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Abstract
Uniform endpoint Lorentz norm improving estimates for convolution operators with
affine arclength measure supported on simple plane curves are established. The
estimates hold for a wide class of simple curves, and the condition is stated in terms
of averages of the square of the affine arclength weight, extending previously known
results.
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1 Introduction
Let φ : (a,b) → R be a C function such that φ′′(t) ≥  for all t ∈ (a,b). In this paper, we
consider the convolution operator T given by

T f (x,x) =
∫ b

a
f
(
x – t,x – φ(t)

)
ω(t)dt (.)

for f ∈ C∞
 (R). Here and in what follows, we denote ω(t) := (φ′′(t))/. Curves of the form

(t,φ(t)) are said to be simple according to Drury and Marshall []. The measure ω(t)dt
supported on the curve (t,φ(t)) is known as the affine arclength measure, which is based
on the affine arclength parameter as in [], and was introduced by Drury and Marshall []
in dealing with the Fourier restriction problem related to curves, and later by Drury [] in
studying convolution operators with measures supported on curves. We refer interested
readers to [–] for the relevance of affine geometry in this subject. One big benefit of us-
ing the affine arclengthmeasure in place of the Euclidean arclengthmeasure

√
 + φ′(t) dt

has been its effect of mitigating degeneracies and it is believed that various uniform sharp
estimates hold for a wide class of curves.
As is well known, the typeset S = {(p–,q–) : T is bounded from Lp(R) to Lq(R)} of T

is contained in the convex hull of {(, ), (, ), (/, /)} and uniform estimates in a, b,
and φ are expected only for (/p, /q) = (/, /). Many conditions to guarantee optimal
uniform L/-L estimates have been known so far. See [, –] for example. Among other
things, the author proved the following.

Theorem . (Choi []) Let J be an open interval in R, and φ : J → R be a C function
such that φ′′ ≥ . Suppose that there exists a positive constant A such that

ω/(t)ω/(t)≤
(

A
t – t

∫ t

t
ω(t)dt

)/
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holds whenever t < t and [t, t] ⊂ J . Let T be the operator defined as in (.). Then there
exists a constant C that depends only on A such that

‖T f ‖L(R) ≤ C‖f ‖L/(R)

holds uniformly in f ∈ C∞
 (R).

Under somewhat stronger assumptions on φ(t) or ω(t), the endpoint Lebesgue norm
estimate aforementioned can be improved to optimal Lorentz norm estimates, namely
from L/(R) into L,/(R) and L/,(R) into L(R). We refer interested readers to [,
, , ] for known sufficient conditions for optimal and nearly optimal Lorentz norm
estimates. Most importantly, Oberlin established the following uniform optimal Lorentz
norm improving estimates.

Theorem . (Oberlin []) Let J be an open interval. Suppose that ω(t) is monotone in-
creasing and that there exists a positive constant A such that

√
ω(t)ω(t) ≤ Aω

(
(t + t)/

)
(.)

holds whenever t < t and [t, t] ⊂ J . Then the operator T given by (.) satisfies

‖T f ‖L,/(R) ≤ C‖f ‖L/(R),

‖T f ‖L(R) ≤ C‖f ‖L/,(R)

for all f ∈ C∞
 (R), where C is a constant depending only on A.

For the proof of the optimality, see [] by Stovall along with [] by Bak et al. It is inter-
esting to ask if the condition in Theorem . can be relaxed to cover more general curves.
Based on an ingenious argument of Oberlin in [], the author aims to establish a uniform
optimal Lorentz norm improving estimate under a condition on averages of the square of
ω(t). The average condition is a slightly stronger version of that in Theorem ., and yet
covers most simple plane curves studied up to now including those in Theorem ..
This paper is organized as follows: in the following section, conditions on ω(t) are in-

troduced and the main theorem is stated. The last section is devoted to the proof of the
main theorem. As usual, absolute constants may grow from line to line.

2 Statement of themain theorem
Before we state our main result, we introduce certain conditions on functions defined on
intervals.

Definition . Let  < p < ∞. For an interval J in R, a locally Lp function � : J → R
+,

and a positive real number A, we let

Gp(�,A) :=
{
F : J →R

+
∣∣∣ √

F(t)F(t) ≤ A
(


t – t

∫ t

t
�p(t)dt

)/p

whenever t < t and [t, t]⊂ J
}
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and we let

Ep(A) :=
{
� : J →R

+ | J is an interval and � ∈Gp(�,A)
}
.

An interesting subclass of Ep(/pA),  < p < ∞, was introduced by Bak et al. [] in
studying Fourier restriction estimates related to degenerate curves.

Definition . For an interval J and a positive real number A, a function � : J → R
+ is

said to be a member of Ẽ(A) if
• � is monotone; and
• whenever t < t and [t, t] ⊂ J ,

√
�(t)�(t) ≤ A�

(
(t + t)/

)

holds.

The condition (.) can be rewritten as ω ∈ Ẽ(A).

Remark . It seems appropriate to mention some properties of Ep(A) and Ẽ(A) men-
tioned above.
. It is a simple matter to check:

• Ẽ(A) ⊂ Ep(/pA) for all p ∈ (,∞);
• � ∈ Ep(A) if and only if �p ∈ E(Ap);
• � ∈ Ep(A) implies λ� ∈ Ep(A) for all λ > ; and
• � ∈ Ep(A) implies �(a · +b) ∈ Ep(A) for all (a,b) ∈R \ {} ×R.

. If  < p < p < ∞, � : J →R
+ ∈ Ep (A), and � ∈ Lploc(J), then � ∈ Ep (A) by Hölder’s

inequality.
. The class Ẽ() is essentially the class of logarithmically concave functions, which

already encompasses many useful examples. Simplest examples are the exponential
function and �(t) = tα , t > , for α ≥ . More interesting example is the function
�(t) = e–/t , t > , which models a curve ‘flat’ at the origin. A hierarchy of flatter
functions that belong to Ẽ() was constructed by Bak et al. [].

. For a polynomial p(t) of degree N , |p(t)| belongs to Ẽ(N/) after (possibly)
decomposing the real line into at most N/ intervals.

. Nevertheless, there are functions that belong to Ep(A) but do not belong to Ẽ(A′) for
any A′ > . Two examples of curves that our result covers that are not covered in []
can be constructed with the aid of the examples given below.

Example . Consider �β (t) = t–β , t > , for β ≥ . Then, for given  < t < t < ∞, we
have by a change of variable


t – t

∫ t

t
�β (t)dt =


(λ – )tβ

∫ λ


t–β dt

=


(λ – )tβ

∫ 

λ–
tβ– dt,
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where λ := t/t > . Since tβ– is logarithmically concave, we see


t – t

∫ t

t
�β (t)dt ≥ 


 – λ–

(λ – )tβ
λ(–β+)/

=




tβ λβ/

=



√
�β (t)�β (t),

which implies�β ∈ E(). In view of Remark ., given β > ,�β ∈ Ep(/p) if p ≥ /β . One
can easily see �β /∈ Ẽ(A′) for any A′ >  and β > .

Example . Consider � : (,∞) → R
+ given by �(t) = (t)/et . Then we have√

�(t)�() ∼ t/et/ and �((t + )/) = O(t/et/) as t → ∞, which clearly implies
� /∈ Ẽ(A) for all A > . On the other hand, � ∈ E() by the following.

Proposition . Letψ : J →R. Suppose thatψ ′ ∈ E(A) for some A > . Then the function
� given by �(t) = (ψ ′)/p(t) exp(ψ(t)) belongs to Ep(A/p) for  < p < ∞.

Proof Let t < t. Since ψ ′ ∈ E(A), we have

ψ(t) –ψ(t) =
∫ t

t
ψ ′(t)dt ≥ A–(t – t)

√
ψ ′(t)ψ ′(t) > 

by the fundamental theorem of calculus and the assumption onψ ′(t). A change of variable
gives


t – t

∫ t

t
�p(t)dt =


t – t

∫ t

t
epψ(t)ψ ′(t)dt

=


p(t – t)

∫ pψ(t)

pψ(t)
et dt

=
ψ(t) –ψ(t)

t – t
× epψ(t) – epψ(t)

p(ψ(t) –ψ(t))
.

From

eb – ea

b – a
= e(b+a)/ × e(b–a)/ – e–(b–a)/

× (b – a)/

= e(b+a)/ × sinh((b – a)/)
(b – a)/

≥ e(b+a)/

for all a < b, we see

epψ(t) – epψ(t)

p(ψ(t) –ψ(t))
≥ ep(ψ(t)+ψ(t))/.

Altogether, we obtain


t – t

∫ t

t
�p(t)dt ≥ A–ep(ψ(t)+ψ(t))/

√
ψ ′(t)ψ ′(t) = A–(�(t)�(t)

)p/.

By taking the pth root we obtain the desired estimate. �
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We are now ready to state the main theorem of this paper.

Theorem . Let –∞ ≤ a < b ≤ ∞, and let φ : (a,b) → R be a C function such that
φ′′ ≥  on the interval. Suppose that there exists a positive constant A such that ω ∈ E(A),
i.e.

ω/(t)ω/(t) ≤ A
(


t – t

∫ t

t
ω(t)dt

)/

holds whenever a < t < t < b. Let T be the operator given by (.). Then there exists a
constant C that depends only on A such that

‖T f ‖L,/(R) ≤ C‖f ‖L/(R), (.)

‖T f ‖L(R) ≤ C‖f ‖L/,(R) (.)

holds uniformly in f ∈ C∞
 (R).

Remark . Some remarks are in order.
• In view of Remark ., Proposition ., Example . and Example ., the condition

ω ∈ Ẽ(A) is strictly stronger than the condition ω ∈ E(
√
A) in Theorem ., and

therefore our result improves Theorem ..
• An explicit example is also available. Consider φ(t) = t–/ exp(t) defined for
t ∈ (c,∞), where c is a large constant. A simple calculation shows ω(t) ∼ t/ exp(t/).
By Proposition ., ω ∈ E(A) for some A > . Thus, the corresponding operator T
satisfies endpoint Lorentz estimates (.) and (.) by Theorem ., but Theorem .
is not directly applicable.

• It is not known whether ω ∈ E(A) in Theorem . can be further relaxed to ω ∈ Ep(A)
for some p > . More generally, one can ask for the optimal p such that ω ∈ Ep(A)
guarantees the boundedness of T from L 

 ,q(R) to L,r(R) for given q ≤ r.

3 Proof of themain theorem
Before we prove the theorem, we begin with a couple of lemmas.

Lemma . Let J be an interval in R, and let ω : J → R+ be a continuous function such
that ω ∈ E(A) for some A > , i.e.

ω/(t)ω/(t) ≤ A
(


t – t

∫ t

t
ω(t)dt

)/

holds whenever t < t and [t, t] ⊂ J . Then the following holds:

ω(t)/ω(t)/ω
(
t∗

)/ ≤ /A
(


t – t

∫ t

t
ω(t)dt

)/

(.)

whenever t < t and t∗ ∈ [t, t] ⊂ J .

Proof of Lemma . Let t∗ ∈ [t, t] ⊂ J . From

ω/(t)ω/(t) ≤ A
(


t – t

∫ t

t
ω(t)dt

)/

,
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we obtain

ω/(t)ω/(t)ω/(t∗)

≤ A
(


t – t

∫ t

t
ω(t)ω

(
t∗

)
dt

)/

≤ A/
(


t – t

∫ t

t
ω(t)

∣∣∣∣ 
t∗ – t

∫ t∗

t
ω(s)ds

∣∣∣∣dt
)/

≤ A/
(


t – t

∫ t

t
ω(t)dt

)/

×
(


t – t

∫ t

t

∣∣∣∣ 
t∗ – t

∫ t∗

t
ω(s)ds

∣∣∣∣
/

dt
)/

by hypothesis and Hölder’s inequality. Applying Hardy’s inequality twice gives us

(∫ t

t

∣∣∣∣ 
t∗ – t

∫ t∗

t
ω(s)ds

∣∣∣∣
/

dt
)/

≤ 
(∫ t

t
ω(t)dt

)/

,

and so we obtain

ω/(t)ω/(t)ω/(t∗) ≤ /A/

(t – t)/

(∫ t

t
ω(t)dt

)/

.

By taking the /th power, we obtain the desired estimate. �

The following lemma, which is nearly a triviality, generalizes a version of Lemma .
in [].

Lemma. Suppose F is nonnegative and continuous on some interval [a,b]. For t ∈ [a,b],
we let F̃(t) :=max[t,b] F , and for ρ > , we let

Eρ =
{
t ∈ [a,b] : F̃(t)(b – t) ≤ ρ

}
.

Then we have
∫
Eρ

F(t)dt ≤ ρ.

Proof of Lemma . Observe that the function t → F̃(t)(b – t) is a monotone decreasing
function. Let ρ >  be given. Since b ∈ Eρ , Eρ is nonempty. Let t∗ := infEρ . Then we have
F̃(t∗)(b – t∗) ≤ ρ . From this, we obtain

∫
Eρ

F(t)dt =
∫ b

t∗
F(t)dt

≤ F̃(t∗)(b – t∗) = ρ,

which finishes the proof. �
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Proof of Theorem . It suffices to prove (.) by duality. We may further assume, without
loss of generality, –∞ < a < b < ∞, since a uniform estimate independent of a and b will
allow us a suitable limiting argument. For a measurable subset E of either R or R, we de-
note the Lebesguemeasure and the characteristic function of E by |E| and1E , respectively.
We also write γ (t) = (t,φ(t)).
By a well-known interpolation argument [, ], it suffices to show that

∫ b

a

(∫ b

a
1E

(
γ (t) – γ (t)

)
ω(t)dt

)

ω(t)dt ≤ C|E|

holds for measurable sets E ⊂R
. In view of the simple identities

∫ b

a

(∫ b

t
1E

(
γ (t) – γ (t)

)
ω(t)dt

)

ω(t)dt

=
∫ b

a

(∫ a+b–t

a
1E

(
γ (t) – γ (a + b – t)

)
ω(a + b – t)dt

)

ω(t)dt

=
∫ b

a

(∫ t

a
1E

(
γ (a + b – t) – γ (a + b – t)

)
ω(a + b – t)dt

)

ω(a + b – t)dt

=
∫ b

a

(∫ t

a
1E

(
γ̄ (t) – γ̄ (t)

)
ω̄(t)dt

)

ω̄(t)dt,

where γ̄ (t) := (t, φ̄(t)), φ̄(t) := φ(a + b – t), ω̄(t) := (φ̄′′(t))/ = ω(a + b – t) ∈ E(A), and
Ē := {(x,x) : (–x,x) ∈ E}, it is enough to establish that

∫ b

a

(∫ t

a
1E

(
γ (t) – γ (t)

)
ω(t)dst

)

ω(t)dt ≤ C|E| (.)

holds for measurable sets E ⊂ R
. To do this, we let � := {(t, t) : a < t < t < b}. The

mapping� :� →R
 given by �(t, t) = γ (t) –γ (t) is one-to-one and the absolute value

of the Jacobian determinant J(t, t) of � is given by

J(t, t) = φ′(t) – φ′(t).

Given measurable � ⊂ � and t ∈ (a,b), we apply Lemma . with

ρ =



∫ t

a
1�(t, t)ω(t)dt,

to obtain

∫
ω̃(t;t)(t–t)≤ρ

1�(t, t)ω(t)dt ≤ 


∫ t

a
1�(t, t)ω(t)dt,

where ω̃(t; t) :=max[t,t] ω. From this, we get

∫
ω̃(t;t)(t–t)≥ρ

1�(t, t)ω(t)dt ≥ 


∫ t

a
1�(t, t)ω(t)dt,
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and so




(∫ t

a
1�(t, t)ω(t)dt

)

≤ ρ

∫
ω̃(t;t)(t–t)≥ρ

1�(t, t)ω(t)dt

≤
∫

ω̃(t;t)(t–t)≥ρ

1�(t, t)ω(t)ω̃(t; t)(t – t)dt

≤
∫ t

a
1�(t, t)ω(t)ω̃(t; t)(t – t)dt.

Multiplying by ω(t) and integrating with respect to t provides us with

∫ b

a

(∫ t

a
1�(t, t)ω(t)dt

)

ω(t)dt

≤ 
∫ b

a

∫ t

a
1�(t, t)ω(t)ω(t)ω̃(t; t)(t – t)dt dt.

Notice that for a < t < t < b, there exists t∗ ∈ [t, t] such that ω̃(t; t) = ω(t∗). By Lem-
ma ., we have

ω(t)ω(t)ω̃(t; t)(t – t) = ω(t)ω(t)ω(t∗)(t – t)

≤ A
∫ t

t
ω(t)dt

= A
∫ t

t
φ′′(t)dt

= A(φ′(t) – φ′(t)
)

= AJ(t, t),

which further implies

∫ b

a

(∫ t

a
1�(t, t)ω(t)dt

)

ω(t)dt ≤ A
∫ b

a

∫ b

a
1�(t, t)J(t, t)dt dt.

Letting � = {(t, t) ∈ � : γ (t) – γ (t) ∈ E} and making a change of variables, we obtain
the desired estimate (.). �
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