover, we also have the result

P

( |Mn|
a + b〈M〉n ≥ x,



[M]n ≤ y〈M〉n

)

≤  inf
p>

(
E

[
exp

(
–(p – )

x

( + y)

(
ab +

b


〈M〉n

))]) 
p
. ()
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Remark . Since, for any x, y > , a ≥ , and b > ,

P

( |Mn|
a + b〈M〉n ≥ x, 〈M〉n ≥ [M]n + y

)

≤ P

( |Mn|
a + b〈M〉n ≥ x, 〈M〉n ≥ 


[M]n + y

)

≤  exp
(
–x

(
ab +

b


y
))

≤  exp
(
–x

(
ab +

by


))
,

the inequality () is better than the inequality (). Similarly, we have

P

( |Mn|
a + b〈M〉n ≥ x, [M]n ≤ y〈M〉n

)

≤ P

( |Mn|
a + b〈M〉n ≥ x,



[M]n ≤ y〈M〉n

)

≤  inf
p>

(
E

[
exp

(
–(p – )

x

( + y)

(
ab +

b


〈M〉n

))]) 
p

≤  inf
p>

(
E

[
exp

(
–(p – )

x

( + y)

(
ab +

b


〈M〉n

))]) 
p
.

Hence, Theorem . improves Theorem ..

From Lemma . in Section , we know that 〈M〉n and [M]n satisfy the canonical as-
sumption, i.e.

E

{
exp

(
tMn –

t



[
[M]n


+
〈M〉n



])}
≤ .

Therefore, we can obtain the following theorem.

Theorem . Let (Xk ,k ≥ ) be a martingale different sequence with respect to the filtra-
tion F = {Fk : k ≥ } and suppose that EX

k < ∞ for all k ≥ . Then, for λ ∈R,

E

{
exp

(
tMn –

t



[
[M]n


+
〈M〉n



])}
≤ ,

and for x > ,

P

( |Mn|√

 (

[M]n
 + 〈M〉n

 +E[M
n])

≥ x
)

≤
(



)–/

x–/e–
x
 , ()

where Mn =
∑n

k=Xk , [M]n =
∑n

k=X
k and 〈M〉n = ∑n

k=E(X
k |Fk–).

Remark . By Fatou’s lemma, it is easy to see that the above results still hold for any
stopping time T with respect the filtration F with T < ∞ a.s.
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In [, Theorem .], De la Peña and Pang obtained the following inequality: Let T be any
stopping time with respect the filtration F and assume T < ∞ almost surely. Then, for all
x > ,

P

( |MT |√

 ([M]T + 〈M〉T +E[M

T ])
≥ x

)
≤

(



) 

x–


 e–

x
 . ()

By comparing the inequalities () and (), we know that the inequality () is better than
the inequality (). More precisely, we have

P

( |MT |√

 ([M]T + 〈M〉T +E[M

T ])
≥ x

)

≤ P

( |MT |√

 (

[M]T
 + 〈M〉T

 +E[M
T ])

≥ x
)

≤
(



) 

x–


 e–

x
 .

The following result may be of independent interest.

Theorem . Let (A,B) be a pair of random variables with B >  in the probability space
(�,F ,P) satisfying the canonical assumption. For every b > , S ≥  and λ ≥ ,

P
(|A| > λ

√
B,b≤ √

B ≤ bS
) ≤ 

√
e( + λ logS)e–λ/.

From Theorem ., we have the following.

Corollary . Let (Mn) be a locally square integrable martingale. Then, for every b > ,
S ≥  and λ ≥ , we have

P

(
|Mn| > λ

√
[M]n


+
〈M〉n


,b ≤

√
[M]n


+
〈M〉n


≤ bS

)

≤ 
√
e( + λ logS)e–λ/.

2.2 Proofs of main results
We start with the following basic lemma.

Lemma. Let X be a square integrable randomvariablewithEX =  and  < σ  := EX <
∞. Then, for all t ∈R, we have

E

[
exp

(
tX –

t


X

)]
≤  +

t


σ . ()

Proof First, we shall prove

exp

(
x –

x



)
≤  + x +

x


. ()

Let

G(x) = exp

(
x –

x



)
–  – x –

x


,
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then, by a straightforward calculation, we have

G′(x) =
(
 –

x


)
exp

(
x –

x



)
–  –



x

and

G′′(x) = –


exp

(
x –

x



)
+

(
 –

x


)

exp

(
x –

x



)
–



= –



[
 –

(
 – x +



x

)
exp

(
x –

x



)]
.

Since

exp

(
x


– x

)
>  +

x


– x,

it follows that

exp

(
x –

x



)
·
(
 – x +

x



)
< .

So we get G′′(x) < , which means that G(x) is concave function. Because G() =  and
G′() = ,we can proveG(x)≤ G(), i.e. exp(x– x

 )≤ +x+ x
 . Finallywe prove Lemma.

by (). �

In order to prove our main results, we firstly introduce Lemma ..

Lemma . Let (Mn) be a locally square integrable martingale. For all t ∈ R and n ≥ ,
denote

Vn(t) = exp

(
tMn –

t


[M]n –

t


〈M〉n

)
. ()

Then, for all t ∈R, (Vn(t)) is a positive supermartingale with E[Vn(t)]≤ .

Proof For all t ∈R and n≥ , we have

Vn(t) = Vn(t – ) exp
(
tMn –

t


[M]n –

t


〈M〉n

)
,

where �Mn =Mn –Mn–, �[M]n = �M and �〈M〉n = E[�M|Fn–]. Hence, we deduce
from Lemma . that, for all t ∈R,

E
[
Vn(t)|Fn–

] ≤ Vn(t – ) exp
(
–
t


�〈M〉n

)
·
(
 +

t


�〈M〉n

)

= Vn(t – ).

As a result, for all t ∈ R, (Vn(t)) is a positive supermartingale, i.e. for all n ≥ , E[Vn(t)] ≤
E[Vn–(t)], which implies that E[Vn(t)]≤ E[V(t)] = . �

http://www.journalofinequalitiesandapplications.com/content/2014/1/289
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Next, we start to prove Theorem . and Theorem . inspired by the original article of
Bercu and Touati [].

Proof of Theorem . First of all, according to the condition of Lemma ., we denote

Zn =


[M]n + 〈M〉n. ()

For all x, y ≥  let An = {|Mn| ≥ x,Zn ≤ y}. We define An = A+
n ∪ A–

n where A+
n = {Mn ≥

x,Zn ≤ y} and A–
n = {Mn ≤ –x,Zn ≤ y}. By Markov’s inequality, we have, for all t ≥ ,

P
(
A+
n
) ≤ E

[
exp

(
t

Mn –

t

x
)
IA+

n

]

≤ E

[
exp

(
t

Mn –

t


Zn

)
· exp

(
t


Zn –

t

x
)
IA+

n

]

≤ exp

(
t


y –

t

x
)√

E
[
Vn(t)P

(
A+
n
)]
.

Hence, we deduce from Lemma . that, for all t > ,

P
(
A+
n
) ≤ exp

(
t


y –

t

x
)√

P
(
A+
n
)
. ()

Dividing both sides of () by
√
P(A+

n) and choosing the value t = x
y , we find that

P
(
A+
n
) ≤ exp

(
–
x

y

)
.

We also have the same upper bound for P(A–
n), immediately leading to the result of ().

�

Proof of Theorem . We are going to list the proof of Theorem . in the special case
a =  and b = . For all x, y > , let

Bn =
{
|Mn| ≥ x〈M〉n, 〈M〉n – 


[M]n ≥ y

}
= B+

n ∪ B–
n ,

where

B+
n =

{
Mn ≥ x〈M〉n, 〈M〉n – 


[M]n ≥ y

}
,

B–
n =

{
Mn ≤ –x〈M〉n, 〈M〉n – 


[M]n ≥ y

}
.

By Cauchy-Schwarz’s inequality, we have, for all t > ,

P
(
B+
n
) ≤ E

[
exp

(
t

Mn –

tx


〈M〉n
)
IB+n

]

≤ E

[
exp

(
t

Mn –

t


Zn

)
exp

(
t

(t – x)〈M〉n + t


[M]n

)
IB+n

]

≤ E

[
exp

(
t

(t – x)〈M〉n + t


[M]n

)
IB+n

]/

, ()
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where Zn is defined in (). Consequently, we obtain from () with the particular choice
t = x that

P
(
B+
n
) ≤ exp

(
–
xy


)√
P
(
B+
n
)
. ()

Therefore, if we divide both sides of () by
√
P(B+

n), we find that

P
(
B+
n
) ≤ exp

(
–
xy


)
.

The same upper bound holds for P(B–
n), which clearly implies (). Furthermore, for all

x, y > , let

Cn =
{
|Mn| ≥ x〈M〉n,  [M]n ≤ y〈M〉n

}
= C+

n ∪C–
n ,

where

C+
n =

{
Mn ≥ x〈M〉n,  [M]n ≤ y〈M〉n

}
,

C–
n =

{
Mn ≤ –x〈M〉n,  [M]n ≤ y〈M〉n

}
.

By Hölder’s inequality, we have, for all t >  and q > ,

P
(
C+
n
) ≤ E

[
exp

(
t
q
Mn –

tx
q

〈M〉n
)
IC+

n

]

≤ E

[
exp

(
t
q
Mn –

t

q
Zn

)
exp

(
t
q

(t – x + ty)〈M〉n
)
IC+

n

]

≤
(
E

[
exp

(
tp
q

(t – x + ty)〈M〉n
)]) 

p
. ()

Consequently, as p
q = p – , we can deduce from () and the particular choice t = x

+y that

P
(
C+
n
) ≤ inf

p>

(
E

[
exp

(
p – 


(
x

( + y)
–

x

( + y)
+

xy
( + y)

)
〈M〉n

)]) 
p

≤ inf
p>

(
E

[
exp

(
–(p – ) · x

( + y)
〈M〉n

)])/p

.

We also find the same upper bound for P(C–
n ), which completes the proof of Theo-

rem .. �

Proof of Theorem . Because (Xk ,k ≥ ) is a martingale different sequence, it satisfies the
canonical assumption, i.e. E{exp(tMn – t

 [
[M]n
 + 〈M〉n

 ])} ≤ . Putting

A =Mn, B =
[M]n


+
〈M〉n


,

http://www.journalofinequalitiesandapplications.com/content/2014/1/289


Chen et al. Journal of Inequalities and Applications 2014, 2014:289 Page 9 of 12
http://www.journalofinequalitiesandapplications.com/content/2014/1/289

then, according to the canonical assumption and Fubini’s theorem, for any C > , we have

 ≥
∫
R

√
πC– 


e–

λ
C– E

[
exp

(
λA –

λB



)]
dλ

= E

[
C


 exp

(
A

(B +C)

)∫
R

√
π

exp

(
–
(λ + A

B+C )



B+C

)
dλ

]

= E

[(
C

B +C

) 

exp

(
A

(B +C)

)]
.

For any measurable set G ∈ F, by Markov’s inequality, we get

P

( |A|√
B +C

≥ x,G
)

= P

( |A|
(B +C)

≥ x


,G

)

≤ P

( |A| 
(B +C) 

e
A

(B+C) ≥ x

 e

x
 ,G

)

≤ x–/e–
x
 E

[(
A

B +C

) 

e

A
(B+C) IG

]
. ()

By using Hölder’s inequality, we get

E

[(
A

B +C

) 

e

A
(B+C) IG

]

= E

[
C 



|A| 
(

A

B +C

) 

e

A
(B+C)

|A| 
C 


IG

]

≤
(
E

[(
C

B +C

) 

exp

(
A

(B +C)

)]) 

(
E

[ |A|
C 


IG

]) 


≤
(
E

[ |A|
C 


IG

]) 

.

Let C = E[|A|], and by using Hölder’s inequality, we have the following inequality:

E

[ |A|
C 


IG

]
≤

(
E

[ |A|
C

]) 

P(G)


 = P(G)


 .

Hence, from (), it follows that

P

( |A|√
B +E|A| ≥ x,G

)
≤ x–/e–

x
 P(G)


 .

Now letting G = { |A|√
B+E|A| ≥ x}, we will have

P

( |A|√
B +E|A| ≥ x

)
≤ x–/e–

x
 .

http://www.journalofinequalitiesandapplications.com/content/2014/1/289
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So we can get the inequality

P

( |Mn|√

 (

[M]n
 + 〈M〉n

 +E[M
n])

≥ x
)

≤
(



)–/

x–/e–
x
 .

�

Proof of Theorem . Given a > , let bk = bak and define random events Ck = {bk ≤ √
B ≤

bk+}, k = , , , . . . ,K , where K denotes the integer part of loga S. Since the pair (A,B)
satisfies the canonical assumption, we have

 ≥ E exp

(
λ

bk
A –

λ

bk
B
)
I{A>λ

√
B,Ck }

≥ E exp

(
λ

bk

√
B –

λ

bk
B
)
I{A>λ

√
B,Ck}

≥ E inf
bk≤v≤bk+

exp

(
λ

bk
v –

λ

bk
v

)
I{A>λ

√
B,Ck }

= exp

(
λ

(
a –

a



))
P{A > λ

√
B,Ck},

which implies

P(A > λ
√
B,Ck) ≤ exp

(
–λ

(
a –

a



))
.

Therefore, we conclude that

P
(|A| > λ

√
B,b≤ √

B ≤ bS
)

≤ 
K∑
k=

P
(|A| > λ

√
B,b ≤ √

B ≤ bS,Ck
)

≤ ( + loga S) exp
(
–λ

(
a –

a



))
. ()

We need to choose a >  such that the bound in () is possibly small. Now, by taking
a =  + /λ, we have

λ
(
a –

a



)
=


(
λ – 

)
. ()

Since log( + /λ) ≥ /(λ) for λ ≥ , then we have ( + loga S) ≤ ( + λ logS), which, to-
gether with (), yields the desired result. �

3 Linear regressions
In this section, let us consider the deviation inequality of the least-squares estimate of the
unknown parameter in linear regressive model. For all n≥ , let

Xn+ = θφn + εn+, ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/289
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where Xn, φn, and εn are the observation, the regression variable, and the driven noise,
respectively. Suppose that (φn) is a sequence of independent and identically distributed
random variables, and (εn) is a sequence of identically distributed random variables with
mean zero and variance σ  > . Furthermore, assume that (εn+) is independent of Fn

where Fn = σ (φi, εj;  ≤ i ≤ n – ,  ≤ j ≤ n). The least-squares estimate of the unknown
parameter θ is given by

θ̂n =
∑n

k= φk–Xk∑n
k= φ


k–

,

which yields from ()

θ̂n – θ = σ  Mn

〈M〉n , ()

where

Mn =
n∑
k=

φk–εk and 〈M〉n = σ 
n∑
k=

φ
k–.

Let H and L be the cumulant generating functions of the sequence (φ
n) and (εn), respec-

tively given, for all t ∈ R, by

H(t) = logE
[
exp

(
tφ

n
)]

and L(t) = logE
[
exp

(
tεn

)]
.

Bercu and Touati [] obtained the following result.

Corollary . [, Corollary .] Assume that L is finite on some interval [, c] with c > 
and denote by I its Fenchel-Legendre transform on [, c],

I(x) = sup
≤t≤c

{
xt – L(t)

}
.

Then, for all n ≥ , x >  and y > , we have

P
(|θ̂n – θ | ≥ x

) ≤  inf
p>

exp

(
n
p
H

(
–

(p – )x

σ ( + y)

))
+ exp

(
–nI

(
σ y
n

))
. ()

Now, we give the following theorem.

Theorem . Under the conditions of Corollary ., for all n ≥ , x > , and y > , we have

P
(|θ̂n – θ | ≥ x

) ≤  inf
p>

exp

(
n
p
H

(
–
(p – )x

σ ( + y)

))
+ exp

(
–nI

(
σ y
n

))
. ()

Remark . Obviously, the upper bound in () is better than the bound ().

Proof From (), for all n ≥ , x >  and y > , we get

P
(|θ̂n – θ | ≥ x

)
= P

(
|Mn| ≥ x

σ  〈M〉n
)

≤ P

(
|Mn| ≥ x

σ  〈M〉n,  [M]n ≤ y〈M〉n
)
+ P

(


[M]n ≥ y〈M〉n

)
.
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By using the inequality (), it follows that

P

(
|Mn| ≥ x

σ  〈M〉n,  [M]n ≤ y〈M〉n
)

≤  inf
p>

(
E

[
exp

(
–(p – )

x

σ ( + y)
〈M〉n

)]) 
p

=  inf
p>

exp

(
n
p
H

(
–
(p – )x

σ ( + y)

))
.

Furthermore, since, for any t ∈ [, c],

P

(


[M]n ≥ y〈M〉n

)

= P

( n∑
k=

φ
k–ε


k ≥ yσ 

n∑
k=

φ
k–

)

≤ P

( n∑
k=

εk ≥ yσ 

)
≤ exp

(
–yσ t

)
E exp

(
t

n∑
k=

εk

)

≤ exp
(
–yσ t + nL(t)

) ≤ exp

(
–nI

(
yσ 

n

))
,

then, from the above discussions, the desired results can be obtained. �
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