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Abstract
In this paper, we study the existence and multiplicity of positive solutions for
semi-linear elliptic equations with a sign-changing weight function in weighted
Sobolev spaces. By investigating the compact embedding theorem and based on the
extraction of the Palais-Smale sequence in the Nehari manifold which is a subset of
the weighted Sobolev spaces, we derive the existence of the multiple positive
solutions of the equations by using the variational method. In the last part of this
paper, by applying the Arzela-Ascoli fixed point theorem, some existence results of
the corresponding time-fractional equations for semi-linear elliptic equations are
obtained.
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1 Introduction
In this paper, we consider the multiplicity results of positive solutions for the following
semi-linear problem:

(Eλf ,h)

⎧⎪⎨⎪⎩
–div(a(x)|∇u(x)|p–∇u(x)) + (u(x))p–

= λf (x)|u(x)|q– + h(x)|u(x)|r–, in �,
u(x) = , on ∂�,

u ∈ W ,p
 (a,�), where λ is a real positive parameter,  < q < p < r < p∗

s (p > , ps = ps
s+ , p

∗
s =

Nps
N–ps , s ∈ (Np ,∞) ∩ [ 

p– ,∞), ps < N(s + )). � is a bounded region with smooth boundary
in RN ; a(x), f (x), h(x) are measurable functions and satisfy the following conditions:

(H) ≤ f (x) ∈ LH (�), where LH (�) = L
r

r–q (�), q < r < p∗
s , and f (x) has a compact support

in �,
(H) ≤ h(x) ∈ L∞(�), and it satisfies h(x) →  as |x| → ∞,
(H) a(x) is a positive weight function, locally Hölder continuous, and almost everywhere

with positive measure in the Sobolev spaceW ,p
 (a(x),�) which comes with the stan-

dard norm ‖u‖ = {∫
�
(a|∇u(x)|p + (u(x))p)dx} 

p and there exists υ(x) if and only if

©2014 Qiu et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.journalofinequalitiesandapplications.com/content/2014/1/262
mailto:lqmei@mail.xjtu.edu.cn
mailto:ganshanyang@aliyun.com
mailto:george_yuan99@tongji.edu.cn
http://creativecommons.org/licenses/by/2.0


Qiu et al. Journal of Inequalities and Applications 2014, 2014:262 Page 2 of 22
http://www.journalofinequalitiesandapplications.com/content/2014/1/262

υ(x)
c

≤ a(x)≤ cυ(x), where c ≥  and υ(x) is another weight function, which satisfies

υ(x) ∈ Lloc(�), υ(x)–


p– ∈ Lloc(�), υ(x)–s ∈ L(�).

The problem (Eλf ,h) is an important and basic mathematical model, widely used inmany
fields. For specific theoretical implications of the above model, one can refer to Drábek,
Kufner and Nicolosi [] and Adams and John [] and references wherein.
Analogous equations with nonlinearities concave-convex in bounded domains are

widely studied. For example, Ambrosetti [] studied the problem below:

(Eλ)

⎧⎪⎨⎪⎩
–�u = λ|u|q + |u|p, in �,
u > , in �,
u = , on ∂�,

where  < q <  < p ≤ ∗ – . They proved the existence of λ >  such that the problem
(Eλ) admits at least two positive solutions for λ ∈ (,λ); there is one positive solution for
λ = λ, and no positive solution exists for λ > λ. Recently, for � = BN (, ), that is, � is a
unit ball, Adimurthi and Yadava [], Damascelli et al. [] and Tang [] proved that there
are exactly two solutions for λ ∈ (,λ); one positive solution for λ = λ and no positive
solution exists for λ > λ. When p ≡ , h(x) =  and a(x) ≡ , Wu [] has investigated
equation (Eλf ,), and he found that there exists λ >  such that equation (Eλf ,) admits at
least two positive solutions for λ ∈ (,λ). Among other interesting results, Miotto and
Miyagaki [] have studied the following equation:

{
–�u + u = λf (x)|u|q– + h(x)|u|p–, in �,
u ≡ , on ∂�,

(.)

where λ > ,  < q <  < p < ∗ (∗ = N
N– if N ≥ , ∗ = ∞ if N = ), � = �′ × R (�′ ⊂

RN–) is an infinite strip domains, assuming that f (x) ∈ L
r

r–q (�) = L, where q < r ≤ ∗,
with f + �≡  and f – is bounded and has a compact support in �.  ≤ h(x) ∈ L∞(�) satisfies
lim|xN |→∞ h(x′,xN ) =  and there exists c > , θ being the first eigenvalue of the Dirichlet
problem –� in �′, such that

h
(
x′,xN

) ≥  – ce–
√
+θ|xN |,

for all x = (x′,xN ) ∈ �. They proved that the existence of � = �(q,p,‖h‖L∞ , r) such that
the problem (.) has at least two positive solutions for all λ ∈ (,�‖f ‖–L ), Wu in []

has studied (.) under the assumption that  � f ∈ L


–q (�),  < h ∈ C(�) satisfying
lim|xN |→∞ h(x) =  in � =�′ × R and there exist δ >  and  < c <  such that

h
(
x′,xN

) ≥  – ce–
√
+θ+δ|xN |,

for all (x′,xN ) ∈ �. The existence of � >  was obtained such that for λ ∈ (,�) the
problem (.) possesses at least two positive solutions.
We consider the P-Laplace Dirichlet problem above. In the following we will switch our

view point to investigate the existence of positive solutions for the corresponding nonlin-
ear time-fractional differential equation of the problem (Eλf ,h). We know that the subject
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of fractional differential equations has emerged as an important area of investigation by
the fact that it has numerous applications in viscoelasticity, electrochemistry, control, elec-
tromagnetic, porous media, and so on, thus the subject of fractional differential equations
is gaining much importance and attention. For some recent developments on the subject,
please see the literature [–], and the references therein for more details. But not many
people pay attention to the study of the P-Laplace problems with nonlinear partial differ-
ential equations of time-fractional order, except the literature such as [, ], but the aim
of this paper is to do so, too. To the best of our knowledge, the results in this paper are
new and original as we have not found any discussion in the existing literature.
The paper is organized as follows. In Sections  and , we show that equation (Eλf ,h) in

weighted Sobolev space has at least two positive solutions for λ sufficiently small. First, we
recall theNeharimanifoldwhich is a subset of theweighted Sobolev space, and analyze the
behavior of the energy functional associated with our problems on the Nehari manifold.
Moreover, by extracting the Palais-Smale sequences in theNeharimanifold and combining
the properties of the compact embedding theorem in weighted Sobolev space, we obtain
the result that there exist at least two positive solutions of the problem (Eλf ,h). In Section ,
we shall consider the following time-fractional differential equations derived from (Eλf ,h):

(Eλf ,h,t)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Dαu(x, t) = div(a(x)|∇u(x, t)|p–∇u(x, t)) + (u(x, t))p–

+ λf (x)|u(x, t)|q– + h(x)|u(x, t)|r–, in �T ,
u(x, t) = , on ∂�T ,
u(x, ) = φ(x), in �,
ut(x, ) = ψ(x), in �,

where�T =�× [,T],Dα denotes theCaputo fractional derivative (e.g., see []),  < α < 
is a parameter describing the order of the fractional time, and φ(x),ψ(x) ∈H

(a(x),�) are
given real-valued functions. Then the problem (Eλf ,h,t) is deduced to an equivalent integral
equation under the fractional order integral operator Iα . Finally, we prove the existence
of solution for the time-fractional differential equations by using the Arzela-Ascoli fixed
point theorem. The conclusion is given by Section .

2 Notations and preliminaries
In the following, we first consider the positive solutions of the following problem.

Theorem . There exists λ = λ(q,p,‖h‖∞, r,‖f ‖–LH ) >  such that for λ ∈ (,λ), the
equation (Eλf ,h) has at least two positive solutions.

In order to prove it, we need the following lemma.

Lemma . If  < p < r < p∗
s , X ↪→ Lr(�) is the compact embedding, then X ↪→ Lp(�) is

also the compact embedding, where X = W ,p
 (a(x),�) (e.g., see Drábek, Kufner and Ni-

colosi []).

Throughout this section, we denote by Sr the best Sobolev constant for the embedding
ofW ,p

 (a(x),�) in Lr(�). We define

Sr = sup
u∈W ,p

 (a(x),�)\{}

{‖u‖Lr
‖u‖X

}
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/262
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For the convenience we will denote W ,p
 (a(x),�) by X, and ‖ · ‖X by ‖ · ‖ if there is no

confusion, unless otherwise stated, and the integrals are over �. Now we give the proof of
Theorem ..

Proof Associated with equation (Eλf ,h), we define the energy functional Iλ in X for given
λ ≥ , f (x) and h(x) by

Iλ(u) =

p

∫
�

(
a|∇u|p + up

)
dx –


q
λ

∫
�

(
f (x)|u|q)dx – 

r

∫
�

(
h(x)|u|r)dx.

It is clear that Iλ is of class C with Gâteaux derivative I ′λ(u) at each u ∈ X given by

〈
I ′λ(u),ϕ

〉
=

∫
�

(
a|∇u|p–∇ϕ + up–ϕ

)
dx – λ

∫
�

(
f |u|q–uϕ

)
dx

–
∫

�

(
h|u|r–uϕ

)
dx,

for all ϕ ∈ X. Therefore the (weak) solutions of equation (Eλf ,h) are the critical points of
the energy functional Iλ (see Rabinowitz []).
As the energy functional Iλ is not bounded from below on X, it is useful to consider the

functional on the Nehari manifold which has the best behavior subset of X (see Brown
and Zhang []). For any λ > , we define

Nλ =
{
u ∈ X \ {} : 〈I ′λ(u),u〉

= 
}
.

Then u ∈ Nλ if and only if

〈
I ′λ(u),u

〉
= ‖u‖p – λ

∫
�

(
f |u|q)dx – ∫

�

(
h|u|r)dx = . (.)

�

Note that any nonzero solution of the problem (Eλf ,h) belongs to Nλ. Furthermore, we
have the following result.

Lemma . The functional Iλ is coercive and bounded from below on Nλ.

Proof Let u ∈ Nλ be arbitrary. Then by (.) and by the Hölder and Sobolev inequalities
we get

Iλ(u) ≥ r – p
pr

‖u‖p –
(
r – q
qr

)
λ

(∫
�

|f | r
r–q dx

) r–q
r

(∫
�

|u|r dx
) q

r

≥ r – p
pr

‖u‖p –
(
r – q
qr

)
λ‖f ‖LH Sqr ‖u‖q.

Since q < p < r, it follows that Iλ is bounded from below and coercive on Nλ provided λ is
small enough. �
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Next, we consider the Nehari minimization problem; for λ ≥ , define αλ = infu∈Nλ
Iλ(u)

and

ψλ(u) =
〈
I ′λ(u),u

〉
= ‖u‖p – λ

∫
�

(
f |u|q)dx – ∫

�

(
h|u|r)dx.

Then for u ∈Nλ by (.) we have

〈
ψ ′

λ(u),u
〉
= p‖u‖p – qλ

∫
�

(
f |u|q)dx – r

∫
�

(
h|u|r)dx

= (p – q)‖u‖p – (r – q)
∫

�

(
h|u|r)dx (.)

= (p – r)‖u‖p – (q – r)λ
∫

�

(
f |u|q)dx. (.)

Now, we split Nλ into three parts (see Drábek, Kufner and Nicolosi [] and Ambrosetti et
al. []).

N+
λ =

{
u ∈ Nλ :

〈
ψ ′

λ(u),u
〉
> 

}
,

N
λ =

{
u ∈Nλ :

〈
ψ ′

λ(u),u
〉
= 

}
,

N–
λ =

{
u ∈Nλ :

〈
ψ ′

λ(u),u
〉
< 

}
.

Then we have the following result.

Lemma . There exists λ >  such that for each λ ∈ (,λ), we have N
λ = ∅.

Proof We consider the following two cases.
Case (I) u ∈Nλ(�) and

∫
�
(f (x)|u|q)dx = . We then have

‖u‖p –
∫

�

(
h|u|r)dx = .

Thus

〈
ψ ′

λ(u),u
〉
= (p – q)‖u‖p – (r – q)

∫
�

(
h|u|r)dx

=
[
(p – q) – (r – q)

]‖u‖p = (p – r)‖u‖p < .

Hence u /∈N
λ (�).

Case (II) u ∈ Nλ(�) and
∫
�
(f (x)|u|q)dx �= . Suppose that N

λ �= ∅ for all λ > . If u ∈N
λ ,

then we have

 =
〈
ψ ′

λ(u),u
〉
= p‖u‖p – qλ

∫
�

(
f |u|q)dx – r

∫
�

(
h|u|r)dx

= (p – q)‖u‖p – (r – q)
∫

�

(
h|u|r)dx.

Thus

 < ‖u‖p = r – q
p – q

∫
�

(
h|u|r)dx, (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/262
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and

 < λ

∫
�

(
f |u|q)dx = ‖u‖p –

∫
�

(
h|u|r)dx = r – p

p – q

∫
�

(
h|u|r)dx. (.)

Moreover, by the Hölder and Sobolev inequalities, for all u ∈ X, we obtain

λ

∫
�

(
f |u|q)dx ≤ λ‖f ‖LH Sqr ‖u‖q. (.)

Thus for any u ∈ N
λ , by (.)-(.) we obtain

‖u‖ ≤
(
r – q
r – p

) 
p–q

S
q

p–q
r

(
λ‖f ‖LH

) 
p–q . (.)

Let Jλ :Nλ(�) → R be given by

Jλ(u) = K(q, r)
( ‖u‖r∫

�
(h|u|r)dx

) p
r–p

– λ

∫
�

(
f |u|q)dx,

where K (q, r) = ( r–pp–q )(
p–q
r–q )

r
r–p . Then Jλ(u) =  for all u ∈ N

λ . Indeed, from (.)-(.), it
follows that, for u ∈N

λ , we have

Jλ(u) = K (q, r)
( ‖u‖r∫

�
(h|u|r)dx

) p
r–p

– λ

∫
�

(
f |u|q)dx

=
(
r – p
p – q

)(
p – q
r – q

) r
r–p (‖u‖p) r

r–p

(
∫
�
(h|u|r)dx) p

r–p
–
r – p
p – q

∫
�

(
h|u|r)dx

=
(
r – p
p – q

)(
p – q
r – q

) r
r–p ( r–qp–q )

r
r–p (

∫
�
(h|u|r)dx) r

r–p

(
∫
�
(h|u|r)dx) p

r–p
–
r – p
p – q

∫
�

(
h|u|r)dx

=
r – p
p – q

∫
�

(
h|u|r)dx – r – p

p – q

∫
�

(
h|u|r)dx = . (.)

However, by (.) and the Hölder and Sobolev inequalities, for u ∈N
λ ,

Jλ(u) ≥ K (q, r)
( ‖u‖r∫

�
(h|u|r)dx

) p
r–p

– λ‖f ‖LH Srr‖u‖r

≥ K (q, r)(c̃)
p

r–p – λ‖f ‖LH Srr‖u‖r ,

where c̃ = (‖h‖L∞Srr)–. This implies that for λ sufficiently small we have Jλ(u) >  for all
u ∈ N

λ , this contradicts (.). Thus, we can conclude that there exists λ >  such that for
λ ∈ (,λ), we have N

λ = ∅. The proof is complete. �

Lemma . If u ∈N+
λ , then

∫
�
(f |u|q)dx > .

Proof We have

‖u‖p – λ

∫
�

(
f |u|q)dx – ∫

�

(
h|u|r)dx = ,

http://www.journalofinequalitiesandapplications.com/content/2014/1/262
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and

‖u‖p > r – q
p – q

∫
�

(
h|u|r)dx.

Thus

λ

∫
�

(
f |u|q)dx = ‖u‖p –

∫
�

(
h|u|r)dx > r – p

p – q

∫
�

(
h|u|r)dx > ,

and this completes the proof. �

By Lemma ., for λ ∈ (,λ) we write

Nλ =N+
λ ∪N–

λ ,

and we define

α+
λ (�) = inf

u∈N+
λ

Iλ(u),

α–
λ (�) = inf

u∈N–
λ

Iλ(u).

The following results show that minimizers on Nλ are the ‘usual’ critical points for Iλ.

Lemma . For λ ∈ (,λ), if u ∈ Nλ is a local minimizer point for Iλ on Nλ and u /∈N
λ ,

then I ′λ(u) =  in X–(�).

Proof If u is a local minimizer point for Iλ on Nλ, then u is a solution of the following
optimization problem:

inf
ψλ(u)=

Iλ(u).

Hence, by the theory of Lagrange multipliers, there exists θ ∈ R such that

I ′λ(u) = θψ ′
λ(u),

in X–(�). Thus

〈
I ′λ(u),u

〉
= θ

〈
ψ ′

λ(u),u
〉
. (.)

Since u ∈Nλ, 〈I ′λ(u),u〉 =  and so

‖u‖p – λ

∫
�

(
f |u|q

)
dx –

∫
�

(
h|u|r

)
dx = .

Hence

〈
ψ ′

λ(u),u
〉
= (p – q)‖u‖p – (r – q)

∫
�

(
h|u|r

)
dx.

Thus, if u /∈N
λ , 〈ψ ′

λ(u),u〉 �=  and so by (.), θ = . This completes the proof. �

http://www.journalofinequalitiesandapplications.com/content/2014/1/262
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For each u ∈ Nλ ⊂ X \ {}, we have

‖u‖p – λ

∫
�

(
f |u|q)dx – ∫

�

(
h|u|r)dx = ,

so we have λ
∫
�
(f |u|q)dx = ‖u‖p – ∫

�
(h|u|r)dx. By (.), we define the fiber map φu(t) =

Iλ(tu), and we let φ′
u(t) = , i.e.,

tp–‖u‖p – tq–λ
∫

�

(
f |u|q)dx – tr–

∫
�

(
h|u|r)dx = .

Hence

(
tp–q – 

)‖u‖p – (
tr–q – 

)∫
�

(
h|u|r)dx = .

By the Lagrange mean theorem, there exists a t(ξ ) such that

‖u‖p∫
�
(h|u|r)dx =

tr–q – 
tp–q – 

=
(r – q)t(ξ )r–q–

(p – q)t(ξ )p–q–
=
r – q
p – q

t(ξ )r–p.

In particular, we have

 < tmax(u) = t(ξ ) =
(

(p – q)‖u‖p
(r – q)

∫
�
(h|u|r)dx

) 
r–p

.

Lemma . Let H = r
r–q and λ = ( r

r–q )(
p–q
r–q )

p–q
r–p S

(q–r)
r–p (‖f ‖LH )–. Then for each u ∈ X \ {}

and λ ∈ (,λ), we have
(i) there is a unique t– = t–(u) > tmax >  such that t–(u)u ∈N–

λ and

Iλ
(
t–u

)
= sup

t≥tmax

Iλ(tu) > ;

(ii) if
∫
�
(f (x)|u|q)dx > , then there exists unique  < t+ = t+(u) < tmax such that

t+(u)u ∈N+
λ and

Iλ
(
t+u

)
= inf

≤t≤tmax
Iλ(tu);

(iii) there exists a continuous bijection between U = {u ∈ X \ {} : ‖u‖ = } and N–
λ , in

particular, t–(u) is a continuous function for nonzero u.

Proof (i) Fix u ∈ X \ {}, let

s(t) = tp–q‖u‖p – tr–q
∫

�

(
h(x)|u|r)dx,

for t ≥ , we have s() = , s(t)→ (–∞) as t → ∞, and by (.), we have

s(t) = tp–q‖u‖p – tr–q
(
p – q
r – q

)
‖u‖p =

(
tp–q – tr–q

p – q
r – q

)
‖u‖p,

http://www.journalofinequalitiesandapplications.com/content/2014/1/262
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since  < q < p < r, so  < p–q
r–q < , p – q < r – q, hence, if  < t < , then tp–q > tr–q, and so

s(t) < , therefore, s(t) can achieve its maximum at tmax. Moreover,

s(tmax) ≥ tp–q‖u‖p – tr–q‖h‖L∞Srr‖u‖r

≥
(
p – q
r – q

) p–q
r–p ‖u‖ p(r–q)

r–p

(c̃–‖u‖r) p–qr–p
–

(
c̃–

)(p – q
r – q

) r–q
r–p ‖u‖ r–pq

r–p

(c̃–)
r–q
r–p ‖u‖ r–qr

r–p

≥
(
p – q
r – q

) p–q
r–p

(c̃)
p–q
r–p ‖u‖q – (

c̃–
) q–p
r–p

(
p – q
r – q

) r–q
r–p

‖u‖q

≥ K (q, r)(c̃)
p–q
r–p ‖u‖q

≥ Sqrλ‖f ‖LH‖u‖q

≥ λ

∫
�

(
f |u|q)dx. (.)

Note that tu ∈Nλ, if and only if s(t) = λ
∫
�
(f |u|q)dx.

Case (I) Suppose that λ
∫
�
(f |u|q)dx ≤ , there is a unique t– > tmax such that s(t–) =

λ
∫
�
(f |u|q)dx and s′(t–) < . Now

(p – q)
∥∥t–u∥∥p – (r – q)

∫
�

(
h
∣∣t–u∣∣r)dx

=
(
t–

)q+[(p – q)
(
t–

)p–q–‖u‖p – (r – q)tr–q–
∫

�

(
h
∣∣t–u∣∣r)dx]

=
(
t–

)q+s′(t–) < ,

and

〈
I ′λ

(
t–u

)
, t–u

〉
=

(
t–

)p‖u‖p – (
t–

)q
λ

∫
�

(
f |u|q)dx – (

t–
)r ∫

�

(
h|u|r)dx

=
(
t–

)q[s(t–) – λ

∫
�

(
f |u|q)dx] = .

Thus t–u = t–(u)u ∈N–
λ , since for t > tmax, we have

〈
ψ ′(tu), tu

〉
= (p – q)‖tu‖p – (r – q)

∫
�

(
h|tu|r)dx < ,

d

dt
Iλ(tu) < ,

and

d
dt

Iλ(tu) = tp–
∫

�

(
a
∣∣∇u(x)

∣∣p)dx – tq–λ
∫

�

(
f |u|q)dx – tr–

∫
�

(
h|u|r)dx

= tp–‖u‖p – tq–λ
∫

�

(
f |u|q)dx – tr–

∫
�

(
h|u|r)dx = ,

for t = t–. Therefore Iλ(t–u) = supt≥tmax
Iλ(tu).

Case (II) If λ
∫
�
(f |u|q)dx > , by (.) and

s() =  < λ

∫
�

(
f |u|q)dx ≤ λ‖f ‖LH Sqr ‖u‖q < s(tmax),
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for λ ∈ (,λ), there are unique t+ and t– such that  < t+ < tmax < t–,

s
(
t+

)
= λ

∫
�

(
f |u|q)dx = s

(
t–

)
,

and s′(t+) >  > s′(t–) we have t+(u)(u) ∈N+
λ , t–(u)(u) ∈N–

λ and

Iλ
(
t–(u)u

) ≥ Iλ
(
t(u)u

) ≥ Iλ
(
t+(u)u

)
for each t(u) ∈ [t+(u), t–(u)] and Iλ(t+(u)u) ≤ Iλ(t(u)u) for each t(u) ∈ [, t+(u)], thus
Iλ(t–u) = supt≥tmax

Iλ(tu), Iλ(t+u) = inf≤t≤tmax Iλ(tu).
(ii) by Case (II) of part (i).
(iii) Fix u ∈U , define Gu : (,∞)×U → R by

Gu(t,w) =
〈
I ′λ(tw), tw

〉
.

Since Gu(t–(u),u) = 〈I ′λ(t–(u)u), t–(u)u〉 = , and

∂Gu

∂t–
(
t–(u),u

)
=

[
t–(u)

]–〈
ψ ′

λ

(
t–(u)u

)
, t–(u)u

〉
< ,

then by the implicit function theorem, there is a neighborhood Wu of u in U and an
unique continuous function Tu :Wu → (,∞) such that Gu(Tu(w),w) =  for all w ∈ Wu,
in particular, Tu(u) = t–(u). Since u ∈ U is arbitrary, we find that the function T : U →
(,∞), given by Tu(u) = t–(u) is continuous and one-to-one. Having T– :U →N–

λ , where
T–(u) = t–(u)u, we find that T– is continuous and one-to-one. Now if u ∈N–

λ then we have
T–(w) = u, where w = u

‖u‖ , since t
– is continuous on U , it follows that t– is continuous for

nonzero u. Then the proof is complete. �

Lemma . There exists a positive number � ≤ λ (λ defined in Lemma .) such that
if λ ∈ (,�), then

(i) α+
λ < ,

(ii) α–
λ >  and α+

λ < α–
λ , in particular, αλ = α+

λ .

Proof (i) Let u ∈ N+
λ , by (.)(

r – p
r – q

)
‖u‖p < λ

∫
�

(
f |u|q)dx, (.)

and so

Iλ(u) =
r – p
pr

‖u‖p –
(
r – q
qr

)
λ

∫
�

(
f |u|q)dx

< –
(r – p)(p – q)

pqr
‖u‖p < .

Thus, α+
λ < .

(ii) Let u ∈N–
λ , by (.) and the Sobolev embedding theorem,(

p – q
r – q

)
‖u‖p <

∫
�

(
h|u|r)dx ≤ Srr‖h‖L∞‖u‖r ,
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and so

‖u‖ >
(

p – q
(r – q)Srr‖h‖L∞

) 
r–p

,

for all u ∈N–
λ , by the proof of Lemma .

Iλ(u) ≥ ‖u‖q
[(

r – p
pr

)
‖u‖p–q –

(
r – q
qr

)
λ‖f ‖LH

]

>
(

p – q
(r – q)Srr‖h‖L∞

) q
r–p

[(
r – p
pr

)(
p – q

(r – q)Srr‖h‖L∞

) p–q
r–p

–
(
r – q
qr

)
λ‖f ‖LH

]
.

Thus, there exists a positive number � ≤ λ such that if λ ∈ (,�), then Iλ(u) > , i.e.,
α–

λ >  for all u ∈N–
λ . Obviously, α+

λ < α–
λ . This completes the proof. �

3 Proof of Theorem 2.1
First, by following the idea of Tarantello [], we have the following result.

Lemma . For each u ∈ Nλ, there exist ε >  and a differentiable function ξ : B(, ε) ⊂
X → R+ such that ξ () = , the function ξ (v)(u – v) ∈ Nλ and

〈
ξ ′(u), v

〉
=
–p

∫
�
(a|∇u|p–∇v + up–v)dx + qλ

∫
�
(f |u|q–uv)dx + r

∫
�
(h|u|r–uv)dx

(p – q)‖u‖p – (r – q)
∫
�
(h|u|r)dx

for all v(x) ∈ X. (.)

Lemma . For each u ∈ N–
λ , there exist ε >  and a differentiable function ξ– : B(, ε) ⊂

X → R+ such that ξ–() = , the function ξ–(v)(u – v) ∈N–
λ and

〈
ξ–(u), v

〉
=
–p

∫
�
(a|∇u|p–∇v + up–v)dx + qλ

∫
�
(f |u|q–uv)dx + r

∫
�
(h|u|r–uv)dx

(p – q)‖u‖p – (r – q)
∫
�
(h|u|r)dx

for all v(x) ∈ X. (.)

The proof of the two lemmas above is almost the same as given by Hsu [] and thus we
omit it.

Proposition . Let λ =min{λ,λ,�}. Then for λ ∈ (,λ),
(i) there exists a minimizing sequence {un} ⊂Nλ such that

Iλ(un) = αλ + o() = α+
λ + o(),

I ′λ(un) = o() in X–;
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(ii) there exists a minimizing sequence {un} ⊂N–
λ such that

Iλ(un) = α–
λ + o(),

I ′λ(un) = o() in X–.

Proof (i) by Lemma ., and the Ekeland variational principle [], there exists a minimiz-
ing sequence {un} ⊂N+

λ such that

Iλ(un) < α+
λ +


n
, (.)

Iλ(un) < Iλ(w) +

n

‖w – un‖ ∀w ∈ N+
λ . (.)

By taking n large, from Lemma .(i), we have

Iλ(un) =
(

p
–

r

)
‖un‖p –

(

q
–

r

)
λ

∫
�

(
f |un|q

)
dx

< α+
λ +


n
<

α+
λ


, (.)

consequently un �= , and putting together (.), (.), and (.), we obtain for all n

[
–

α+
λ

λ‖f ‖LhSqr
(

qr
r – q

)] 
q

≤ ‖un‖ ≤
[
p
q
Sqr

(
r – q
r – p

)(
λ‖f ‖LH

)] 
p–q

. (.)

Now, we will show that ‖I ′λ(un)‖ → , as n → ∞.
Applying Lemma . with un to obtain the functions ξ+ : B(, ε) → R+ for some εn > 

such that ξ+(w)(un –w) ∈N+
λ , choose  < ρ < εn, let u ∈ X with u �≡  and let wρ = ρu

‖u‖ . We
set η+

ρ = ξ+
n (wρ)(un –wρ), since η+

ρ ∈N+
λ , we deduce from (.) that

Iλ
(
η+

ρ

)
– Iλ(un) ≥ –


n

∥∥η+
ρ – un

∥∥,
and by the mean value theorem, we have

〈
I ′λ(un),η

+
ρ – un

〉
+ o

(∥∥η+
ρ – un

∥∥) ≥ –

n

∥∥η+
ρ – un

∥∥.
Thus〈

I ′λ(un), –wρ

〉
+

(
ξ+
n (wρ) – 

)〈
I ′λ(un), (un –wρ)

〉
≥ –


n

∥∥η+
ρ – un

∥∥ + o
(∥∥η+

ρ – un
∥∥)
. (.)

From ξ+
n (wρ)(un –wρ) ∈N+

λ and (.) it follows that

–ρ

〈
I ′λ(un),

u
‖u‖

〉
+

(
ξ+
n (wρ) – 

)〈
I ′λ(un) – I ′λ

(
η+

ρ

)
, (un –wρ)

〉
≥ –


n

∥∥η+
ρ – un

∥∥ + o
(∥∥η+

ρ – un
∥∥)
.
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Thus

〈
I ′λ(un),

u
‖u‖

〉
≤ ‖η+

ρ – un‖
nρ

+
o(‖η+

ρ – un‖)
ρ

+
(ξ+

n (wρ) – )
ρ

〈
I ′λ(un) – I ′λ

(
η+

ρ

)
, (un –wρ)

〉
. (.)

Since ‖η+
ρ – un‖ ≤ ρ|ξ+

n (wρ)| + |ξ+
n (wρ – )|‖un‖ and limρ→

|ξ+n (wρ )–|
ρ

≤ ‖ξ ′
n(w)‖, if we let

ρ →  in (.) for a fixed n, then by (.) we can find a constant c > , independent of ρ ,
such that

〈
I ′λ(un),

u
‖u‖

〉
≤ c

n
(
 +

∥∥ξ ′
n(u)

∥∥)
,

and we are done once we show that ‖(ξ+
n )′(u)‖ is uniformly bounded in n. By (.), (.),

and (.), we have

〈(
ξ+
n
)′(un), v

〉 ≤ b‖v‖
|(p – q)‖un‖p – (r – q)

∫
�
(h|un|r)dx| ,

for some b > . We only need to show that

∣∣∣∣(p – q)‖un‖p – (r – q)
∫

�

(
h|un|r

)
dx

∣∣∣∣ > c, (.)

for some c > , and n large enough. We argue by contradiction; assume that there exists a
subsequence {un} such that

(p – q)‖un‖p – (r – q)
∫

�

(
h|un|r

)
dx = o(), (.)

combining (.) with (.), we can find a suitable constant d >  such that

∫
�

(
h|un|r

)
dx ≥ d, (.)

for n sufficiently large. In addition (.), and the fact that un ∈N+
λ also give

λ

∫
�

(
f |un|q

)
dx = ‖un‖p –

∫
�

(
h|un|r

)
dx =

r – p
p – q

∫
�

(
h|un|r

)
dx + o(),

and the right side of (.) holds. This implies

Iλ(u) = K(q, r)
( ‖u‖r∫

�
(h|u|r)dx

) p
r–p

– λ

∫
�

(
f |u|q)dx

=
r – p
p – q

∫
�

(
h|u|r)dx – r – p

p – q

∫
�

(
h|u|r)dx = o(). (.)
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However, by the right of (.), (.), and λ ∈ (,λ),

Iλ(u) ≥ K (q, r)
( ‖u‖r∫

�
(h|u|r)dx

) p
r–p

– λ‖f ‖LH Srr‖u‖r

≥ K (q, r)(c̃)
p

r–p – λ‖f ‖LH Srr‖u‖r > ,

for λ sufficiently small, here c̃ = (‖h‖L∞Srr)–. This contradicts (.), we get〈
I ′λ(un),

u
‖u‖

〉
≤ c

n
,

this completes the proof of (i).
(ii) Similarly, by using Lemma ., we can prove (ii) and thus its proof and its details are

omitted here. �

Theorem . Let λ(q,p,‖h‖∞, r,‖f ‖–LH ) = λ = min{λ,λ,�}. Then for λ ∈ (,λ), the
functional Iλ has a minimizer point u+ in N+

λ and it satisfies
(i) Iλ(u+) = αλ = α+

λ ,
(ii) u+ is a positive solution of equation (Eλf ,h),
(iii) ‖u+‖ →  as λ → .

Proof By Proposition .(i), it follows that there exists {un} ⊂Nλ satisfying

Iλ(un) = αλ + o() = α+
λ + o(),

I ′λ(un) = o() in X–(�).

We can infer that {un} is bounded from below on X. Thus, passing a subsequence if
necessary, there exists u ∈ X, such that un ⇀ u weakly in X. We get I ′λ(u) = . Suppose,
by absurdity, that u = , then by (.), we have (p – q)‖un‖p – (r – q)

∫
(h|un|r)dx = o()

and by (.), we get

λ

∫
�

(
f |un|q

)
dx = ‖un‖p –

∫
�

(
h|un|r

)
dx + o() = ‖un‖p – p – q

r – q
‖un‖p

=
r – p
r – q

‖un‖p + o(),

thus by the Egorov theorem we obtain
∫
�
(f |un|q)dx = o(). Since I ′λ(un) = o() in X–(�),

we have

o() =
〈
I ′λ(un),un

〉
= ‖un‖p –

∫
�

(
h|un|r

)
dx + o().

By Lemma .(i), it follows that α+
λ < , then considering n ∈N such that


r

∣∣∣∣‖un‖p – ∫
�

(
h|un|r

)
dx

∣∣∣∣ + 
q

∣∣∣∣λ∫
�

(
f |un|q

)
dx

∣∣∣∣ < –
α+

λ


,

Iλ(un) <
α+

λ


,
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for all n ≥ n. Thus for all n≥ n, we get(

p
–

r

)
‖un‖p < Iλ(un) –

α+
λ


< ,

which is an absurdity, because p < r. Hence, u �=  and since I ′λ(u) = , it follows that
u ∈ Nλ and in particular, Iλ(u) ≥ αλ. We will show that, up to a subsequence, un → u
strongly in X. Suppose, for a contradiction, that ‖u‖ < lim infn→∞ ‖un‖. Since {un} ⊂ Nλ

and u ∈Nλ, we have

α+
λ ≤ Iλ(u) < lim inf

n→∞ Iλ(un) = α+
λ ,

which is a contradiction. Hence, we can suppose, up to a subsequence, that un → u
strongly in X. Note that u ∈ N+

λ , since u ∈ Nλ and Iλ(u) = α+
λ < α–

λ . Considering u+ =
|u|, we get u+ �≡  since u ∈ X \ {}. If u ∈ N+

λ , then |u| ∈ N+
λ and by Iλ(u+) = Iλ(u) = αλ

we see that u+ ∈Nλ is a localminimumpoint of Iλ onNλ. Then by Lemma ..We find that
u+ is a solution of the problem (Eλf ,h). By the Harnack inequality according to Trudinger
[] we obtain u+ >  in �. Now by (.) we have

 <
〈
ψ ′

λ

(
u+

)
,u+

〉
= (p – r)

∥∥u+∥∥p – (q – r)λ
∫

�

(
f
∣∣u+∣∣q)dx

≤ –(r – p)
∥∥u+∥∥p + (r – q)λ‖f ‖LH

∥∥u+∥∥q.

Then by (.), we infer that

(r – p)
∥∥u+∥∥p ≤ (r – q)λ‖f ‖LH

∥∥u+∥∥q,

i.e.

∥∥u+∥∥p–q ≤ r – q
r – p

λ‖f ‖LH ,

that is

∥∥u+∥∥ ≤
(
r – q
r – p

) 
p–q (

λ‖f ‖LH
) 
p–q = c

(
λ‖f ‖LH

) 
p–q ,

where c is a positive constant, independent of λ. So

∥∥u+∥∥ ≤ c
(
λ‖f ‖LH

) 
p–q ,

and thus we conclude the proof. �

Next, we establish the existence of a local minimum for Iλ on N–
λ .

Theorem . Let λ(q,p,‖h‖∞, r,‖f ‖–LH ) = λ = min{λ,λ,�}. Then for λ ∈ (,λ), the
functional Iλ has a minimizer point u– in N–

λ and it satisfies:
(i) Iλ(u–) = α–

λ ,
(ii) u– is a positive solution of equation (Eλf ,h).
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Proof By Proposition .(ii), it follows that there exists a minimizing sequence {un} for Iλ
on N–

λ such that

Iλ(un) = α–
λ + o(),

I ′λ(un) = o() in X–(�).

By Lemma . and Lemma . and the compact embedding theorem, there exists a sub-
sequence {un} and u– ∈ N–

λ is a nonzero solution of (Eλf ,h) such that

un ⇀ u– weakly in X,

un → u– strongly in Lq(�) and Lr(�).

We now prove that un → u– strongly in X. Suppose otherwise, then∥∥u–∥∥ < lim inf
n→∞ ‖un‖,

and so∥∥u–∥∥p – λ

∫
�

(
f
∣∣u–∣∣q)dx – ∫

�

(
h
∣∣u–∣∣r)dx

< lim inf
n→∞

(
‖un‖p – λ

∫
�

(
f |un|q

)
dx –

∫
�

(
h|un|r

)
dx

)
= .

This contradicts u– ∈ N–
λ . Hence, un → u– strongly in X. This implies Iλ(un) → Iλ(u–) =

α–
λ , as n → ∞. Since Iλ(u–) = Iλ(|u– |) and |u– | ∈ N–

λ , by Lemma ., we may assume that
u– is a nonnegative solution. By Drábek, Kufner and Nicolosi [, Lemma .], we have
u– ∈ L∞(�). Then we can apply the Harnack inequality due to Trudinger [] in order to
find that u– is positive in �.
Now we can complete the proof of Theorem .: By Theorem . and Theorem .,

for (Eλf ,h) there exist two positive solutions u+ and u– such that u+ ∈ N+
λ , u– ∈ N–

λ . Since
N+

λ ∩ N–
λ = ∅, this implies that u+ and u– are different. Thus the proof of Theorem . is

complete. �

4 Time-fractional equations
In this section, we switch our view point to the fractional order equation (Eλf ,h,t) in
weighted Sobolev space H

(a(x),�) with the standard norm

‖u‖H
(a(x),�) =

{∫
�

(∣∣a(x)∇u(x)
∣∣ + (

u(x)
))dx} 


.

In order to discuss the existence of the positive solution for the (Eλf ,h,t), we need to
present some basic notations, definitions, and preliminary results, which will be used
throughout this section. We first have the following two definitions by [].

Definition . The Caputo fractional derivative of order α of a function f (t), t > , is
defined as

Dαf (t) =


�( – {α})
∫ t




(t – s){α} f

([α]+) ds,
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where {α}, [α] denotes the fractional and the integer part of the real number α, respec-
tively, and �(·) is the Gamma function.

Definition . The Riemann-Liouville fractional integral of order α of a function f (t),
t > , is defined as

Iα+ f (t) =


�(α)

∫ t


(t – s)α–f (s)ds,

provided that the right side is pointwise defined on (,∞).

Lemma . [] Assume y ∈ C[,T], T > ,  < α < , then the problem

Dαu(t) = y(t), t ∈ [,T], (.)

has the unique solution

u(t) = u() + u′()t +


�(α)

∫ t


(t – s)α–y(s)ds.

Now we establish some results as regards the existence of positive solutions for (Eλf ,h,t).
By Lemma ., we may reduce (Eλf ,h,t) to an equivalent integral equation as in the fol-

lowing problem:

(Eλf ,h,integral)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
–φ(x) –ψt + u(x, t)

= 
�(α)

∫ t
 (t – s)α–(div(a(x)|∇u(x, s)|p–∇u(x, s)) + (u(x, s))p–

+ λf (x)|u(x, s)|q– + h(x)|u(x, s)|r–)ds, in �T ,
u(x, t) = , on ∂�T .

The functional integral equations describe many physical phenomena in various areas
of natural science, mathematical physics, mechanics, and population dynamics [–].
The theory of integral equations is developing rapidly with the help of tools in functional
analysis, topology, and fixed point theory (see, for instance, [–]) and it serves as a use-
ful tool in turn for other branches of mathematics, for example for differential equations
(see [–]). Now we define

(Eλf ,h,fixed)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�(u) = φ(x) +ψ(x)t
+ 

�(α)
∫ t
 (t – s)α–(div(a(x)|∇u(x, s)|p–∇u(x, s))

+ |u(x, s)|p–u(x, s) + λf (x)|u(x, s)|q–
+ h(x)|u(x, s)|r–)ds, in �T ,

u(x, t) = , on ∂�T .

Definition . We call u ∈ C([,T];H
(a(x),�)) a weak solution of the fractional order

equation (Eλf ,h,t), if
∫
�
(u –�(u))vdx = , ∀t ∈ [,T] for every v ∈H

(a(x),�), i.e.∫
�

uvdx =
∫

�

[
φ(x) +ψ(x)t +


�(α)

∫ t


(t – s)α–

(∣∣u(x, s)∣∣p–u(x, s) + λf (x)
∣∣u(x, s)∣∣q–

+ h(x)
∣∣u(x, s)∣∣r–)ds]vdx

–
∫

�

∫ t


(t – s)α–

(
a(x)

∣∣∇u(x, s)
∣∣p–∇u(x, s)

)
dsvdx.
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Lemma . The operator �(u) :H
(a(x),�)→H–(a(x),�) is completely continuous.

Proof Put

F(u) = div
(
a(x)

∣∣∇u(x, s)
∣∣p–∇u(x, s)

)
+

(
u(x, s)

)p– + λf (x)
∣∣u(x, s)∣∣q– + h(x)

∣∣u(x, s)∣∣r–.
We can rewrite

�(u) = φ(x) +ψ(x)t +


�(α)

∫ t


(t – s)α–F(u)ds.

For each v ∈H
(a(x),�), and ‖v‖H

(a(x),�) = , by integration by parts, we can get

∣∣〈F(u), v〉∣∣ = ∣∣∣∣∫ (
a(x)|∇u|p–∇v

)
+ up–v + λf (x)|u|q–v + h(x)|u|r–v)dx

∣∣∣∣.
Since  ≤ f (x) ∈ LH (�), where LH (�) = L

r
r–q (�), q < r < p∗

s , and f (x) has a compact support
in�,  ≤ h(x) ∈ L∞(�), and satisfies h(x)→  as |x| → ∞, so F(u) ∈ C([,T];H

(a(x),�)).
Since  < p, by Sobolev embedding theorem, we have W ,p

 (a(x),�) ↪→ H
(a(x),�),

and thus, ‖u‖H
(a(x),�) ≤ C‖u‖W ,p

 (a(x),�), in the following, we denote ‖u‖H
(a(x),�) and

‖u‖H–(a(x),�) by ‖u‖H

, ‖u‖H– , respectively. Hence, by the Cauchy-Schwarz inequalities,

the Poincaré inequalities, the Hölder inequalities, the Sobolev embedding theorem, and
(.) and  < q < p < r, we have

∣∣〈F(u), v〉∣∣
=

∣∣∣∣∫ (
a(x)|∇u|p–∇v

)
+ up–v + λf (x)|u|q–v + h(x)|u|r–v)dx

∣∣∣∣
≤

(∫ ∣∣a(x)|∇u|p–∣∣ dx) 

(∫

|∇v| dx
) 


+

(∫ ∣∣up–∣∣ dx) 

(∫

|v| dx
) 



+
(∫ ∣∣λf (x)|u|q–∣∣ dx) 


(∫

|v| dx
) 


+

(∫ ∣∣h(x)|u|r–∣∣ dx) 

(∫

|v| dx
) 



≤
(∫ ∣∣a(x)|∇u|p–∣∣ dx) 

 ‖∇v‖L(a(x),�) +
(∫ ∣∣up–∣∣ dx) 

 ‖∇v‖L(a(x),�)

+ |λ|∥∥f (x)∥∥LH

(∫ ∣∣|u|q–∣∣ dx) 
 ‖∇v‖L(a(x),�) +

(∫ ∣∣|u|r–∣∣ dx) 
 ‖∇v‖L(a(x),�)

≤
((∫ ∣∣a(x)|∇u|p–∣∣ dx) 


+

(∫ ∣∣up–∣∣ dx) 


+ |λ|∥∥f (x)∥∥LH

(∫ ∣∣|u|q–∣∣ dx) 

+

(∫ ∣∣|u|r–∣∣ dx) 

)

‖v‖H


≤
(∫ ∣∣a(x)|∇u|p–∣∣ dx) 


+

(∫ ∣∣up–∣∣ dx) 


+ |λ|∥∥f (x)∥∥LH

(∫ ∣∣|u|q–∣∣ dx) 

+

(∫ ∣∣|u|r–∣∣ dx) 
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≤
(∫ ∣∣a(x)∇u

∣∣(p–) dx) 
(p–) (p–)

+
(∫

|u|(p–) dx
) 

(p–) (p–)

+ |λ|∥∥f (x)∥∥LH

(∫
|u|(q–) dx

) 
(q–) (q–)

+
(∫

|u|(r–) dx
) 

(r–) (r–)

=
∥∥a(x)∇u

∥∥(p–)
L(p–)(a(x),�) + ‖u‖(p–)L(p–)(a(x),�)

+ |λ|∥∥f (x)∥∥LH‖u‖(q–)L(q–)(a(x),�) + ‖u‖(r–)L(r–)(a(x),�)

≤ C‖u‖(p–)H


+C|λ|∥∥f (x)∥∥LH‖∇u‖(q–)L(a(x),�) +C‖∇u‖(r–)L(a(x),�)

≤ C‖u‖(p–)X +C
(|λ|∥∥f (x)∥∥LH‖u‖(q–)H


+ ‖u‖(r–)H



)
≤ C‖u‖(p–)X +C

(|λ|∥∥f (x)∥∥LH‖u‖(q–)X + ‖u‖(r–)X
)

≤ C̃
{(

r – q
r – p

) 
p–q

S
q

p–q
r

(
λ‖f ‖LH

) 
p–q

}(p–)

+ |λ|∥∥f (x)∥∥LH

{(
r – q
r – p

) 
p–q

S
q

p–q
r

(
λ‖f ‖LH

) 
p–q

}(q–)

+
{(

r – q
r – p

) 
p–q

S
q

p–q
r

(
λ‖f ‖LH

) 
p–q

}(r–)

=M.

Here, C, C, C, C, C, C denote the best Sobolev constants, and C̃ =max{C,C}.
Thus, by Cauchy-Schwarz inequalities, we obtain

∥∥�(u)
∥∥
H–

= sup
‖v‖H


≤

∣∣〈�(u), v
〉∣∣

= sup
‖v‖H


≤

∣∣∣∣〈φ(x), v〉 + 〈
ψ(x), v

〉
t +


�(α)

∫ t


(t – s)α–

〈
F(u), v

〉
ds

∣∣∣∣
≤ ∣∣〈φ(x), v〉∣∣ + ∣∣〈ψ(x), v

〉
t
∣∣ + ∣∣∣∣ 

�(α)

∫ t


(t – s)α–

〈
F(u), v

〉
ds

∣∣∣∣
≤ ∥∥φ(x)

∥∥
L∞(a(x),�)‖v‖H


+

∥∥ψ(x)
∥∥
L∞(a(x),�)‖v‖H


T

+
∣∣〈F(u), v〉∣∣∣∣∣∣ 

�(α)

∫ t


(t – s)α– ds

∣∣∣∣
≤ ∥∥φ(x)

∥∥
L∞(a(x),�) +

∥∥ψ(x)
∥∥
L∞(a(x),�)T +

M
�(α)

∣∣∣∣∫ t


(t – s)α– ds

∣∣∣∣
≤ ∥∥φ(x)

∥∥
L∞(a(x),�) +

∥∥ψ(x)
∥∥
L∞(a(x),�)T +

M
α�(α)

tα

≤ ∥∥φ(x)
∥∥
L∞(a(x),�) +

∥∥ψ(x)
∥∥
L∞(a(x),�)T +

M
α�(α)

Tα .

Hence, �(u) is bounded.
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On the other hand, given ε > , setting

δ =
(∥∥ψ(x)

∥∥
L∞(a(x),�) +

M
�(α)

Tα–
)–

ε,

then, for every v ∈ H
(a(x),�), t < t, t, t ∈ [,T], and t – t < δ, one has ‖�u(t) –

�u(t)‖H– = sup‖v‖H

≤ |〈�u(t) – �u(t), v〉| ≤ ε. That is to say, �(u) has equicontinuity.

In fact,

∥∥�u(t) –�u(t)
∥∥
H–

= sup
‖v‖H


≤

∣∣〈�u(t) –�u(t), v
〉∣∣

= sup
‖v‖H


≤

∣∣∣∣〈ψ(x), v
〉
(t – t) +


�(α)

∫ t


(t – s)α–

〈
F(u), v

〉
ds

–


�(α)

∫ t


(t – s)α–

〈
F(u), v

〉
ds

∣∣∣∣
≤ ∥∥ψ(x)

∥∥
L∞(a(x),�)‖v‖H


|t – t| +

∣∣〈F(u), v〉∣∣∣∣∣∣ 
�(α)

∫ t

t
(t – s)α– ds

∣∣∣∣
+


�(α)

∫ t



∣∣〈F(u), v〉∣∣∣∣(t – s)α– – (t – s)α–
∣∣ds

≤ ∥∥ψ(x)
∥∥
L∞(a(x),�)|t – t| + M

α�(α)
tα –

M
α�(α)

tα

≤ ∥∥ψ(x)
∥∥
L∞(a(x),�)|t – t| + M

α�(α)
(
tα – tα

)
.

In the following, we divide the proof into two cases.
Case : δ ≤ t < t < T , since  < α < , we get

∥∥�u(t) –�u(t)
∥∥
H–

= sup
‖v‖H


≤

∣∣〈�u(t) –�u(t), v
〉∣∣

≤ ∥∥ψ(x)
∥∥
L∞(a(x),�)|t – t| + M

α�(α)
(
tα – tα

)
=

∥∥ψ(x)
∥∥
L∞(a(x),�)|t – t| + M

α�(α)
αtα–(t – t)

=
∥∥ψ(x)

∥∥
L∞(a(x),�)δ +

M
�(α)

Tα–δ

≤ ∥∥ψ(x)
∥∥
L∞(a(x),�)δ +

M
�(α)

Tα–δ

=
(∥∥ψ(x)

∥∥
L∞(a(x),�) +

M
�(α)

Tα–
)

δ ≤ ε.

Here, t < t < t, and we apply the mean theorem tβ – tβ = βtβ–(t – t).

http://www.journalofinequalitiesandapplications.com/content/2014/1/262


Qiu et al. Journal of Inequalities and Applications 2014, 2014:262 Page 21 of 22
http://www.journalofinequalitiesandapplications.com/content/2014/1/262

Case :  ≤ t, t < α

α δ,

∥∥�u(t) –�u(t)
∥∥
H– = sup

‖v‖H

≤

∣∣〈�u(t) –�u(t), v
〉∣∣

≤ ∥∥ψ(x)
∥∥
L∞(a(x),�)|t – t| + M

α�(α)
(
tα – tα

)
≤ ∥∥ψ(x)

∥∥
L∞(a(x),�)δ +

M
α�(α)

(
α


α δ

)α

≤ ∥∥ψ(x)
∥∥
L∞(a(x),�)δ +

M
�(α)

Tα–δ

=
(∥∥ψ(x)

∥∥
L∞(a(x),�) +

M
�(α)

Tα–
)

δ ≤ ε.

By applying the Arzela-Ascoli theorem, we know that �(u) :H
(a(x),�)→H–(a(x),�)

is completely continuous. This completes the proof. �

By Lemma ., we know that
∫
�
(u –�(u))vdx = , ∀t ∈ [,T] for every v ∈ H

(a(x),�).
That is to say, the fractional order equation (Eλf ,h,t) has a unique weak solution u ∈
C([,T];H

(a(x),�)).

5 Conclusion
In this paper, we study the existence of positive solutions for P-Laplace semi-linear elliptic
equations and the corresponding time-fractional equations. That is, we first establish the
multiplicity of positive solutions for nonlinear elliptic equations with a positive smooth
weight function involving concave and convex nonlinearities in weighted Sobolev spaces,
and the proof of the two positive solutions for the problem (Eλf ,h) is given. Second, by ap-
plying the Arzela-Ascoli fixed point theorem, one existence result for the time-fractional
equations is also obtained.
Finally we like tomention that for (Eλf ,h) its corresponding time-fractional equations are

the foundation models of the nonlinear problems in the field of PDES and it is worthwhile
to pay more attention to their study.
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