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Abstract
For S(T ), the sum of the two largest Laplacian eigenvalues of a tree T , an upper bound
is obtained. Moreover, among all trees with n ≥ 4 vertices, the unique tree which
attains the maximal value of S(T ) is determined.
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1 Introduction
Let V (G) be the vertex set and E(G) be the edge set of a graph G. The numbers of ver-
tices and edges of G are denoted by n(G) and m(G), respectively. For a vertex v ∈ V (G),
let NG(v) be the set of vertices adjacent to v and dG(v) = |NG(v)| be the degree of v. Partic-
ularly, denote by �(G) the maximum degree of G. The diameter of a connected graph G,
denoted by d(G), is the maximum distance among all pairs of vertices in G. Let A(G) be
the adjacency matrix of G and D(G) be the diagonal matrix of vertex degrees. The matrix
D(G) – A(G) is called the Laplacian matrix of G and its eigenvalues are called the Lapla-
cian eigenvalues of G. Let μ ≥ μ ≥ · · · ≥ μn be the Laplacian eigenvalues of a graph G
with n vertices. It is well known that μn =  and

∑n–
i= μi = m(G). In particular, μn– is

called the algebraic connectivity of G and it is denoted by α(G).
The Laplacian matrix is an important topic in the theory of graph spectra. Particularly,

much literature has paid attention to μ, μ, μn– or μ –μn– for trees (see, for example,
[–]). Let Sn be the star of order n, Ska,b be the tree obtained from two stars Sa+, Sb+ by
joining a path of length k between their central vertices (see Figure ). As is well known,
among all trees of order n, Sn has the largest value of μ (see []) and Sn–, has the second
largest value of μ (see []). On the other hand, Guo [] proved that these two trees also
attain the first two smallest values ofμ, respectively. This implies thatμ,μ cannot attain
simultaneously themaximal (orminimal) value and even the relation between them seems
like a seesaw. Therefore, it is interesting to investigate the value of μ + μ. Moreover,
Zhang [] showed that the Sk–,k–, S


k–,k–, S


k–,k– attain simultaneously the largest value

of μ among all trees with k vertices. Then Shao et al. [] showed that Sk–,k– attains the
largest value of μ among all trees with k +  vertices.
Anothermotivation to study the value ofμ +μ came from a result ofHaemers et al. [],

who showed that μ + μ ≤ m(G) +  for any graph G. This result implies that Brouwer’s
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Figure 1 Ska,b : a tree of order a + b + k + 1.

conjecture [],

μ +μ + · · · +μk ≤ m(G) +
(
k + 


)
,

is true for k = . Considering a tree T , we have μ + μ ≤ n(T) + . Recently, Fritscher et
al. [] improved this bound by giving μ +μ < n(T) +– 

n(T) . This paper determines the
extremal tree that attains the bound of μ +μ. Moreover, for general connected graphs,
we also give a conjecture on the extremal graphs for μ +μ.

2 A sharp upper bound ofμ1 +μ2

Let Sk(G) be the sum of the largest k Laplacian eigenvalues of a graph G. When k = , we
shall write S(G) instead of Sk(G) for simplicity. For graphs G and H , we denote by G ∪H
the graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H). The following lemmas
come from an important result as regards a real symmetric matrix.

Lemma . ([]) Let G,G, . . . ,Gr be some edge-disjoint graphs. Then Sk(
⋃r

i=Gi) ≤∑r
i= Sk(Gi) for any k.

Lemma . ([]) For any graph G, S(G)≤ m(G) + .

Lemma . Let G be a connected graph, di = dG(vi) and mi = �vj∈NG(vi)dj/di. Then
(i) [] μ(G) ≥ �(G) + , with equality if and only if �(G) = n(G) – .
(ii) [] μ(G) ≤ n(G), with equality if and only if the complement of G is disconnected.
(iii) [] μ(G) ≤ max{di +mi|vi ∈ V (G)}.

Lemma. ([]) Let T be a tree of order n. If T � Sn, thenμ(T) ≤ μ(Sn–,),with equality
if and only if T ∼= Sn–,.

Corollary . Let T be a tree with n vertices and diameter d ≥ . Then μ(T) < n – ..

Proof Note that any treeT has diameter d ≥  ifT � Sn. According to Lemma.,μ(T) ≤
μ(Sn–,). Further, by Lemma .,

μ
(
Sn–,

) ≤ max{di +mi} = n –  +
n – 
n – 

= n –  +


n – 
< n – .

for n≥ . For n = , a straightforward calculation shows that μ(S,) =  +
√
 < .. �

Lemma . ([]) Let T be a tree of order n and diameter d ≥ . Then α(T) ≥
α(Sd–� n–d+ 	,
 n–d+ �), with equality if and only if T ∼= Sd–� n–d+ 	,
 n–d+ �.
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Lemma . ([]) Let G be a graph with a vertex u of degree one. Then α(G)≤ α(G – u).

Lemma . implies that the algebraic connectivity of a tree is not greater than that of its
subtree.

Lemma . ([]) Let Tk
n (n≥ k + ) be a tree obtained from a star Sn–k by replacing its k

edges with k paths of length two, respectively. If k ≥ , then μ(Tk
n ) =

+
√


 .

The following lemma can be found in [] and is known as the Interlacing Theorem of
Laplacian eigenvalues.

Lemma . Let G be a graph of order n and H be a graph obtained from G by deleting an
edge. Then

μ(G) ≥ μ(H) ≥ · · · ≥ μn(G) ≥ μn(H) = .

Next we give the main theorem of this section. Its proof is divided into several sequent
claims.

Theorem . For any tree T with order n≥ , S(T)≤ S(S� n– 	,
 n– �). The equality holds
if and only if T ∼= S� n– 	,
 n– �.

Claim . For any tree T with order n ≥  and diameter d ≤ , S(T) < S(S� n– 	,
 n– �)
except that T ∼= S� n– 	,
 n– �.

Proof If d(T) = , then T ∼= Sa,b for some positive integers a, b with a + b = n– . It is well
known that the Laplacian characteristic polynomial of Sa,b is μ(μ – )n–fa,b(μ), where

fa,b(μ) = μ – (n + )μ + (ab + n + )μ – n. ()

Note that Sa,b contains S

, as a subtree. By Lemma ., μ(Sa,b) ≥ μ(S,) = . Moreover,

we know that for any tree T , α(T)≤ , with equality if and only if T is a star. These imply
that μ(Sa,b), μ(Sa,b), and α(Sa,b) consist of the three roots of fa,b(μ). As follows from (),
we have

μ
(
Sa,b

)
+μ

(
Sa,b

)
+ α

(
Sa,b

)
= n + . ()

By virtue of Lemma ., we have α(Sa,b) > α(S� n– 	,
 n– �) except that (a,b) = (� n–
 	, 
 n–

 �).
Equivalently, S(Sa,b) < S(S� n– 	,
 n– �) except that (a,b) = (� n–

 	, 
 n–
 �).

If d(T) = , then T ∼= Sn. We first give a lower bound of S(S� n– 	,
 n– �) for n ≥ :

S
(
S� n– 	,
 n– �

)
> n + .. ()

Indeed, by () it suffices to show α(S� n– 	,
 n– �) < .. Note that for n≥ , S� n– 	,
 n– � con-

tains S, as a subtree. By Lemma ., α(S� n– 	,
 n– �) ≤ α(S,) =
–

√


 < ..
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Note that S(Sn) = n +  for n ≥ . According to (), we have S(Sn) < S(S� n– 	,
 n– �) for
n≥ . As for n ∈ {, }, a straightforward calculation shows that

S
(
S,

) ≈ ., S
(
S,

) ≈ .. ()

Also we have S(Sn) < S(S� n– 	,
 n– �). �

Claim . For any tree T with order n and diameter d ≥ , S(T) < S(S� n– 	,
 n– �).

Proof Since d(T) ≥ , then n ≥  and there is a path of length  in T . By inequality (), it
suffices to show S(T) ≤ n + .. First suppose that there is a path vv · · · v in T such that
either max{dT (v),dT (v)} ≥  or max{dT (v),dT (v)} ≥ . Let T, T be the two compo-
nents of T – vv. Clearly, both T and T have at least two edges.
If μ, μ of T ∪ T attain at the same component, say T, then by Lemma .,

S(T ∪ T) = S(T) ≤ m(T) + ≤ m(T ∪ T) + . ()

Note that S(vv) = S(S) = . By Lemma .,

S(T)≤ S(T ∪ T) + S(vv) ≤ m(T ∪ T) +  =m(T) +  = n + . ()

Otherwise, S(T ∪ T) = μ(T) + μ(T). Whether max{dT (v),dT (v)} ≥  or
max{dT (v),dT (v)} ≥ , we can observe that max{d(T),d(T)} ≥ . Say d(T) ≥ , then
by Corollary ., μ(T) < n(T) – .. By Lemma .(ii), μ(T)≤ n(T). Hence,

S(T)≤ S(T ∪ T) + S(vv) = n(T) + n(T) – . +  = n + ..

Next, we may assume that each path vv · · · v of length  in T has dT (v) = dT (v) = 
and dT (v) = dT (v) = . This implies that d(T) =  and T ∼= Sa,b for some integers a, bwith
a + b = n – . If a = b = , then T is isomorphic to a path of order  and a straightforward
calculation shows that S(T) = +

√
 < n+., as claimed. Otherwise, assume without loss

of generality that a ≥ . Then dT (v) ≥ . Let T, T be the two components of T – vv
with vv ∈ E(T). Then both T and T have at least two edges. If μ, μ of T ∪T attain
at the same component, say T, then by Lemmas . and .,

S(T)≤ S(T ∪ T) + S(vv) = S(T) +  ≤ m(T) + ≤ m(T) +  = n + .

Otherwise, S(T ∪ T) = μ(T) + μ(T). Note that μ(T) ≤ n(T). Since d(T) = , by
Corollary ., μ(T) < n(T) – .. So

S(T)≤ S(T ∪ T) + S(vv) ≤ n(T) + n(T) – . +  = n + .. �

Claim . For any tree T with order n and diameter , S(T) < S(S� n– 	,
 n– �).

Proof First suppose that T contains a path vv · · · v such that max{dT (v),dT (v)} ≥ .
Now n ≥  and it suffices to show S(T) ≤ n + .. Without loss of generality assume that
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dT (v) ≥ . Let T, T be the two components of T – vv with vv ∈ E(T). Then both T

and T have at least two edges.
If μ, μ of T ∪ T attain at the same component, say T, then similarly to inequalities

() and (), we can observe that S(T)≤ n + .
Now let S(T ∪ T) = μ(T) + μ(T). If dT (v) ≥ , then d(T) ≥  and hence μ(T) <

n(T) – .. So

S(T)≤ S(T ∪ T) + S(vv) < n(T) + n(T) – . +  = n + ..

If dT (v) = , then T ∼= Sa,b for some positive integers a, bwith ≤ a+b = n–.Moreover,
since dT (v) ≥ , then a ≥ . If (a,b) ∈ {(, ), (, )}, a straightforward calculations show
that S(Sa,b) < n + .. Otherwise, Sa,b contains either S


, or S, as a subtree. Since

μ
(
S,

) ≈ ., μ
(
S,

) ≈ .,

it follows from Lemma . that μ(Sa,b) > .. Since Sa,b is not a star, μn–(Sa,b) < . On
the other hand, note that the matrix  · In – [D(Sa,b) – A(Sa,b)] has a identical rows and b
different identical rows, so the multiplicity of eigenvalue  is at least a+ b–  and else five
eigenvalues are μ, μ, μ, μn– and μn = . Since

∑n
i= μi(Sa,b) = (n – ), we have

∑
i=

μi
(
Sa,b

)
+μn–

(
Sa,b

)
+μn

(
Sa,b

)
= (n – ) – (a + b – ) = n + .

This implies that S(Sa,b) < n +  –μ(Sa,b) < n + ..
Next, it suffices to consider the case that each path vv · · · v ofT has dT (v) = dT (v) = .

This implies that T ∼= Tk
n for some k ≥  and n ≥ k + , since d(T) = . According to

Lemma ., μ(Tk
n ) =

+
√


 . Moreover, by Lemma .,

μ
(
Tk
n
) ≤ max{di +mi} = n – k –  +

n – 
n – k – 

≤ n –  +


n – 
.

Thus for n≥ ,

S
(
Tk
n
) ≤ n –  +


n – 

+
 +

√



< n + . < S

(
S� n– 	,
 n–

 �
)
.

When n = , Tk
n is a path. Comparing with (), S(Tk

n ) =  +
√
 < S(S,). This completes

the proof. �

Following fromClaims .-., Theorem . holds and the unique tree with maximal
S(T) is S� n– 	,
 n– �. According to (),

μ
(
S� n– 	,
 n– �

)
< n +  =m

(
S� n– 	,
 n– �

)
+ .

Theorem . Let m, n be two positive integers with n ≤ m ≤ n –  and Gm,n be a graph
of order n and size m obtained from a given edge uv by joining m – n +  independent
vertices with u and v, respectively, and another n – m –  independent vertices with u.
Then S(Gm,n) =m + .
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Proof Let Hs,t be a graph obtained by joining a vertex to s vertices of a given complete
graph of order s + t and Hc

s,t be its complement graph. Then Hc
s,t is isomorphic to the

union of St+ and s isolated vertices. Clearly, the Laplacian eigenvalues of Hc
s,t consist of

t+,  withmultiplicity t– and  withmultiplicity s+. Recall that for any graphGwith n
vertices, μi(G) = n–μn–i(Gc) for  ≤ i ≤ n–  and μn(G) = . So the Laplacian eigenvalues
of Hs,t consist of s + t +  with multiplicity s, s + t with multiplicity t – , s and .
Now Gc

m,n is isomorphic to the union of Hn–m–,m–n+ and an isolated vertex. So the
Laplacian eigenvalues of Gc

m,n consist of n–  with multiplicity n–m–, n– with mul-
tiplicitym– n, n–m– , and  with multiplicity . Therefore, the Laplacian eigenvalues
of Gm,n consist of n, m – n + ,  with multiplicity m – n,  with multiplicity n –m – 
and . So S(Gm,n) = n + (m – n + ) =m + . �

Recall that μ(G) ≤ n(G) for any graph G. When m(G) > n(G) – , Haemers’ bound is
clearly not attainable. Theorem . implies that if m(G) ≤ n(G) – , Haemers’ bound
is always sharp for connected graphs other than trees. Ending the paper, we present a
conjecture on the uniqueness of the extremal graph.

Conjecture . Among all connected graphs with n vertices and n ≤ m ≤ n –  edges,
Gm,n is the unique graph with maximal value of μ +μ.
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