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Abstract
In this paper, we define and study some new subclasses of starlike and
close-to-convex functions with respect to symmetrical points. These functions map
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1 Introduction
Let A be the class of functions of the form

f (z) = z +
∞∑
n=

anzn, (.)

which are analytic in the open unit disc E = {z : |z| < }. Let S, K , S∗, and C be the sub-
classes of A which consist of univalent, close-to-convex, starlike (with respect to origin),
and convex functions, respectively. For recent developments, extensions, and applications,
see [–] and the references therein.
A function f in A is said to be uniformly convex in E if f is a univalent convex function

along with the property that, for every circular arc γ contained in E, with center ξ also in
E, the image curve f (γ ) is a convex arc. The class of uniformly convex functions is denoted
byUCV . The corresponding classUST is defined by the relation that f ∈UCV if, and only
if, zf ′ ∈UST . It is well known [] that f ∈UCV if, and only if

∣∣∣∣zf
′′(z)

f ′(z)

∣∣∣∣ <�
{
 +

zf ′′(z)
f ′(z)

}
(z ∈ E).

Uniformly starlike and convex functions were first introduced by Goodman [] and then
studied by various other authors. If f , g ∈ A, we say f is subordinate to g in E, written as
f ≺ g or f (z) ≺ g(z), if there exists a Schwarz function w(z) such that f (z) = g(w(z)) for
z ∈ E.
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For  ≤ β < , the class P(β) consists of functions p(z) analytic in E with p() =  such
that�p(z) > β for z ∈ E, and, with β = , we obtain thewell-known class P of Carathéodory
functions with positive real part.
For k ∈ [,∞), the conic regions �k are defined as follows, see []:

�k =
{
u + iv : u > k

√
(u – ) + v

}
.

For fixed k, �k represents the conic regions bounded, successively, by the imaginary axis
(k = ), the right branch of a hyperbolic ( < k < ) and a parabola v = u– (k = ).When
k > , the domain becomes a bounded domain being the interior of the ellipse.
We shall consider the case when k ∈ [, ]. Related to the domain�k , the following func-

tions pk(z), k ∈ [, ], play the role of extremal functions mapping in E onto �k :

pk(z) =

⎧⎪⎪⎨
⎪⎪⎩

+z
–z (k = ),

 + 
π (log

+
√
z

–
√
z )

 (k = ),

 + 
–k sinh

[( 
π
arccosk) arctanh

√
z] ( < k < ).

(.)

These functions are univalent in E and belong to the class P. Using the subordination
concept, we define the class P(pk) as follows.
Let p(z) be analytic in E with p() = . Then p ∈ P(pk) if, and only if, p≺ pk in E and pk(z)

are given by (.).
The conic domains �k can be generalized as given by

�k,β = ( – β)�k + β ,

with the corresponding extremal function

pk,β (z) = ( – β)pk + β
(
 ≤ β < ,k ∈ [, ]

)
.

It can easily be seen that the analytic function p(z), with p() = , belongs to the class
P(pk,β ) if p(z) ≺ pk,β (z) in E.
It is easy to verify that P(pk,β ) is a convex set. It is known [] that

P(pk) ⊂ P
(

k
k + 

)
⊂ P,

and, for p ∈ P(pk), we have

∣∣argp(z)∣∣ ≤ σ
π


,

where

σ =

π
arctan


k
. (.)

So we can write p(z) = hσ (z), h ∈ P.

http://www.journalofinequalitiesandapplications.com/content/2014/1/254


Noor Journal of Inequalities and Applications 2014, 2014:254 Page 3 of 14
http://www.journalofinequalitiesandapplications.com/content/2014/1/254

Also

P(pk,β )⊂ P
(
k + β

k + 

)
⊂ P.

Sakaguchi [] introduced and studied the class S∗
s of starlike functions with respect to

symmetrical points. The class S∗
s includes the classes of convex and odd starlike functions

with respect to the origin. It was shown [] that a necessary and sufficient condition for
f ∈ S∗

s to be univalent and starlike with respect to symmetrical points in E is that

(
zf ′(z)

f (z) – f (–z)

)
∈ P, z ∈ E.

Das and Singh [] defined the classes Cs of convex functions with respect to symmetrical
points and showed that a necessary and sufficient condition for f ∈ Cs is that

(zf ′(z))′

(f (z) – f (–z))′
∈ P, z ∈ E.

It is also well known [] that f ∈ Cs if, and only if, zf ′ ∈ S∗
s .

We now define the following.

Definition . Let f ∈ A. The f is said to be in the class k – STs(β) if, and only if,

zf ′(z)
(f (z) – f (–z))

∈ P(pk,β ), z ∈ E.

It can easily be seen that

k – STs(β)⊂ S∗
s ⊂ S∗

s , β =
k + β

k + 
.

Also, for β =  = k, the class k – STs(β) reduces to S∗
s .

The class k –UCVs(β) is defined as follows.

Definition . Let f ∈ A. Then f ∈ k –UCVs(β) if, and only if zf ′ ∈ k – STs(β) for z ∈ E.

We note that

k –UCVs(β)⊂ Cs(β)⊂ Cs, β =
k + β

k + 
.

Definition . Let f ∈ A. Then f ∈ k –UKs(β) if, and only if, there exists g ∈ k – STs(β)
such that

(
zf ′(z)

g(z) – g(–z)

)
∈ P(pk,β ), z ∈ E.

Since P(pk,β ) ⊂ P(β) ⊂ P, β = k+β

k+ , and k – STs(β)⊂ S∗
s , we note that

k –UKs(β) ⊂ Ks ⊂ K ,

http://www.journalofinequalitiesandapplications.com/content/2014/1/254
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where kS consists of close-to-convex functions with respect to symmetrical starlike func-
tions.
From the definition, it is clear that k –UKs(β) consists of univalent functions.
For k = , β =  and f (z) = g(z), k –UKs(β) reduces to the class S∗

s .

2 Preliminary results
We shall need the following lemmas to prove our main results.

Lemma . [] Let q(z) be a convex function in E with q() =  and let another function
h : E →C be with �h(z) > . Let p(z) be analytic in E with p() =  such that

(
p(z) + h(z)zp′(z)

) ≺ q(z), z ∈ E.

Then p(z) ≺ q(z), z ∈ E.

Lemma . Let N(z), D(z) be analytic in E with

N() =  =D(z)

and let D ∈ S∗ for z ∈ E. Then N ′(z)
D′(z) ∈ P(pk,β ) implies that N(z)

D(z) ∈ P(pk,β ) for z ∈ E.

Proof Let

N(z)
D(z)

= p(z).

Then

N ′(z)
D′(z)

= p(z) + h(z)
(
zp′(z)

)
, h(z) =


h(z)

,

where

h(z) =
zD′(z)
D(z)

∈ P.

Since N ′(z)
D′(z) ∈ P(pk,β ), we have

N ′(z)
D′(z)

=
(
p(z) + h(z)

(
zp′(z)

)) ≺ pk,β (z), z ∈ E.

We now use Lemma . and this implies that

N(z)
D(z)

= p(z) ≺ pk,β (z) in E.

This proves that N(z)
D(z) ∈ P(pk,β ) for z ∈ E. �

The following lemma is an easy extension of a result proved in [].

http://www.journalofinequalitiesandapplications.com/content/2014/1/254
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Lemma . Let k ∈ [,∞) and γ, δ be any complex numbers with γ �=  and let �{ γk
k+ +

δ} > β . If h(z) is analytic in E, h() =  and it satisfies

(
h(z) +

zh′(z)
γh(z) + δ

)
≺ pk,β (z), (.)

and qk,β (z) is an analytic solution of

(
qk,β (z) +

zq′
k,β (z)

γqk,β (z) + δ

)
= pk,β (z),

then qk,β is univalent and

h(z) ≺ qk,β (z) ≺ pk,β (z),

and qk,β (z) is the best dominant of (.).

3 The class k – STs(β)
In this section, we shall study some basic properties of the class k – STs(β).

Theorem . Let f ∈ k – STs(β). Then the odd function

	(z) =


[
f (z) – f (–z)

]
, (.)

belongs to k – ST(β) in E.

In particular 	(z) is an odd starlike function of order β = k+β

k+ in E.

Proof Logarithmic differentiation of (.) and simple computation yield

z	 ′(z)
	(z)

=



[
zf ′(z)

f (z) – f (–z)
+
(–z)f ′(–z)
f (–z) – f (z)

]

=


[
p(z) + p(z)

]
, for z ∈ E,p,p ∈ P(pk,β ).

Since P(pk,β ) is a convex set, it follows that z	 ′(z)
	(z) ∈ P(pk,β ) and thus 	 ∈ k – ST(β)

in E. �

As a special case, we note that, for k =  = β , 
 [f (z) – f (–z)] = 	(z) ∈ S∗ in E, and hence

zf ′
	

∈ P. We now discuss a geometric property for f ∈ k – STs(β). Here we investigate the
behavior of the inclusion of the tangent at a point w(θ ) = f (reiθ ) to the image �r of the
circle Cr = {z : |z| = r},  ≤ r < , θ ∈ [, π ], under the mapping by means of a function f
from the class f ∈ k – STs(β).
Let

�(θ ) =
π


+ θ + arg f ′(reiθ ) = arg

∂

∂θ
f
(
reiθ

)
,
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and, for θ > θ, θ, θ ∈ [, π ],

�(θ) –�(θ) = θ + arg f ′(reiθ) – θ – arg f ′(reiθ).
Now, since

θ + arg f ′(reiθ ) = θ +�{
–i ln f ′(reiθ )},

then

∂

∂θ

(
θ + arg f ′(reiθ )) =�

{
 +

reiθ f ′′(reiθ )
f ′(reiθ )

}
.

Hence

∫ θ

θ

∂

∂θ

(
θ + arg f ′(reiθ ))dθ =

∫ θ

θ

�
{
 +

reiθ f ′′(reiθ )
f ′(reiθ )

}
dθ .

Also, on the other hand,

∫ θ

θ

∂

∂θ

(
θ + arg f ′(reiθ ))dθ = θ + arg f ′(reiθ) – θ – arg f ′(reiθ)

=�(θ) –�(θ).

So, the integral on the left side of the last inequality characterizes the increment of the
angle of the inclination of the tangent to the curve �r between the points w(θ) and w(θ)
for θ > θ.
We have the following necessary condition for f ∈ k – STs(β).

Theorem . Let f ∈ k – STs(β). Then, with z = reiθ and  ≤ θ < θ ≤ π ,  ≤ β <  and
 ≤ k ≤ , we have

∫ θ

θ

�
{
(zf ′(z))′

f ′(z)

}
dθ > –σπ +  cos–

{
( – β)

 – ( – β)r

}
+ β(θ – θ),

where σ is given by (.) and β = k+β

k+ .

Proof Since f ′(z)
	 ′(z) ∈ P(pk,β ), 	(z) = 

 [f (z) – f (–z)] and 	 ∈ k –UCV (β) ⊂ C(β).
We can write

f ′(z) =
(
	 ′

(z)
)–βhσ (z), 	 ∈ C,h ∈ P(β),

and this gives us, with z = reiθ , ≤ r < ,  ≤ θ < θ ≤ π ,

∫ θ

θ

�
{
(zf ′(z))′

f ′(z)

}
dθ = ( – β)

∫ θ

θ

�
{
(z	 ′

(z))′

	 ′
(z)

}
dθ

+ σ

∫ θ

θ

�h′(z)
h(z)

dθ + β(θ – θ). (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/254
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For h ∈ P(β), we observe that

∂

∂θ
argh

(
reiθ

)
=

∂

∂θ
�{

–i lnh
(
reiθ

)}

=�
{
reiθ

h′(reiθ )
h(reiθ )

}
.

Therefore

∫ θ

θ

�
{
reiθh′(reiθ )
h(reiθ )

}
dθ = argh

(
reiθ

)
– argh

(
reiθ

)
,

and

max
h∈P(β)

∣∣∣∣
∫ θ

θ

�
{
reiθh′(reiθ )
h(reiθ )

}
dθ

∣∣∣∣ = max
h∈P(β)

∣∣argh(reiθ) – argh
(
reiθ

)∣∣.

We can write


 – β

[
h(z) – β

]
= p(z), p ∈ P,

and for |z| = r < , it is well known that

∣∣∣∣p(z) –  + r

 – r

∣∣∣∣ ≤ r
 – r

.

From this, we have
∣∣∣∣h(z) –  + ( – β)r

 – r

∣∣∣∣ ≤ ( – β)r
 – r

.

Thus the values of h are contained in the circle of Apollonius whose diameter is the line
segment from –(–β)r

+r to +(–β)r
–r and has the radius (–β)r

–r . So | argh(z)| attains its maxi-
mum at points where a ray from origin is tangent to the circle, that is, when

argh(z) = ± sin–
(

( – β)r
 – ( – β)r

)
. (.)

From (.), we observe that

max
h∈P(β)

∣∣∣∣
∫ θ

θ

�
{
reiθ

h′(reiθ )
h(reiθ )

}
dθ

∣∣∣∣ ≤  sin–
(

( – β)r
 – ( – β)r

)

= π –  cos–
(

( – β)r
 – ( – β)r

)
. (.)

Also, for 	 ∈ C,

∫ θ

θ

�
{
 + reiθ

	 ′′
 (reiθ )

	 ′
(reiθ )

}
dθ ≥ . (.)

Using (.) and (.) in (.), we obtain the required result. �

http://www.journalofinequalitiesandapplications.com/content/2014/1/254
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We note the following special cases:
. For k = , ≤ θ < θ ≤ π , z = reiθ , it follows from Theorem . that

∫ θ

θ

�
{
 +

zf ′′(z)
f ′(z)

}
dθ > –π (z ∈ E).

This is a necessary and sufficient condition for f to be close-to-convex (hence
univalent) in E; see []. This also shows that STs(β) ⊂ K .

. For k = 
∫ θ
θ

�{ + zf ′′(z)
f ′(z) }dθ > –π

 .
. When k ∈ [, ], it is obvious that σ ∈ (, ]. In this case, the class k – STs(β)

consists of strongly close-to-convex functions of order σ in the sense of
Pommerenke [, ].

Theorem . (Integral representation) Let f ∈ k – STs(β). Then

f ′(z) =


p(z) exp

∫ z




t
[
p(t) + p(–t) – 

]
dt,

where p ∈ P(pk,β ), z ∈ E.

Proof Since f ∈ k – STs(β), we can write

zf ′(z)
f (z) – f (–z)

= p(z), p ∈ P(pk,β ).

This gives us

[f (z) – f (–z)]′

f (z) – f (–z)
–

z
=


[
p(z) – p(–z) – 

]

and the result follows when we integrate. �

When k = , β = , we obtain the result for the class S∗
s given in [].

We now study the class k – STs(β) under a certain integral operator.

Theorem . Let g ∈ k – STs(β) and let for m = , , , . . . ,G be defined by

G(z) =
m + 
zm

∫ z


tm–{g(t) – g(–t)

}
dt. (.)

Then G(z) belongs to k – STs(β) in E.

Proof Let

J(z) =
∫ z


tm– g(t) – g(–t)


dt.

Since g ∈ k – STs(β), 
 {g(z) – g(–z)} ∈ k – ST(β) ⊂ S∗(β) ⊂ S∗, and β = k+β

k+ . Therefore it
can easily be verified that J(z) is (m + )-valently starlike in E.

http://www.journalofinequalitiesandapplications.com/content/2014/1/254
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We can write (.) as

zmG(z) = (m + )J(z),

and, differentiating logarithmically, we have

zG′(z)
G(z)

=
zJ ′(z) –mJ(z)

J(z)
=
N(z)
D(z)

,

say, where N() =D() =  and D is (m + )-valently starlike.
Let

N(z)
D(z)

= h(z).

Then

N ′(z)
D′(z)

= h(z) +
zh′(z)
h(z)

, h(z) =
zD′(z)
D(z)

∈ P

= h(z) +H(z)
(
zh′(z)

)
, H =


h

∈ P. (.)

Since

N ′(z)
D′(z)

=
(zh′(z))′ –mJ ′(z)

J ′(z)

=
{
(zJ ′(z))′

J ′(z)
–m

}
∈ P(pk,β ).

We now apply Lemma . to obtain

N(z)
D(z)

=
zG′(z)
G(z)

∈ P(pk,β ), z ∈ E.

This proves that G ∈ k – ST(β) in E. �

Theorem . Let f , g ∈ k – STs(β) and let F be defined by the following integral operator:

F(z) =
(

γ +

δ

)
z–


δ

∫ z


t

δ
–

[
f (t) – f (–t)



] 
+γ

[
g(t) – g(–t)



]
dt, (.)

where z ∈ E, δ > , γ ≥  and [ k(+γ )
k+ + ( 

δ
– )] > β . Then F(z) belongs to k – ST(β) for z ∈ E.

When g(z) = z, γ = , we obtain a generalized formof the Bernardi operator; see []. Also
for g(z) = z, γ = , and δ = 

 , we have the well-known integral operator studied by Libera
[] who showed that it preserves the geometric properties of convexity, starlikeness, and
close-to-convexity.

Proof Let f (z)–f (–z)
 = 	(z), g(z)–g(–z)

 = 	(z). Then 	,	 ∈ k – ST(β) in E. We can write
(.) as

F(z) =
(

γ +

δ

)
z–


δ

∫ z


t

δ
–(	(t)

) 
+γ

(
	(t)

)
dt. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/254
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Differentiating (.) logarithmically, and with p(z) = zF ′(z)
F(z) , we have

γ

 + γ

z	 ′


	(z)
+


 + γ

z	 ′


	(z)
= p(z) +

zp′(z)
( + γ )p(z) + ( 

δ
– )

. (.)

Since, for i = , , 	i ∈ k – ST(β), z	 ′
(z)

	
= h(z),

z	 ′
(z)

	
= h(z) both belong to P(pk,β ) in E,

and P(pk,β ) is a convex set. Therefore

(
γ

 + γ
h(z) +


 + γ

h(z)
)

∈ P(pk,β ), z ∈ E. (.)

From (.) and (.), it follows that

(
p(z) +

zp′(z)
( + γ )p(z) + ( 

δ
– )

)
≺ pk,β(z).

We now apply Lemma . which gives us

p(z) ≺ qk,β(z) ≺ pk,β (z).

Thus F ∈ k – ST(β) and the proof is complete. �

4 The class k – UKs(β)
Here we shall study some properties of the class k –UKs(β) which consists of k-uniformly
close-to-convex functions.
Let L(r, f ) denote the length of the image of the circle |z| = r under f . We prove the

following.

Theorem . Let f ∈ k –UKs(β). Then, for  < r < , k ∈ [, ],

L(r, f ) =O()
(


 – r

)σ–β

, β <
σ


,

where β = k+β

k+ and σ is given by (.), and O() is a constant depending only on k, β .

Proof For f ∈ k –UKs(β), we can write

zf ′(z) = 	(z)hσ (z), h ∈ P,	 ∈ S∗(β), (.)

and 	(z) = {g(z) – g(–z)}, g ∈ k – STs(β).
Since 	 ∈ S∗(β) and is odd, there exists an odd starlike function 	(z) such that

	(z) = z
(

	(z)
z

)–β

= z
(

	(z)
z

) –β
k+

.

Thus, with z = reiθ ,

L(r, f ) =
∫ π



∣∣zf ′(z)
∣∣dθ =

∫ π



∣∣zβ
(
	(z)

)–βhσ (z)
∣∣dθ ,

http://www.journalofinequalitiesandapplications.com/content/2014/1/254
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and using Hölder’s inequality, we have

L(r, f ) ≤ πrβ
(


π

∫ π



∣∣	(z)
∣∣(–β)( z

z–σ ) dθ

) –σ
z

(

π

∫ π



∣∣h(z)∣∣ dθ

) σ

. (.)

For h ∈ P, it is well known [] that


π

∫ π



∣∣h(z)∣∣ dθ ≤  + r

 – r
. (.)

Using (.) and subordination for odd starlike functions in (.), it follows that

L(r, f ) ≤ C(β,σ )
(


 – r

)[(–β)( 
–σ )–][ +r


–r ]

σ


=O()
(


 – r

)σ–β

,

where C and O() are constants depending only on β and σ . This completes the proof.�

We now discuss the growth rate of coefficients of f ∈ k –UKs(β).

Theorem . Let f ∈ k –UKs(β) and be given by (.). Then

an =O()nσ–β–, n≥ ,β <
σ


,

where O() is a constant depending only on σ and β and σ , β are as given in Theorem ..

Proof For z = reiθ , n≥ , Cauchy’s Theorem gives us

n|an| = 
πrn+

∣∣∣∣
∫ π


zf ′(z)e–inθ dθ

∣∣∣∣
≤ 

πrn+

∫ π



∣∣zf ′(z)
∣∣dθ

=


πrn
L(r, f ).

With r = ( – 
n ), we use Theorem . and obtain the required result. �

Theorem . Let f ∈ k –UKs(β) and let F be defined by

F(z) =
m + 
zm

∫ z


tm–{f (t) – f (–t)

}
dt. (.)

Then F ∈ k – UKs(β) in E. That is, the class k – UKs(β) is preserved under the integral
operator (.).

Proof Since f ∈ k –UKs(β), we can write

{
zf ′(z)

g(z) – g(–z)

}
∈ P(pk,β ), g ∈ k – STs(β)⊂ S∗

S(β).
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Let G(z) = 
 {g(z) – g(–z)} and be defined by (.). By Theorem ., g ∈ k – ST(β) and

G ∈ k – SsT(β) ⊂ S∗
s (β). Let G = zG′

. Then we can write

G′
(z) =



[
zg(z) – g(–z)

]′, G ∈ k –UCVs(β).

Thus, from (.) and g = zg ′
, g ∈ Cs(β), we have

F ′(z)
[g(z) – g(–z)]′

=
zm{f (z) – f (–z)} –m

∫ z
 t

m–{f (t) – f (–t)}dt
zm{g(z) – g(–z)} –m

∫ z
 tm–{g(t) – g(–t)}dt

=
N(z)
D(z)

,

say. We note that N() =D() = , and for g ∈ CS(β),

(zD′(z))′

D′(z)
=m +

{z[g(z) – g(–z)]′}′
{g(z) – g(–z)}′

=m + h(z), h ∈ P(β).

Since P(β) is a convex set, D ∈ Cs(β) ⊂ S∗ in E. We thus have

N ′(z)
D′(z)

=



[
zf ′(z)

[g(z) – g(–z)]′
+

(–z)f ′(–z)
[g(–z) – g(z)]′

]
∈ P(pk,β ).

Now, using Lemma ., it follows that

N(z)
D(z)

=
F ′(z)

(g(z) – g(–z))′
∈ P(pk,β ) for z ∈ E.

This proves that F ∈ k –UKS(β) in E. �

We study a partial converse of the above result as follows.

Theorem . Let ( zf ′(z)
g(z)–g(–z) ) ≺ pk(z) in E and let

F(z) =


 +m
z–m

(
zmf (z)

)′, m = , , , . . . . (.)

Then F ∈ Ks for |z| < r, where

r =
{

m + 
( – β) +

√
(z – β) + (m + )(m –  + β)

}
, β =

k + β

k + 
. (.)

Proof We shall need the following well-known results for p ∈ P(α), ≤ α < ; see []:

 – ( – α)r
 + r

≤ ∣∣p(z)∣∣ ≤  + ( – α)r
 – r

, (.)

∣∣p′(z)
∣∣ ≤ [�p(z) – α]

 – r
. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/254
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Since f ∈ k –UKs(β), there exists g ∈ S∗
s (β) such that, for z ∈ E.

(
zf ′(z)

g(z) – g(–z)

)
= p(z), p ∈ P(pk) ⊂ P(α),α =

k
k + 

.

From (.), we have

F(z) =


 +m
[
mf (z) + zf ′(z)

]
,

and this gives us

zF ′
(z)

g(z) – g(–z)
=


m + 

[
mf ′(z)

g(z) – g(–z)
+

z(zf ′(z))′

g(z) – g(–z)

]

=


m + 
[
mp(z) + zp′(z) + p(z)h(z)

]
,

where

h(z) =
z	 ′(z)
	(z)

∈ P(β), 	(z) = g(z) – g(–z).

Now, using (.) and (.), we have

�
{

zF ′
(z)

g(z) – g(–z)

}
≥ (�p(z) – α)

 +m

{
m +

 – ( – β)r
 + r

–
r

 – r

}

=
�p(z) – α

 +m

[
T(r)
 – r

]
, (.)

where

T(r) = (m + ) – ( – β)r + (–m – β + )r.

We note that T() =  +m >  and T() = – < . So there exists r ∈ (, ). The right hand
side of (.) is positive for |z| < r, where r is given by (.). This implies that F ∈ Ks for
|z| < r and the proof is complete. �

We have the following special cases.
. For k =  = β , f ∈ Ks. Then F, defined by (.) belongs to Ks for |z| < r = +m

+
√
+m .

. When m =  and β =  (that is, k =  = β), then F(z) = (zf (z))′
 belongs to the same

class for |z| < 
 . This result has been proved by Livingston [] for convex and

starlike functions.
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