
Thiramanus et al. Journal of Inequalities and Applications 2014, 2014:255
http://www.journalofinequalitiesandapplications.com/content/2014/1/255

RESEARCH Open Access

Nonlinear integral inequalities on time scales
with ‘maxima’
Phollakrit Thiramanus1, Jessada Tariboon1* and Sotiris K Ntouyas2

*Correspondence:
jessadat@kmutnb.ac.th
1Nonlinear Dynamic Analysis
Research Center, Department of
Mathematics, Faculty of Applied
Science, King Mongkut’s University
of Technology North Bangkok,
Bangkok, 10800, Thailand
Full list of author information is
available at the end of the article

Abstract
In this paper, some new types of nonlinear integral inequalities on time scales with
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qualitative investigations of differential equations with ‘maxima’. An example is also
presented to illustrate our results.
MSC: 34A40; 26D15; 39A13

Keywords: nonlinear integral inequality; time scales; maxima; dynamic equation;
differential equations with ‘maxima’

1 Introduction
The theory of time scales (closed subsets of R) was created by Hilger [] in order to unify
continuous and discrete analysis and in order to extend those theories to other kinds of
the so-called dynamic equations. Many authors have expounded on various aspects of the
theory of dynamic equations on time scales.We refer the reader to themonograph [] and
the references cited therein. Also, a few papers studied the theory of dynamic inequalities
on time scales; see, for example, [–].
Differential equations with ‘maxima’ are a special type of differential equations that con-

tain the maximum of the unknown function over a previous interval. Several integral in-
equalities have been established in the case whenmaxima of the unknown scalar function
is involved in the integral; see [–] and the references cited therein.
Recently in [] we initiated the study of integral inequalities on time scales with ‘max-

ima’, where some new integral inequalities were established. The significance of our work
in [] lies in the fact that ‘maxima’ are taken on intervals [βt, t] which have non-constant
length, where  < β < . Most papers take the ‘maxima’ on [t – h, t], where h >  is a given
constant.
In this paper we continue the study of [] and investigate some nonlinear dynamic

integral inequalities on time scales with ‘maxima’. This paper is organized as follows. In
Section  we give some preliminary results with respect to the calculus on time scales. In
Section  we deal with our nonlinear dynamic inequalities on time scales with ‘maxima’.
In Section  we give an example to illustrate our main results.

2 Preliminaries
In this section, we list the following well-known definitions and some lemmas which can
be found in [] and the references therein.
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Definition . A time scale T is an arbitrary nonempty closed subset of the real set R
with the topology and ordering inherited from R.
The forward and backward jump operators σ ,ρ : T → T and the graininess μ : T→R+

are defined, respectively, by

σ (t) := inf{s ∈ T|s > t}, ρ(t) := sup{s ∈ T|s < t}, μ(t) := σ (t) – t

for all t ∈ T. If σ (t) > t, t is said to be right scattered, and if ρ(t) < t, t is said to be left
scattered; if σ (t) = t, t is said to be right dense, and if ρ(t) = t, t is said to be left dense. If
T has a right-scattered minimumm, define Tk = T – {m}; otherwise set Tk = T. If T has a
left-scattered maximumM, define Tk = T – {M}; otherwise set Tk = T.

Definition . A function f : T → R is rd-continuous (rd-continuous is short for right-
dense continuous) provided it is continuous at each right-dense point in T and has a left-
sided limit at each left-dense point in T. The set of rd-continuous functions f : T →Rwill
be denoted by Crd(T) = Crd(T,R).

Definition . For f : T →R and t ∈ T
k , the delta derivative of f at the point t is defined

to be the number f �(t) (provided it exists) with the property that for each ε > , there is a
neighborhood U of t such that

∣∣f (σ (t)) – f (s) – f �(t)
(
σ (t) – s

)∣∣ ≤ ε
∣∣σ (t) – s

∣∣
for all s ∈U .

Definition . For a function f : T → R (the range R of f may be actually replaced by a
Banach space), the (delta) derivative is defined at point t by

f �(t) =
f (σ (t)) – f (t)

σ (t) – t
,

if f is continuous at t and t is right scattered. If t is not right scattered, then the derivative
is defined by

f �(t) = lim
s→t

f (σ (t)) – f (s)
σ (t) – s

= lim
s→t

f (t) – f (s)
t – s

,

provided this limit exists.

Definition . If F�(t) = f (t), then we define the delta integral by∫ t

a
f (s)�s = F(t) – F(a).

Lemma . ([]) Assume that ν : T →R is strictly increasing and T̃ := ν(T) is a time scale.
If f : T →R is an rd-continuous function and ν is differentiable with rd-continuous deriva-
tive, then for a,b ∈ T,

∫ b

a
f (t)ν�(t)�t =

∫ ν(b)

ν(a)

(
f ◦ ν–)(s)�̃s.
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Lemma . ([]) Assume that a ≥ , p≥ q ≥ , and p �= . Then

a
q
p ≤

(
q
p
k

q–p
p a +

p – q
p

k
q
p

)
for any k > .

3 Main results
For convenience of notation, we let throughout t ∈ T, t ≥ , T = [t,∞)∩T and an in-
terval [γ ,η]T = [γ ,η]∩T. In addition, for a strictly increasing function α : T →R, T̃ = α(T)
is a time scale such that T̃ ⊆ T. For f ∈ Crd(T,R), we define a notation of the composition
of two functions on time scales by

f (γ ) ◦ α–(s) = f
(
α–(s)

)
, γ ∈ T, s ∈ T̃.

Example . Let f (t) = t for t ∈ T :N


 = {√n : n ∈ N} and α(t) = t for t ∈ T. Then we

have α–(t) =
√
t for t ∈ T̃ =N and

f (γ ) ◦ α–(s) =
(
γ ) ◦ √

s = s, s ∈ T̃.

Theorem . Let the following conditions be satisfied:
(i) The function α ∈ Crd(T,R+) is strictly increasing.
(ii) The functions a, b, p and q ∈ Crd(T,R+).
(iii) The function φ ∈ Crd([βτ , t]T,R+), where  < β <  and τ =min{t,α(t)}.
(iv) The function h ∈ C(R+, (,∞)) is increasing.
(v) The function u ∈ Crd([βτ ,∞)T,R+) and satisfies the inequalities

u(t) ≤ k +
∫ t

t

[
p(s)h

(
u(s)

)
+ q(s)h

(
max

ξ∈[βs,s]T
u(ξ )

)]
�s

+
∫ α(t)

α(t)

[
a(γ )h

(
u(γ )

)
+ b(γ )h

(
max

ξ∈[βγ ,γ ]T
u(ξ )

)]
◦ α–(s)�̃s, t ∈ T, (.)

u(t) ≤ φ(t), t ∈ [βτ , t]T, (.)

where k ≥ .
Then, for all t ∈ T satisfying

H(M) +
∫ t

t

[
p(s) + q(s) + a(s)α�(s) + b(s)α�(s)

]
�s ∈Dom

(
H–),

we have

u(t) ≤ H–
(
H(M) +

∫ t

t

[
p(s) + q(s) + a(s)α�(s) + b(s)α�(s)

]
�s

)
, (.)

where

M =max
{
k, max

s∈[βτ ,t]T
φ(s)

}
(.)
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and

H(x) =
∫ x

x


h(r)

dr, x > , (.)

which H(∞) = ∞, and H– is the inverse of H .

Proof We define a function z : [βτ ,∞)T →R+ by

z(t) =

⎧⎪⎨⎪⎩
M +

∫ t
t
[p(s)h(u(s)) + q(s)h(maxξ∈[βs,s]T u(ξ ))]�s

+
∫ α(t)
α(t)

[a(γ )h(u(γ )) + b(γ )h(maxξ∈[βγ ,γ ]T u(ξ ))] ◦ α–(s)�̃s, t ∈ T,
M, t ∈ [βτ , t]T,

whereM is defined by (.). Note that the function z(t) is nondecreasing.
It follows that the inequality

u(t) ≤ z(t), t ∈ [βτ ,∞)
T

holds. Therefore, for t ∈ T and s ∈ [t, t]T, we have

max
ξ∈[βs,s]T

u(ξ ) ≤ max
ξ∈[βs,s]T

z(ξ ) = z(s).

For t ∈ T and s ∈ [α(t),α(t)]T̃, we have

h
(

max
ξ∈[βγ ,γ ]T

u(ξ )
)

◦ α–(s) ≤ h
(

max
ξ∈[βγ ,γ ]T

z(ξ )
)

◦ α–(s)

= h
(

max
ξ∈[βα–(s),α–(s)]T

z(ξ )
)

= h
(
z
(
α–(s)

))
= h

(
z(γ )

) ◦ α–(s).

Then, from the definition of z(t) and the above analysis, we get for t ∈ T that

z(t) ≤ M +
∫ t

t

[
p(s)h

(
z(s)

)
+ q(s)h

(
max

ξ∈[βs,s]T
z(ξ )

)]
�s

+
∫ α(t)

α(t)

[
a(γ )h

(
z(γ )

)
+ b(γ )h

(
max

ξ∈[βγ ,γ ]T
z(ξ )

)]
◦ α–(s)�̃s

≤ M +
∫ t

t

[
p(s)h

(
z(s)

)
+ q(s)h

(
z(s)

)]
�s

+
∫ α(t)

α(t)

[
a(γ )h

(
z(γ )

)
+ b(γ )h

(
z(γ )

)] ◦ α–(s)�̃s

= M +
∫ t

t

[
p(s)h

(
z(s)

)
+ q(s)h

(
z(s)

)]
�s

+
∫ t

t

[
a(s)h

(
z(s)

)
+ b(s)h

(
z(s)

)]
α�(s)�s

= M +
∫ t

t

[
p(s) + q(s) + a(s)α�(s) + b(s)α�(s)

]
h
(
z(s)

)
�s. (.)
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From inequality (.) we have

z�(t)≤ [
p(t) + q(t) + a(t)α�(t) + b(t)α�(t)

]
h
(
z(t)

)
,

which implies

z�(t)
h(z(t))

≤ p(t) + q(t) + a(t)α�(t) + b(t)α�(t). (.)

On the other hand, for t ∈ T, if σ (t) > t, then

[
H

(
z(t)

)]� =
H(z(σ (t))) –H(z(t))

σ (t) – t
=


σ (t) – t

∫ z(σ (t))

z(t)


h(r)

dr

≤ z(σ (t)) – z(t)
σ (t) – t


h(z(t))

=
z�(t)
h(z(t))

. (.)

If σ (t) = t, then

[
H

(
z(t)

)]� = lim
s→t

H(z(t)) –H(z(s))
t – s

= lim
s→t


t – s

∫ z(t)

z(s)


h(r)

ds

= lim
s→t

z(t) – z(s)
t – s


h(ω)

=
z�(t)
h(z(t))

, (.)

where ω lies between z(s) and z(t). Hence from (.) and (.) we have

[
H

(
z(t)

)]� ≤ z�(t)
h(z(t))

. (.)

Combining (.) and (.), we get

[
H

(
z(t)

)]� ≤ p(t) + q(t) + a(t)α�(t) + b(t)α�(t).

An integration for the above inequality with respect to t from t to t yields

H
(
z(t)

) ≤ H(M) +
∫ t

t

[
p(s) + q(s) + a(s)α�(s) + b(s)α�(s)

]
�s.

Since H– is an increasing function, we obtain

z(t) ≤ H–
(
H(M) +

∫ t

t

[
p(s) + q(s) + a(s)α�(s) + b(s)α�(s)

]
�s

)
, t ∈ T,

which results in (.). This completes the proof. �

We introduce the following classes of functions in connection with the nonlinearity of
the considered integral inequality.

Definition . ([]) We will say that a function h ∈ C(R+,R+) is from class � if the fol-
lowing conditions are satisfied:

http://www.journalofinequalitiesandapplications.com/content/2014/1/255
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(i) h is a nondecreasing function;
(ii) h(x) >  for x > ;
(iii) h(tx) ≥ th(x) for  ≤ t ≤ , x ≥ ;
(iv)

∫ ∞


dx
h(x) = ∞.

Definition . ([]) We will say that a function h ∈ C(R+,R+) is from class � if the fol-
lowing conditions are satisfied:

(i) h is a nondecreasing function;
(ii) h(x) >  for x > ;
(iii) h(tx) ≥ th(x) for  ≤ t ≤ , x ≥ ;
(iv) h(x + y) ≤ h(x) + h(y) for x, y≥ ;
(v)

∫ ∞


dx
h(x) = ∞.

Note that the functions h(x) =
√
x and h(x) = x are from class �.

In the case when in place of the constant k involved in Theorem . we have a function
k(t), we obtain the following result using functions from class �.

Theorem . Let the following conditions be satisfied:
(i) The conditions (i)-(iii) of Theorem . are satisfied.
(ii) The function h ∈ C(R+,R+) and h ∈ �.
(iii) The function k ∈ Crd(T, [,∞)) is nondecreasing.
(iv) The function u ∈ Crd([βτ ,∞)T,R+) and satisfies the inequalities

u(t) ≤ k(t) +
∫ t

t

[
p(s)h

(
u(s)

)
+ q(s)h

(
max

ξ∈[βs,s]T
u(ξ )

)]
�s

+
∫ α(t)

α(t)

[
a(γ )h

(
u(γ )

)
+ b(γ )h

(
max

ξ∈[βγ ,γ ]T
u(ξ )

)]
◦ α–(s)�̃s, t ∈ T, (.)

u(t) ≤ φ(t), t ∈ [βτ , t]T. (.)

Then, for all t ∈ T satisfying

H(N) +
∫ t

t

[
p(s) + q(s) + a(s)α�(s) + b(s)α�(s)

]
�s ∈ Dom

(
H–),

we have

u(t) ≤ k(t)H–
(
H(N) +

∫ t

t

[
p(s) + q(s) + a(s)α�(s) + b(s)α�(s)

]
�s

)
, (.)

where

N =max

{
, max

s∈[βτ ,t]T

φ(s)
k(t)

}
, (.)

and H(x) is defined by (.).

http://www.journalofinequalitiesandapplications.com/content/2014/1/255
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Proof From inequality (.) we obtain for t ∈ T

u(t)
k(t)

≤  +
∫ t

t

[
p(s)

h(u(s))
k(t)

+ q(s)
h(maxξ∈[βs,s]T u(ξ ))

k(t)

]
�s

+
∫ α(t)

α(t)

[
a(γ )

h(u(γ ))
k(t)

+ b(γ )
h(maxξ∈[βγ ,γ ]T u(ξ ))

k(t)

]
◦ α–(s)�̃s. (.)

Let us define functions k∗ : [βτ ,∞)T →R+ and w : [βτ ,∞)T →R+ by

k∗(t) =

⎧⎨⎩k(t), t ∈ T,

k(t), t ∈ [βτ , t]T,

w(t) =
u(t)
k∗(t)

, t ∈ [βτ ,∞)
T
.

Note that the function k∗(t) is nondecreasing on t ∈ [βτ ,∞)T.
By conditions (ii) and (iii) of Theorem ., it follows that h(u(s))

k(t) ≤ h( u(s)k(t) ) for t ∈ T and
s ∈ [t, t]T. From the monotonicity of k(t) and α(t), we get for t ∈ T and s ∈ [t, t]T that

maxξ∈[βs,s]T u(ξ )
k(t)

≤ maxξ∈[βs,s]T u(ξ )
k∗(s)

= max
ξ∈[βs,s]T

u(ξ )
k∗(s)

≤ max
ξ∈[βs,s]T

u(ξ )
k∗(ξ )

. (.)

For t ∈ T and s ∈ [α(t),α(t)]T̃, we have

maxξ∈[βγ ,γ ]T u(ξ ) ◦ α–(s)
k(t)

=
maxξ∈[βα–(s),α–(s)]T u(ξ )

k(t)

≤ maxξ∈[βα–(s),α–(s)]T u(ξ )
k∗(α–(s))

= max
ξ∈[βα–(s),α–(s)]T

u(ξ )
k∗(α–(s))

≤ max
ξ∈[βα–(s),α–(s)]T

u(ξ )
k∗(ξ )

= max
ξ∈[βγ ,γ ]T

u(ξ )
k∗(ξ )

◦ α–(s). (.)

From inequalities (.), (.) and (.) and the definition of w(t), we have

w(t) ≤  +
∫ t

t

[
p(s)h

(
w(s)

)
+ q(s)h

(
max

ξ∈[βs,s]T
w(ξ )

)]
�s

+
∫ α(t)

α(t)

[
a(γ )h

(
w(γ )

)
+ b(γ )h

(
max

ξ∈[βγ ,γ ]T
w(ξ )

)]
◦ α–(s)�̃s, t ∈ T, (.)

w(t) ≤ φ(t)
k(t)

, t ∈ [βτ , t]T. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/255
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Using Theorem . for (.) and (.), we get

w(t) ≤ H–
(
H(N) +

∫ t

t

[
p(s) + q(s) + a(s)α�(s) + b(s)α�(s)

]
�s

)
, t ∈ T,

which results in (.). This completes the proof. �

In the case when the function k(t) involved in the right part of inequality (.) is not a
monotonic function, we obtain the following result.

Theorem . Let the following conditions be satisfied:
(i) The conditions (i)-(ii) of Theorem . are satisfied.
(ii) The function φ ∈ Crd([βτ ,∞)T,R+) with maxs∈[βτ ,t]T φ(s) > , where  < β <  and

τ =min{t,α(t)}.
(iii) The function h ∈ C(R+,R+) and h ∈ �.
(iv) The function u ∈ Crd([βτ ,∞)T,R+) and satisfies the inequalities

u(t) ≤ φ(t) +
∫ t

t

[
p(s)h

(
u(s)

)
+ q(s)h

(
max

ξ∈[βs,s]T
u(ξ )

)]
�s

+
∫ α(t)

α(t)

[
a(γ )h

(
u(γ )

)
+ b(γ )h

(
max

ξ∈[βγ ,γ ]T
u(ξ )

)]
◦ α–(s)�̃s, t ∈ T, (.)

u(t) ≤ φ(t), t ∈ [βτ , t]T. (.)

Then, for all t ∈ T satisfying

H() +
∫ t

t

[
p(s) + q(s) + a(s)α�(s) + b(s)α�(s)

]
�s ∈Dom

(
H–),

we have

u(t) ≤ φ(t) + f (t)H–
(
H() +

∫ t

t

[
p(s) + q(s) + a(s)α�(s) + b(s)α�(s)

]
�s

)
, (.)

where H(x) is defined by (.) and

f (t) = max
s∈[βτ ,t]T

φ(s) +
∫ t

t

[
p(s)h

(
φ(s)

)
+ q(s)h

(
max

ξ∈[βs,s]T
φ(ξ )

)]
�s

+
∫ α(t)

α(t)

[
a(γ )h

(
φ(γ )

)
+ b(γ )h

(
max

ξ∈[βγ ,γ ]T
φ(ξ )

)]
◦ α–(s)�̃s, t ∈ T. (.)

Proof Let us define a function z : [βτ ,∞)T →R+ by

z(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫ t
t
[p(s)h(u(s)) + q(s)h(maxξ∈[βs,s]T u(ξ ))]�s

+
∫ α(t)
α(t)

[a(γ )h(u(γ )) + b(γ )h(maxξ∈[βγ ,γ ]T u(ξ ))]

◦ α–(s)�̃s, t ∈ T,

, t ∈ [βτ , t]T.

(.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/255
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Therefore,

u(t) ≤ φ(t) + z(t), t ∈ [βτ ,∞)
T
. (.)

From the definition of the function z(t), it follows that

z(t) ≤
∫ t

t

{
p(s)h

(
φ(s) + z(s)

)
+ q(s)h

(
max

ξ∈[βs,s]T
φ(ξ ) + max

ξ∈[βs,s]T
z(ξ )

)}
�s

+
∫ α(t)

α(t)

{
a(γ )h

(
φ(γ ) + z(γ )

)
+ b(γ )h

(
max

ξ∈[βγ ,γ ]T
φ(ξ ) + max

ξ∈[βγ ,γ ]T
z(ξ )

)}
◦ α–(s)�̃s

≤ f (t) +
∫ t

t

{
p(s)h

(
z(s)

)
+ q(s)h

(
max

ξ∈[βs,s]T
z(ξ )

)}
�s

+
∫ α(t)

α(t)

{
a(γ )h

(
z(γ )

)
+ b(γ )h

(
max

ξ∈[βγ ,γ ]T
z(ξ )

)}
◦ α–(s)�̃s, t ∈ T, (.)

z(t) ≤ φ(t), t ∈ [βτ , t]T, (.)

where the function f (t) is defined in (.).
Since the function f (t) : T → (,∞) is nondecreasing and f (t) = maxs∈[βτ ,t]T φ(s), by

using Theorem . for (.) and (.), we get

z(t) ≤ f (t)H–
(
H() +

∫ t

t

[
p(s) + q(s) + a(s)α�(s) + b(s)α�(s)

]
�s

)
, t ∈ T,

which results in (.). This completes the proof. �

Now we will consider an inequality in which the unknown function into the left part is
presented in a power.

Theorem . Let the following conditions be fulfilled:
(i) The conditions (i)-(iii) of Theorem . and (iii) of Theorem . are satisfied.
(ii) The function k ∈ Crd(T, (,∞)) is nondecreasing and the following inequality

L := max
s∈[βτ ,t]T

φ(s)≤ n
√
k(t), n >  (.)

holds.
(iii) The function u ∈ Crd([βτ ,∞)T,R+) and satisfies the inequalities

un(t) ≤ k(t) +
∫ t

t

[
p(s)h

(
u(s)

)
+ q(s)h

(
max

ξ∈[βs,s]T
u(ξ )

)]
�s

+
∫ α(t)

α(t)

[
a(γ )h

(
u(γ )

)
+ b(γ )h

(
max

ξ∈[βγ ,γ ]T
u(ξ )

)]
◦ α–(s)�̃s, t ∈ T, (.)

u(t) ≤ φ(t), t ∈ [βτ , t]T. (.)
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Then, for all t ∈ T satisfying

H() +
∫ t

t

[
p(s) + q(s) + a(s)α�(s) + b(s)α�(s)

]
�s ∈Dom

(
H–),

we have

u(t) ≤ 
n
c
–n
n k(t) +

n – 
n

c

n +

(
L + g(t)

)
H–

(
H()

+
∫ t

t

[
p(s) + q(s) + a(s)α�(s) + b(s)α�(s)

]
�s

)
, (.)

where

g(t) =
∫ t

t

[
p(s)h

(
w(s)

)
+ q(s)h

(
max

ξ∈[βs,s]T
w(ξ )

)]
�s

+
∫ α(t)

α(t)

[
a(γ )h

(
w(γ )

)
+ b(γ )h

(
max

ξ∈[βγ ,γ ]T
w(ξ )

)]
◦ α–(s)�̃s, (.)

with

w(t) =

⎧⎨⎩ 
n c

–n
n k(t) + n–

n c 
n , t ∈ T,


n c

–n
n k(t) + n–

n c 
n , t ∈ [βτ , t]T

(.)

for any constant c≥ .

Proof Define a function z : [βτ ,∞)T →R+ by

z(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫ t
t
[p(s)h(u(s)) + q(s)h(maxξ∈[βs,s]T u(ξ ))]�s

+
∫ α(t)
α(t)[a(γ )h(u(γ )) + b(γ )h(maxξ∈[βγ ,γ ]T u(ξ ))]

◦ α–(s)�̃s, t ∈ T,

, t ∈ [βτ , t]T.

(.)

It follows from inequality (.) for t ∈ T that

u(t) ≤ [
k(t) + z(t)

] 
n .

Using Lemma ., for any c ≥ , we obtain

u(t) ≤ 
n
c
–n
n

[
k(t) + z(t)

]
+
n – 
n

c

n

=

n
c
–n
n k(t) +

n – 
n

c

n +


n
c
–n
n z(t)

= w(t) +

n
c
–n
n z(t), t ∈ T. (.)

From inequality (.) and applying Lemma ., for any c ≥ , we have

n
√
k(t) ≤ 

n
c
–n
n k(t) +

n – 
n

c

n . (.)
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Indeed, by using inequality (.), we have for t ∈ [βτ , t]T

u(t) ≤ φ(t)≤ φ(t) +

n
c
–n
n z(t) ≤ w(t) +


n
c
–n
n z(t), (.)

where w(t) is defined by (.).
Now we define a nondecreasing function v : T → (,∞) by v(t) = L + g(t), where L and

g(t) are defined by (.) and (.), respectively.
From the definition of the function z(t), it follows that

z(t) ≤
∫ t

t

{
p(s)h

(
w(s) +


n
c
–n
n z(s)

)
+ q(s)h

(
max

ξ∈[βs,s]T
w(ξ ) +


n
c
–n
n max

ξ∈[βs,s]T
z(ξ )

)}
�s

+
∫ α(t)

α(t)

{
a(γ )h

(
w(γ ) +


n
c
–n
n z(γ )

)
+ b(γ )h

(
max

ξ∈[βγ ,γ ]T
w(ξ ) +


n
c
–n
n max

ξ∈[βγ ,γ ]T
z(ξ )

)}
◦ α–(s)�̃s

≤ v(t) +
∫ t

t

[
p(s)h

(

n
c
–n
n z(s)

)
+ q(s)h

(
max

ξ∈[βs,s]T

n
c
–n
n z(ξ )

)]
�s

+
∫ α(t)

α(t)

[
a(γ )h

(

n
c
–n
n z(γ )

)
+ b(γ )h

(
max

ξ∈[βγ ,γ ]T


n
c
–n
n z(ξ )

)]
◦ α–(s)�̃s, t ∈ T, (.)

z(t) ≤ φ(t), t ∈ [βτ , t]T. (.)

From inequalities (.) and (.), we get for c≥ , n > 


n
c
–n
n z(t) ≤ v(t) +

∫ t

t

[
p(s)h

(

n
c
–n
n z(s)

)
+ q(s)h

(
max

ξ∈[βs,s]T

n
c
–n
n z(ξ )

)]
�s

+
∫ α(t)

α(t)

[
a(γ )h

(

n
c
–n
n z(γ )

)
+ b(γ )h

(
max

ξ∈[βγ ,γ ]T


n
c
–n
n z(ξ )

)]
◦ α–(s)�̃s, t ∈ T, (.)


n
c
–n
n z(t) ≤ φ(t), t ∈ [βτ , t]T. (.)

Applying Theorem . for (.) and (.), we obtain


n
c
–n
n z(t) ≤ v(t)H–

(
H() +

∫ t

t

[
p(s) + q(s) + a(s)α�(s) + b(s)α�(s)

]
�s

)
, t ∈ T,

which results in (.). This completes the proof. �

Next we will consider an inequality which has powers on both sizes.

Theorem . Let the following conditions be fulfilled:
(i) The conditions (i)-(iii) of Theorem . and (iii) if Theorem . are satisfied.
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(ii) The function k ∈ Crd(T, (,∞)) is nondecreasing and the following inequality

K := max
s∈[βτ ,t]T

{
φε(s),φl(s)

} ≤ m
n
c
m–n
n k(t) +

n – 
n

c
m
n (.)

holds for any constant c≥  and n ≥ m≥ l ≥ δ ≥ ε > .
(iii) The function u ∈ Crd([βτ ,∞)T,R+) and satisfies the inequalities

un(t) ≤ k(t) +
∫ t

t

[
p(s)h

(
um(s)

)
+ q(s)h

(
max

ξ∈[βs,s]T
ul(ξ )

)]
�s

+
∫ α(t)

α(t)

[
a(γ )h

(
uδ(γ )

)
+ b(γ )h

(
max

ξ∈[βγ ,γ ]T
uε(ξ )

)]
◦ α–(s)�̃s, t ∈ T, (.)

u(t) ≤ φ(t), t ∈ [βτ , t]T. (.)

Then, for all t ∈ T satisfying

H() +
∫ t

t

[
p(s) + q(s) + a(s)α�(s) + b(s)α�(s)

]
�s ∈Dom

(
H–),

we have

u(t) ≤ 
n
c
–n
n k(t) +

n – 
n

c

n +


m
c
–m
n

(
K + λ(t)

)
H–

(
H()

+
∫ t

t

[
p(s) + q(s) + a(s)α�(s) + b(s)α�(s)

]
�s

)
, (.)

where

λ(t) =
∫ t

t

[
p(s)h

(
w(s)

)
+ q(s)h

(
max

ξ∈[βs,s]T
w(ξ )

)]
�s

+
∫ α(t)

α(t)

[
a(γ )h

(
w(γ )

)
+ b(γ )h

(
max

ξ∈[βγ ,γ ]T
w(ξ )

)]
◦ α–(s)�̃s, (.)

with

w(t) =

⎧⎨⎩m
n c

m–n
n k(t) + n–

n cm
n , t ∈ T,

m
n c

m–n
n k(t) + n–

n cm
n , t ∈ [βτ , t]T.

(.)

Proof We define a function z : [βτ ,∞)T →R+ by

z(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫ t
t
[p(s)h(um(s)) + q(s)h(maxξ∈[βs,s]T u

l(ξ ))]�s

+
∫ α(t)
α(t)

[a(γ )h(uδ(γ )) + b(γ )h(maxξ∈[βγ ,γ ]T u
ε(ξ ))]

◦ α–(s)�̃s, t ∈ T,

, t ∈ [βτ , t]T.

(.)
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From inequality (.) we have for t ∈ T

u(t) ≤ [
k(t) + z(t)

] 
n ,

ul(t) ≤ [
k(t) + z(t)

] l
n ,

um(t) ≤ [
k(t) + z(t)

]m
n ,

uδ(t) ≤ [
k(t) + z(t)

] δ
n ,

uε(t) ≤ [
k(t) + z(t)

] ε
n .

By using Lemma ., for any c≥ , we obtain

u(t) ≤ 
n
c
–n
n k(t) +

n – 
n

c

n +


n
c
–n
n z(t), t ∈ T, (.)

uε(t) ≤ ε

n
c

ε–n
n k(t) +

n – ε

n
c

ε
n +

ε

n
c

ε–n
n z(t)

≤ w(t) +
m
n
c
m–n
n z(t), t ∈ T, (.)

uδ(t) ≤ δ

n
c

δ–n
n k(t) +

n – δ

n
c

δ
n +

δ

n
c

δ–n
n z(t)

≤ w(t) +
m
n
c
m–n
n z(t), t ∈ T, (.)

ul(t) ≤ l
n
c
l–n
n k(t) +

n – l
n

c
l
n +

l
n
c
l–n
n z(t)

≤ w(t) +
m
n
c
m–n
n z(t), t ∈ T, (.)

um(t) ≤ m
n
c
m–n
n k(t) +

n –m
n

c
m
n +

m
n
c
m–n
n z(t)

≤ w(t) +
m
n
c
m–n
n z(t), t ∈ T. (.)

Moreover, we have

uε(t) ≤ φε(t) ≤ φε(t) +
m
n
c
m–n
n z(t)

≤ w(t) +
m
n
c
m–n
n z(t), t ∈ [βτ , t]T (.)

and

ul(t) ≤ φl(t)≤ φl(t) +
m
n
c
m–n
n z(t)

≤ w(t) +
m
n
c
m–n
n z(t), t ∈ [βτ , t]T, (.)

where w(t) is defined by (.). From the definition of the function z(t), it follows that

z(t) ≤
∫ t

t

{
p(s)h

(
w(s) +

m
n
c
m–n
n z(s)

)
+ q(s)h

(
max

ξ∈[βs,s]T
w(ξ ) + max

ξ∈[βs,s]T
m
n
c
m–n
n z(ξ )

)}
�s
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+
∫ α(t)

α(t)

{
a(γ )h

(
w(γ ) +

m
n
c
m–n
n z(γ )

)
+ b(γ )h

(
max

ξ∈[βγ ,γ ]T
w(ξ ) + max

ξ∈[βγ ,γ ]T

m
n
c
m–n
n z(ξ )

)}
◦ α–(s)�̃s

≤ ρ(t) +
∫ t

t

[
p(s)h

(
m
n
c
m–n
n z(s)

)
+ q(s)h

(
max

ξ∈[βs,s]T
m
n
c
m–n
n z(ξ )

)]
�s

+
∫ α(t)

α(t)

[
a(γ )h

(
m
n
c
m–n
n z(γ )

)
+ b(γ )h

(
max

ξ∈[βγ ,γ ]T

m
n
c
m–n
n z(ξ )

)]
◦ α–(s)�̃s, t ∈ T, (.)

z(t) ≤ φ(t), t ∈ [βτ , t]T. (.)

From inequalities (.) and (.), we have

m
n
c
m–n
n z(t) ≤ ρ(t) +

∫ t

t

[
p(s)h

(
m
n
c
m–n
n z(s)

)
+ q(s)h

(
max

ξ∈[βs,s]T
m
n
c
m–n
n z(ξ )

)]
�s

+
∫ α(t)

α(t)

[
a(γ )h

(
m
n
c
m–n
n z(γ )

)
+ b(γ )h

(
max

ξ∈[βγ ,γ ]T

m
n
c
m–n
n z(ξ )

)]
◦ α–(s)�̃s, t ∈ T, (.)

m
n
c
m–n
n z(t) ≤ φ(t), t ∈ [βτ , t]T, (.)

where a nondecreasing function ρ(t) : T → (,∞) is defined by ρ(t) := K + λ(t), where K
and λ(t) are defined in (.) and (.), respectively.
Applying Theorem . for (.) and (.), we obtain

m
n
c
m–n
n z(t) ≤ ρ(t)H–

(
H() +

∫ t

t

[
p(s) + q(s) + a(s)α�(s) + b(s)α�(s)

]
�s

)
, t ∈ T,

which results in (.). This completes the proof. �

In the case when the unknown function is involved nonlinearly in the left part of the
inequality, we obtain the following result.

Theorem . Let the following conditions be fulfilled:
(i) The conditions (i)-(iv) of Theorem . are satisfied.
(ii) The function � ∈ C(R+,R+) is strictly increasing, limt→∞ �(t) = ∞.
(iii) The function u ∈ Crd([βτ ,∞)T,R+) and satisfies the inequalities

�
(
u(t)

) ≤ k +
∫ t

t

[
p(s)h

(
u(s)

)
+ q(s)h

(
max

ξ∈[βs,s]T
u(ξ )

)]
�s

+
∫ α(t)

α(t)

[
a(γ )h

(
u(γ )

)
+ b(γ )h

(
max

ξ∈[βγ ,γ ]T
u(ξ )

)]
◦ α–(s)�̃s, t ∈ T, (.)

u(t) ≤ φ(t), t ∈ [βτ , t]T, (.)

where k ≥ .
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Then, for all t ∈ T satisfying

H̃
(
�(P)

)
+

∫ t

t

[
p(s) + q(s) + a(s)α�(s) + b(s)α�(s)

]
�s ∈Dom

(
H̃–)

and

H̃–
(
H̃

(
�(P)

)
+

∫ t

t

[
p(s) + q(s) + a(s)α�(s) + b(s)α�(s)

]
�s

)
∈Dom

(
�–),

we have

u(t) ≤ �–
{
H̃–

(
H̃

(
�(P)

)
+

∫ t

t

[
p(s) + q(s) + a(s)α�(s) + b(s)α�(s)

]
�s

)}
, (.)

where

P =max
{
�–(k), max

s∈[βτ ,t]T
φ(s)

}
(.)

and

H̃(x) =
∫ x

x


h(�–(r))

dr, x > , (.)

where H̃(∞) = ∞, and H̃– is the inverse of H̃ .

Proof Define a function z : [βτ ,∞)T →R+ by

z(t) =

⎧⎪⎨⎪⎩
�(P) +

∫ t
t
[p(s)h(u(s)) + q(s)h(maxξ∈[βs,s]T u(ξ ))]�s

+
∫ α(t)
α(t)

[a(γ )h(u(γ )) + b(γ )h(maxξ∈[βγ ,γ ]T u(ξ ))] ◦ α–(s)�̃s, t ∈ T,
�(P), t ∈ [βτ , t]T,

where P is defined by (.). Note that the function z(t) is nondecreasing.
It follows that the inequality

u(t) ≤ �–(z(t)), t ∈ [βτ ,∞)
T

holds. Therefore, for t ∈ T and s ∈ [t, t]T, we have

max
ξ∈[βs,s]T

u(ξ ) ≤ max
ξ∈[βs,s]T

�–(z(ξ )) = �–(z(s)).
For t ∈ T and s ∈ [α(t),α(t)]T̃, we have

h
(

max
ξ∈[βγ ,γ ]T

u(ξ )
)

◦ α–(s)≤ h
(

max
ξ∈[βγ ,γ ]T

�–(z(ξ ))) ◦ α–(s)

= h
(

max
ξ∈[βα–(s),α–(s)]T

�–(z(ξ )))
= h

(
�–(z(α–(s)

)))
= h

(
�–(z(γ ))) ◦ α–(s).
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Then, from the definition of z(t) and the above analysis, we get for t ∈ T that

z(t) ≤ �(P) +
∫ t

t

[
p(s)h

(
�–(z(s))) + q(s)h

(
max

ξ∈[βs,s]T
�–(z(ξ )))]

�s

+
∫ α(t)

α(t)

[
a(γ )h

(
�–(z(γ ))) + b(γ )h

(
max

ξ∈[βγ ,γ ]T
�–(z(ξ )))]

◦ α–(s)�̃s, t ∈ T, (.)

z(t) ≤ �(P), t ∈ [βτ , t]T. (.)

According to Theorem ., from inequalities (.) and (.), we have

z(t) ≤ H̃–
(
H̃

(
�(P)

)
+

∫ t

t

[
p(s) + q(s) + a(s)α�(s) + b(s)α�(s)

]
�s

)
, t ∈ T,

which results in (.). This completes the proof. �

In the case when in place of the constant k involved in Theorem . we have a function
k(t), we obtain the following result.

Theorem . Let the following conditions be fulfilled:
(i) The conditions (i)-(iii) of Theorem ., (ii) of Theorem . and (ii) of Theorem . are

satisfied.
(ii) The function k ∈ Crd(T, [,∞)) is nondecreasing and the inequality

Q =maxs∈[βτ ,t]T φ(s) ≤ �–(k(t)) holds.
(iii) The function u ∈ Crd([βτ ,∞)T,R+) and satisfies the inequalities

�
(
u(t)

) ≤ k(t) +
∫ t

t

[
p(s)h

(
u(s)

)
+ q(s)h

(
max

ξ∈[βs,s]T
u(ξ )

)]
�s

+
∫ α(t)

α(t)

[
a(γ )h

(
u(γ )

)
+ b(γ )h

(
max

ξ∈[βγ ,γ ]T
u(ξ )

)]
◦ α–(s)�̃s, t ∈ T, (.)

u(t) ≤ φ(t), t ∈ [βτ , t]T. (.)

Then, for all t ∈ T satisfying

H̃() +
∫ t

t

[
p(s) + q(s) + a(s)α�(s) + b(s)α�(s)

]
�s ∈Dom

(
H̃–)

and

k(t)H̃–
(
H̃() +

∫ t

t

[
p(s) + q(s) + a(s)α�(s) + b(s)α�(s)

]
�s

)
∈Dom

(
�–),

we have

u(t) ≤ �–
{
k(t)H̃–

(
H̃() +

∫ t

t

[
p(s) + q(s) + a(s)α�(s) + b(s)α�(s)

]
�s

)}
, (.)

where H̃(x) is defined by (.).
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Proof Define a function z : [βτ ,∞)T →R+ by

z(t) =

⎧⎪⎨⎪⎩
k(t) +

∫ t
t
[p(s)h(u(s)) + q(s)h(maxξ∈[βs,s]T u(ξ ))]�s

+
∫ α(t)
α(t)

[a(γ )h(u(γ )) + b(γ )h(maxξ∈[βγ ,γ ]T u(ξ ))] ◦ α–(s)�̃s, t ∈ T,
k(t), t ∈ [βτ , t]T.

Note that the function z(t) is nondecreasing. It follows that the inequality

u(t) ≤ �–(z(t)), t ∈ [βτ ,∞)
T

holds. Therefore, for t ∈ T and s ∈ [t, t]T, we have

max
ξ∈[βs,s]T

u(ξ ) ≤ max
ξ∈[βs,s]T

�–(z(ξ )) = �–(z(s)).
For t ∈ T and s ∈ [α(t),α(t)]T̃, we have

h
(

max
ξ∈[βγ ,γ ]T

u(ξ )
)

◦ α–(s) ≤ h
(

max
ξ∈[βγ ,γ ]T

�–(z(ξ ))) ◦ α–(s)

= h
(

max
ξ∈[βα–(s),α–(s)]T

�–(z(ξ )))
= h

(
�–(z(α–(s)

)))
= h

(
�–(z(γ ))) ◦ α–(s).

Then, from the definition of z(t) and the above analysis, we get for t ∈ T that

z(t) ≤ k(t) +
∫ t

t

[
p(s)h

(
�–(z(s))) + q(s)h

(
max

ξ∈[βs,s]T
�–(z(ξ )))]

�s

+
∫ α(t)

α(t)

[
a(γ )h

(
�–(z(γ ))) + b(γ )h

(
max

ξ∈[βγ ,γ ]T
�–(z(ξ )))]

◦ α–(s)�̃s, t ∈ T, (.)

z(t) ≤ k(t), t ∈ [βτ , t]T. (.)

According to Theorem ., from inequalities (.) and (.), we have

z(t) ≤ k(t)H̃–
(
H̃() +

∫ t

t

[
p(s) + q(s) + a(s)α�(s) + b(s)α�(s)

]
�s

)
, t ∈ T,

which results in (.). This completes the proof. �

4 An application
In this section, in order to illustrate our results, we consider the following first-order dy-
namic equation with ‘maxima’:

x�(t) = F
(
t,x(t), max

s∈[βt,t]T
x(s)

)
, t ∈ T, (.)
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and initial condition

x(t) = φ(t), t ∈ [βτ , t]T, (.)

where F ∈ Crd(T × R × R,R), φ ∈ Crd([βt, t]T,R),  < β < , τ is a constant such that
βτ ≤ t.

Corollary . Assume that:

(H) There exists a strictly increasing function α ∈ Crd(T,R+) such that α(T) = T̃ is a time
scale and min{t,α(t)} = τ .

(H) There exist functions A,B,C,D,α� ∈ Crd(T,R+) and an integer p >  such that for
t ∈ T, u, v ∈R,

∣∣F(t,u, v)∣∣ ≤ (
A(t) + B(t)α�(t)

) p
√|u| + (

C(t) +D(t)α�(t)
) p
√|v|. (.)

Then the solution x(t) of IVP (.)-(.) satisfies the following inequality:

∣∣x(t)∣∣ ≤
{
M

p–
p +

p – 
p

∫ t

t

[
A(s) +C(s) +B(s)α�(s) +D(s)α�(s)

]
�s

} p
p–

, t ∈ T, (.)

where

M = max
s∈[βτ ,t]T

∣∣φ(s)∣∣.
Proof It is easy to see that the solution x(t) of IVP (.)-(.) satisfies the following equa-
tion:

x(t) = φ(t) +
∫ t

t
F
(
s,x(s), max

ξ∈[βs,s]T
x(ξ )

)
�s. (.)

Using the assumption (H), it follows from (.) that

∣∣x(t)∣∣ ≤ ∣∣φ(t)∣∣ + ∫ t

t

∣∣∣F(
s,x(s), max

ξ∈[βs,s]T
x(ξ )

)∣∣∣�s

≤ ∣∣φ(t)∣∣ + ∫ t

t

[(
A(s) + B(s)α�(s)

) p
√∣∣x(s)∣∣

+
(
C(s) +D(s)α�(s)

)
p

√∣∣∣ max
ξ∈[βs,s]T

x(ξ )
∣∣∣]�s

≤ ∣∣φ(t)∣∣ + ∫ t

t

[
A(s) p

√∣∣x(s)∣∣ +C(s) p

√
max

ξ∈[βs,s]T

∣∣x(ξ )∣∣]�s

+
∫ t

t

[
B(s) p

√∣∣x(s)∣∣ +D(s) p

√
max

ξ∈[βs,s]T

∣∣x(ξ )∣∣]α�(s)�s

=
∣∣φ(t)∣∣ + ∫ t

t

[
A(s) p

√∣∣x(s)∣∣ +C(s) p

√
max

ξ∈[βs,s]T

∣∣x(ξ )∣∣]�s

+
∫ α(t)

α(t)

[
B(γ ) p

√∣∣x(γ )∣∣ +D(γ ) p

√
max

ξ∈[βγ ,γ ]T

∣∣x(ξ )∣∣] ◦ α–(s)�̃s. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/255


Thiramanus et al. Journal of Inequalities and Applications 2014, 2014:255 Page 19 of 20
http://www.journalofinequalitiesandapplications.com/content/2014/1/255

Hence Corollary . yields the estimate

∣∣x(t)∣∣ ≤
{
M

p–
p +

p – 
p

∫ t

t

[
A(s) +C(s) +B(s)α�(s) +D(s)α�(s)

]
�s

} p
p–

, t ∈ T. (.)

Inequality (.) gives the bound on the solution x(t) of IVP (.)-(.). �

Example . Consider the following first-order dynamic equation with ‘maxima’ on time
scale T = {n : n ∈ Z} ∪ {} (Z stands for the integer set):⎧⎪⎪⎨⎪⎪⎩

x�(t) = 
 tan

–(( + t) √x(t))
+  sin((et +  cos(π t)) 

√
maxs∈[ 

 t,t]T
x(s)), t ∈ T,

x(t) = , t ∈ [  , ]T,

(.)

where T = [,∞)∩T.

Here φ(t) = , β = /, p = , F(t,x(t),maxs∈[βt,t]T x(s)) = (tan–(( + t) × √x(t)))/ +
 sin((et +  cos(π t)) 

√
maxs∈[ 

 t,t]T
x(s)), t = , τ = .

By choosing α(t) = t, we can show that α(T) = T̃⊆ T and min{t,α(t)} = . Clearly,

∣∣∣F(
t,x(t), max

s∈[βt,t]T
x(s)

)∣∣∣ = ∣∣∣∣  tan–
((
 + t

) 
√
x(t)

)
+  sin

((
et +  cos(π t)

)


√
max

s∈[ 
 t,t]T

x(s)
)∣∣∣∣

≤ (
 + t

) 
√∣∣x(t)∣∣ + (

et +  cos(π t)
)



√∣∣∣ max
s∈[ 

 t,t]T
x(s)

∣∣∣
and

max
s∈[(/()),()]T

∣∣φ(s)∣∣ = .

On the other hand, we have α�(t) = . Set A(t) = , B(t) = t, C(t) = et and D(t) =
 cos(π t). Hence, Corollary . yields the estimate

∣∣x(t)∣∣ ≤
{



 +




∫ t



[
 + es + s +  cos(πs)

]
�s

} 

, t ∈ T.
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