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1 Introduction
In , Aczél [] established the following inequality, which is called the Aczél inequality.

Theorem A Let ai > , bi >  (i = , , . . . ,n), a –
∑n

i= ai > , b –
∑n

i= bi > . Then

(
a –

n∑
i=

ai

)(
b –

n∑
i=

bi

)
≤

(
ab –

n∑
i=

aibi

)

. ()

As is well known, the Aczél inequality plays an important role in the theory of func-
tional equations in non-Euclidean geometry, and many authors (see [–] and references
therein) have given considerable attention to this inequality and its refinements.
In , Popoviciu [] generalized the Aczél inequality () in the form asserted by The-

orem B below.

Theorem B Let p > , q > , 
p + 

q = , let ai > , bi >  (i = , , . . . ,n), ap –
∑n

i= a
p
i > ,

bq –
∑n

i= b
q
i > . Then

(
ap –

n∑
i=

api

) 
p
(
bq –

n∑
i=

bqi

) 
q

≤ ab –
n∑
i=

aibi. ()

Later, in , Vasić and Pečarić [] presented the reversed version of inequality (),
which is stated in the following theorem. The inequality is called the Aczél-Vasić-Pečarić
inequality.
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TheoremC Let p <  (p �= ), p +

q = , and let ai > , bi >  (i = , , . . . ,n), ap –

∑n
i= a

p
i > ,

bq –
∑n

i= b
q
i > . Then

(
ap –

n∑
i=

api

) 
p
(
bq –

n∑
i=

bqi

) 
q

≥ ab –
n∑
i=

aibi. ()

In another paper, Vasić and Pečarić [] presented an interesting generalization of in-
equality (). The inequality is called the generalized Aczél-Vasić-Pečarić inequality.

Theorem D Let arj > , λj > , aλj
j –

∑n
r= a

λj
rj > , r = , , . . . ,n, j = , , . . . ,m, and let∑m

j=

λj

≥ . Then

m∏
j=

(
aλj
j –

n∑
r=

aλj
rj

) 
λj

≤
m∏
j=

aj –
n∑
r=

m∏
j=

arj. ()

In , Tian [] gave the reversed version of inequality () in the following form.

TheoremE Let λ �= , λj <  (j = , , . . . ,m),
∑m

j=

λj

≤ , and let arj > , aλj
j –

∑n
r= a

λj
rj > ,

r = , , . . . ,n, j = , , . . . ,m. Then

m∏
j=

(
aλj
j –

n∑
r=

aλj
rj

) 
λj

≥
m∏
j=

aj –
n∑
r=

m∏
j=

arj. ()

Moreover, in [] Tian established an integral type of generalized Aczél-Vasić-Pečarić
inequality.

Theorem F Let λ > , λj <  (j = , , . . . ,m),
∑m

j= λj = , let Aj >  (j = , , . . . ,m), and

let fj(x) (j = , , . . . ,m) be positive Riemann integrable functions on [a,b] such that Aλj
j –∫ b

a f λj
j (x) dx > . Then

m∏
j=

(
Aλj
j –

∫ b

a
f λj
j (x) dx

) 
λj ≥

m∏
j=

Aj –
∫ b

a

m∏
j=

fj(x) dx. ()

Themain object of this paper is to give several new refinements of inequality () and ().
As an application, a new refinement of inequality () is given.

2 New refinements of generalized Aczél inequality
In order to prove the main results in this section, we need the following lemmas.

Lemma . [] Let arj >  (r = , , . . . ,n, j = , , . . . ,m), let λ be a real number, λj ≤ 
(j = , , . . . ,m), and let β =max{∑m

j= λj, }. Then

n∑
r=

m∏
j=

aλj
rj ≥ n–β

m∏
j=

( n∑
r=

arj

)λj

. ()
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Lemma . [] Let arj >  (r = , , . . . ,n, j = , , . . . ,m), let λj ≥  (j = , , . . . ,m), and let
γ =min{∑m

j= λj, }. Then

n∑
r=

m∏
j=

aλj
rj ≤ n–γ

m∏
j=

( n∑
r=

arj

)λj

. ()

Lemma . [] If x > –, α >  or α < , then

( + x)α ≥  + αx. ()

The inequality is reversed for  < α < .

Lemma . [] Let A,A, . . . ,Am be real numbers, let m be a natural number, and let
m ≥ . Then

∑
≤i<j≤m

(Ai –Aj) =m

( m∑
i=

A
i

)
–

( m∑
i=

Ai

)

. ()

Lemma . Let λ ≤ λ ≤ · · · ≤ λm < , let Xj >  (j = , , . . . ,m), and let m ≥ . Then

m∏
j=

(
 –Xλj

j
) 

λj +
m∏
j=

Xj ≥
{
 –


m(m – )

[
m

( m∑
j=

Xλj
j

)
–

( m∑
j=

Xλj
j

)]} m
λ

. ()

Proof From the assumptions in Lemma ., we find


(m – )λi

< ,


(m – )λj
–


(m – )λi

≤  ( ≤ i < j ≤ m),

and

∑
≤i<j≤m

[


(m – )λi
+


(m – )λi

+


(m – )λj
–


(m – )λi

]

=
∑

≤i<j≤m

[


(m – )λi
+


(m – )λj

]
=


λ

+

λ

+ · · · + 
λm

. ()

Thus, by using inequality () we have

∏
≤i<j≤m

[
 –

(
Xλi
i –Xλj

j
)] 

(m–)λi

=
∏

≤i<j≤m

{[
Xλi
i +

(
 –Xλj

j
)] 

(m–)λi
[
Xλj
j +

(
 –Xλi

i
)] 

(m–)λi

× [
Xλj
j +

(
 –Xλj

j
)] 

(m–)λj
– 
(m–)λi

}
≤

∏
≤i<j≤m

[(
Xλi
i

) 
(m–)λi

(
Xλj
j

) 
(m–)λi

(
Xλj
j

) 
(m–)λj

– 
(m–)λi

]
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+
∏

≤i<j≤m

[(
 –Xλj

j
) 
(m–)λi

(
 –Xλi

i
) 
(m–)λi

(
 –Xλj

j
) 
(m–)λj

– 
(m–)λi

]

=
∏

≤i<j≤m

X


m–
i X


m–
j +

∏
≤i<j≤m

[(
 –Xλi

i
) 
(m–)λi

(
 –Xλj

j
) 
(m–)λj

]

=
m∏
j=

Xj +
m∏
j=

(
 –Xλj

j
) 

λj . ()

Noting the fact that there are m(m–)
 product terms in the expression

∏
≤i<j≤m[– (Xλi

i –

Xλj
j )], and using the arithmetic-geometric mean’s inequality, we obtain

∏
≤i<j≤m

[
 –

(
Xλi
i –Xλj

j
)] ≤

{


m(m – )
∑

≤i<j≤m

[
 –

(
Xλi
i –Xλj

j
)]}m(m–)



=
[
 –


m(m – )

∑
≤i<j≤m

(
Xλi
i –Xλj

j
)]m(m–)


. ()

Therefore, we have

∏
≤i<j≤m

[
 –

(
Xλi
i –Xλj

j
)] 

(m–)λi

≥
{ ∏
≤i<j≤m

[
 –

(
Xλi
i –Xλj

j
)]} 

(m–)λ

≥
[
 –


m(m – )

∑
≤i<j≤m

(
Xλi
i –Xλj

j
)] m

λ
. ()

On the other hand, from Lemma . we have

[
 –


m(m – )

∑
≤i<j≤m

(
Xλi
i –Xλj

j
)] m

λ

=

{
 –


m(m – )

[
m

( m∑
j=

Xλj
j

)
–

( m∑
j=

Xλj
j

)]} m
λ

. ()

Consequently, from (), (), and (), we obtain the desired inequality (). �

Lemma . Let λm > , λ ≤ λ ≤ · · · ≤ λm– < , let  < Xm < , Xj >  (j = , , . . . ,m – ),
and let α =max{∑m

j=

λj
, }. If m > , then

m∏
j=

(
 –Xλj

j
) 

λj +
m∏
j=

Xj

≥ n–α

{
 –


(m – )(m – )

[
(m – )

(m–∑
j=

Xλj
j

)
–

(m–∑
j=

Xλj
j

)]}m–
λ

. ()
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If m = , then

∏
j=

(
 –Xλj

j
) 

λj +
∏
j=

Xj ≥ n–α

{
 –

[


( ∑
j=

Xλj
j

)
–

( ∑
j=

Xλj
j

)]} 
λ

. ()

Proof Case I. Whenm > . Let us consider the following product:

∏
≤i<j≤m–

{[
Xλi
i +

(
 –Xλj

j
)] 

(m–)λi
[
Xλj
j +

(
 –Xλi

i
)] 

(m–)λi

× [
Xλj
j +

(
 –Xλj

j
)] 

(m–)λj
– 
(m–)λi

}
. ()

From the hypotheses of Lemma ., it is easy to see that


(m – )λi

< ,


(m – )λj
–


(m – )λi

≤  ( ≤ i < j ≤ m – ),

and

∑
≤i<j≤m–

[


(m – )λi
+


(m – )λi

+


(m – )λj
–


(m – )λi

]

=
∑

≤i<j≤m–

[


(m – )λi
+


(m – )λj

]
=


λ

+

λ

+ · · · + 
λm–

. ()

Then, applying inequality (), we have

∏
≤i<j≤m–

[
 –

(
Xλi
i –Xλj

j
)] 

(m–)λi

=
[
Xλm
m +

(
 –Xλm

m
)] 

λm
∏

≤i<j≤m–

{[
Xλi
i +

(
 –Xλj

j
)] 

(m–)λi

× [
Xλj
j +

(
 –Xλi

i
)] 

(m–)λi
[
Xλj
j +

(
 –Xλj

j
)] 

(m–)λj
– 
(m–)λi

}
≤ nα–

{
X

λm
λm
m

∏
≤i<j≤m–

[(
Xλi
i

) 
(m–)λi

(
Xλj
j

) 
(m–)λi

(
Xλj
j

) 
(m–)λj

– 
(m–)λi

]

+
(
 –Xλm

m
) 

λm
∏

≤i<j≤m–

[(
 –Xλj

j
) 
(m–)λi

(
 –Xλi

i
) 
(m–)λi

× (
 –Xλj

j
) 
(m–)λj

– 
(m–)λi

]}

= nα–
{
Xm

∏
≤i<j≤m–

X


m–
i X


m–
j

+
(
 –Xλm

m
) 

λm
∏

≤i<j≤m–

[(
 –Xλi

i
) 
(m–)λi

(
 –Xλj

j
) 
(m–)λj

]}

= nα–

[ m∏
j=

Xj +
m∏
j=

(
 –Xλj

j
) 

λj

]
. ()
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There are (m–)(m–)
 product terms in the expression

∏
≤i<j≤m–[ – (Xλi

i – Xλj
j )], and

then we derive from the arithmetic-geometric mean’s inequality that

∏
≤i<j≤m–

[
 –

(
Xλi
i –Xλj

j
)]

≤
{


(m – )(m – )

∑
≤i<j≤m–

[
 –

(
Xλi
i –Xλj

j
)]} (m–)(m–)



=
[
 –


(m – )(m – )

∑
≤i<j≤m–

(
Xλi
i –Xλj

j
)] (m–)(m–)


. ()

Therefore, we have

∏
≤i<j≤m–

[
 –

(
Xλi
i –Xλj

j
)] 

(m–)λi

≥
{ ∏
≤i<j≤m–

[
 –

(
Xλi
i –Xλj

j
)]} 

(m–)λ

≥
[
 –


(m – )(m – )

∑
≤i<j≤m–

(
Xλi
i –Xλj

j
)]m–

λ
. ()

On the other hand, from Lemma . we find

[
 –


(m – )(m – )

∑
≤i<j≤m–

(
Xλi
i –Xλj

j
)]m–

λ

=

{
 –


(m – )(m – )

[
(m – )

(m–∑
j=

Xλj
j

)
–

(m–∑
j=

Xλj
j

)]}m–
λ

. ()

Combining inequalities (), (), and () yields the desired inequality ().
Case II. When m = . By the same method as in Lemma ., it is easy to obtain the

desired inequality (). So we omit the proof. The proof of Lemma . is completed. �

Lemma . Let λ ≥ λ ≥ · · · ≥ λm > , let  < Xj <  (j = , , . . . ,m), and let m ≥ , ρ =
min{∑m

j=

λj
, }. Then

m∏
j=

(
 –Xλj

j
) 

λj +
m∏
j=

Xj

≤ n–ρ

{
 –


m(m – )

[
m

( m∑
j=

Xλj
j

)
–

( m∑
j=

Xλj
j

)]} m
λ

. ()

Proof By the same method as in Lemma ., applying Lemma ., it is easy to obtain the
desired inequality (). So we omit the proof. �
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Lemma . Let λ,λ, . . . ,λm < , let Xj >  (j = , , . . . ,m), and let m ≥ . Then

m∏
j=

(
 –Xλj

j
) 

λj +
m∏
j=

Xj

≥
[
 –


m(m – )

∑
≤i<j≤m

(
Xλi
i –Xλj

j
)] m

min{λ,λ,...,λm}
. ()

Proof After simply rearranging, we write by λj ≤ λj ≤ · · · ≤ λjm the component of
λ,λ, . . . ,λm in increasing order, where j, j, . . . , jm is a permutation of , , . . . ,m.
Then from Lemma . and Lemma . we get

m∏
j=

(
 –Xλj

j
) 

λj +
m∏
j=

Xj

=
(
 –X

λj
j

) 
λj

(
 –X

λj
j

) 
λj · · · ( –Xλjm

jm

) 
λjm +XjXj · · ·Xjm

≥
{
 –


m(m – )

[
m

( m∑
k=

X
λjk
jk

)
–

( m∑
k=

X
λjk
jk

)]} m
λj

=

{
 –


m(m – )

[
m

( m∑
k=

X
λjk
jk

)
–

( m∑
k=

X
λjk
jk

)]} m
min{λ,λ,...,λm}

=
[
 –


m(m – )

∑
≤i<j≤m

(
Xλi
i –Xλj

j
)] m

min{λ,λ,...,λm}
. ()

The proof of Lemma . is completed. �

By the same method as in Lemma ., we obtain the following two lemmas.

Lemma . Let λm > , λ,λ, . . . ,λm– < , let  < Xm < , Xj >  (j = , , . . . ,m–), and let
α =max{∑m

j=

λj
, }. If m > , then

m∏
j=

(
 –Xλj

j
) 

λj +
m∏
j=

Xj

≥ n–α

[
 –


(m – )(m – )

∑
≤i<j≤m–

(
Xλi
i –Xλj

j
)] m–

min{λ,λ,...,λm}
. ()

If m = , then

∏
j=

(
 –Xλj

j
) 

λj +
∏
j=

Xj ≥ n–α

[
 –

∑
≤i<j≤

(
Xλi
i –Xλj

j
)] 

λ
. ()
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Lemma . Let λ,λ, . . . ,λm > , let  < Xj <  (j = , , . . . ,m), and let m ≥ , ρ =
min{∑m

j=

λj
, }. Then

m∏
j=

(
 –Xλj

j
) 

λj +
m∏
j=

Xj

≤ n–ρ

[
 –


m(m – )

∑
≤i<j≤m

(
Xλi
i –Xλj

j
)] m

max{λ,λ,...,λm}
. ()

Now, we give the refinement and generalization of inequality ().

Theorem . Let arj > , λj < , aλj
j –

∑n
r= a

λj
rj > , r = , , . . . ,n, j = , , . . . ,m, and let

m ≥ . Then

m∏
j=

(
aλj
j –

n∑
r=

aλj
rj

) 
λj

≥
{
 –


m(m – )

∑
≤i<j≤m

[ n∑
r=

(
aλi
ri

aλi
i

–
aλj
rj

aλj
j

)]} m
min{λ,λ,...,λm} m∏

j=

aj –
n∑
r=

m∏
j=

arj

≥
m∏
j=

aj –
n∑
r=

m∏
j=

arj. ()

Proof From the assumptions in Theorem ., it is easy to verify that

(aλj
j –

∑n
r= a

λj
rj )


λj

(aλj
j )


λj

>  (j = , , . . . ,m). ()

It thus follows from Lemma . with the substitution Xj = (
a
λj
j –

∑n
r= a

λj
rj

a
λj
j

)

λj in () that

m∏
j=

(∑n
r= a

λj
rj

aλj
j

) 
λj
+

m∏
j=

(aλj
j –

∑n
r= a

λj
rj

aλj
j

) 
λj

≥
{
 –


m(m – )

∑
≤i<j≤m

[(
 –

∑n
r= a

λi
ri

aλi
i

)
–

(
 –

∑n
r= a

λj
rj

aλj
j

)]} m
min{λ,λ,...,λm}

=

{
 –


m(m – )

∑
≤i<j≤m

[ n∑
r=

(
aλi
ri

aλi
i
–
aλj
rj

aλj
j

)]} m
min{λ,λ,...,λm}

, ()

which implies

m∏
j=

(
aλj
j –

n∑
r=

aλj
rj

) 
λj

≥
{
 –


m(m – )

∑
≤i<j≤m

[ n∑
r=

(
aλi
ri

aλi
i

–
aλj
rj

aλj
j

)]} m
min{λ,λ,...,λm}

×
m∏
j=

aj –
m∏
j=

( n∑
r=

aλj
rj

) 
λj

. ()
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On the other hand, it follows from Lemma . that

m∏
j=

( n∑
r=

aλj
rj

) 
λj

≤
n∑
r=

m∏
j=

arj. ()

Combining inequalities () and () yields inequality ().
The proof of Theorem . is completed. �

Theorem . Let λm > , λj <  (j = , , . . . ,m – ), let arj > , aλj
j –

∑n
r= a

λj
rj > , r =

, , . . . ,n, j = , , . . . ,m, and let α =max{∑m
j=


λj
, }. If m > , then

m∏
j=

(
aλj
j –

n∑
r=

aλj
rj

) 
λj

≥ n–α

{
 –


(m – )(m – )

∑
≤i<j≤m–

[ n∑
r=

(
aλi
ri

aλi
i
–
aλj
rj

aλj
j

)]} m–
min{λ,λ,...,λm}

×
m∏
j=

aj –
n∑
r=

m∏
j=

arj

≥ n–α

m∏
j=

aj –
n∑
r=

m∏
j=

arj. ()

If m = , then

∏
j=

(
aλj
j –

n∑
r=

aλj
rj

) 
λj

≥ n–α

{
 –

∑
≤i<j≤

[ n∑
r=

(
aλi
ri

aλi
i

–
aλj
rj

aλj
j

)]} 
λ ∏

j=

aj –
n∑
r=

∏
j=

arj

≥ n–α

∏
j=

aj –
n∑
r=

∏
j=

arj. ()

Proof From the hypotheses of Theorem ., we find that

 <
(aλj

j –
∑n

r= a
λj
rj )


λj

(aλj
j )


λj

<  (j = , , . . . ,m – ),

and

(aλm
m –

∑n
r= aλm

rm )


λm

(aλm
m )


λm

> .

Consequently, by the same method as in Theorem ., and using Lemma . with a sub-

stitution Xj → (
a
λj
j –

∑n
r= a

λj
rj

a
λj
j

)

λj (j = , , . . . ,m) in () and (), respectively, we obtain the

desired inequalities () and (). �

http://www.journalofinequalitiesandapplications.com/content/2014/1/239


Tian and Sun Journal of Inequalities and Applications 2014, 2014:239 Page 10 of 14
http://www.journalofinequalitiesandapplications.com/content/2014/1/239

By the samemethod as in Theorem ., and using Lemma ., we obtain the following
sharpened and generalized version of inequality ().

Theorem . Let arj > , λj > , aλj
j –

∑n
r= a

λj
rj > , r = , , . . . ,n, j = , , . . . ,m, let m ≥ ,

and let ρ =min{∑m
j=


λj
, }. Then

m∏
j=

(
aλj
j –

n∑
r=

aλj
rj

) 
λj

≤ n–ρ

{
 –


m(m – )

∑
≤i<j≤m

[ n∑
r=

(
aλi
ri

aλi
i

–
aλj
rj

aλj
j

)]} m
max{λ,λ,...,λm} m∏

j=

aj –
n∑
r=

m∏
j=

arj

≤ n–ρ

m∏
j=

aj –
n∑
r=

m∏
j=

arj. ()

Therefore, from Lemma . and Theorem . we get a new refinement and generaliza-
tion of inequality ().

Corollary . Let arj > , λj > , aλj
j –

∑n
r= a

λj
rj > , r = , , . . . ,n, j = , , . . . ,m, let m ≥ ,

and let ρ =min{∑m
j=


λj
, }. If max{λ,λ, . . . ,λm} ≥ m

 , then

m∏
j=

(
aλj
j –

n∑
r=

aλj
rj

) 
λj

≤ n–ρ

m∏
j=

aj –
n∑
r=

m∏
j=

arj –
n–ρ

∏m
j= aj

(m – )max{λ,λ, . . . ,λm}
∑

≤i<j≤m

[ n∑
r=

(
aλi
ri

aλi
i

–
aλj
rj

aλj
j

)]

≤ n–ρ

m∏
j=

aj –
n∑
r=

m∏
j=

arj. ()

If max{λ,λ, . . . ,λm} < m
 , then

m∏
j=

(
aλj
j –

n∑
r=

aλj
rj

) 
λj

≤ n–ρ

m∏
j=

aj –
n∑
r=

m∏
j=

arj –
n–ρ

∏m
j= aj

m(m – )
∑

≤i<j≤m

[ n∑
r=

(
aλi
ri

aλi
i

–
aλj
rj

aλj
j

)]

≤ n–ρ

m∏
j=

aj –
n∑
r=

m∏
j=

arj. ()

Remark . If we set
∑m

j=

λj

≥  in Corollary ., then inequalities () and () reduce
to Wu’s inequality ([, Theorem ]).

In particular, putting m = , λ = p, λ = q, ar = ar , ar = br (r = , , . . . ,n) in Theo-
rem ., we obtain a new refinement and generalization of inequality ().
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Corollary . Let ar > , br >  (r = , , . . . ,n), let p,q > , ρ = min{ 
p + 

q , }, and let
ap –

∑n
r= a

p
r > , bq –

∑n
r= b

q
r > . Then

(
ap –

n∑
r=

apr

) 
p
(
bq –

n∑
r=

bqr

) 
q

≤ n–ρ

{
 –

[ n∑
r=

(
apr
ap

–
bqr
bq

)]} 
max{p,q}

ab –
n∑
r=

arbr . ()

Similarly, putting m = , λ = p, λ = q, ar = ar , ar = br (r = , , . . . ,n) in Theorem .
and Theorem ., respectively, we obtain a new refinement and generalization of inequal-
ity ().

Corollary . Let ar > , br >  (r = , , . . . ,n), let p < , q �= , α =max{ 
p +


q , }, and let

ap –
∑n

r= a
p
r > , bq –

∑n
r= b

q
r > . Then

(
ap –

n∑
r=

apr

) 
p
(
bq –

n∑
r=

bqr

) 
q

≥ n–α

{
 –

[ n∑
r=

(
apr
ap

–
bqr
bq

)]} 
min{p,q}

ab –
n∑
r=

arbr . ()

FromLemma . and Theorem . we obtain the following refinement of inequality ().

Corollary . Let arj > , λj < , aλj
j –

∑n
r= a

λj
rj > , r = , , . . . ,n, j = , , . . . ,m, and let

m ≥ . Then

m∏
j=

(
aλj
j –

n∑
r=

aλj
rj

) 
λj

≥
m∏
j=

aj –
n∑
r=

m∏
j=

arj

–
aa · · ·am

(m – )min{λ,λ, . . . ,λm}
∑

≤i<j≤m

[ n∑
r=

(
aλi
ri

aλi
i

–
aλj
rj

aλj
j

)]

. ()

Similarly, from Lemma . and Theorem . we obtain the following refinement and
generalization of inequality ().

Corollary . Let λm > , λj <  (j = , , . . . ,m – ), let arj > , aλj
j –

∑n
r= a

λj
rj > , r =

, , . . . ,n, j = , , . . . ,m, and let α =max{∑m
j=


λj
, },m > . Then

m∏
j=

(
aλj
j –

n∑
r=

aλj
rj

) 
λj

≥ n–α

m∏
j=

aj –
n∑
r=

m∏
j=

arj

–
aa · · ·amn–α

(m – )min{λ,λ, . . . ,λm}
∑

≤i<j≤m–

[ n∑
r=

(
aλi
ri

aλi
i
–
aλj
rj

aλj
j

)]

. ()

If we set
∑m

j=

λj

≤ , then fromCorollary . andCorollary .we obtain the following
refinement of inequality ().
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Corollary . Let λ �= , λj <  (j = , , . . . ,m),
∑m

j=

λj

≤ , let arj > , aλj
j –

∑n
r= a

λj
rj > ,

r = , , . . . ,n, j = , , . . . ,m, and let m > . Then

m∏
j=

(
aλj
j –

n∑
r=

aλj
rj

) 
λj

≥
m∏
j=

aj –
n∑
r=

m∏
j=

arj

–
aa · · ·am

(m – )min{λ,λ, . . . ,λm}
∑

≤i<j≤m–

[ n∑
r=

(
aλi
ri

aλi
i

–
aλj
rj

aλj
j

)]

. ()

3 Application
In this section, we show an application of the inequality newly obtained in Section .

Theorem . Let Aj >  (j = , , . . . ,m), let λ > , λj <  (j = , , . . . ,m),
∑m

j= λj = , m >

, and let fj(x) (j = , , . . . ,m) be positive integrable functions defined on [a,b] with Aλj
j –∫ b

a f λj
j (x) dx > . Then

m∏
j=

(
Aλj
j –

∫ b

a
f λj
j (x) dx

) 
λj ≥

m∏
j=

Aj –
∫ b

a

m∏
j=

fj(x) dx

–
AA · · ·Am

(m – )min{λ,λ, . . . ,λm}
∑

≤i<j≤m–

[∫ b

a

(
f λi
i (x)
Aλi
i

–
f λj
j (x)

Aλj
j

)
dx

]

. ()

Proof For any positive integers n, we choose an equidistant partition of [a,b] as

a < a +
b – a
n

< · · · < a +
b – a
n

k < · · · < a +
b – a
n

(n – ) < b,

xi = a +
b – a
n

i, i = , , . . . ,n, �xk =
b – a
n

, k = , , . . . ,n.

Noting that Aλj
j –

∫ b
a f λj

j (x) dx >  (j = , , . . . ,m), we have

Aλj
j – lim

n→∞

n∑
k=

f λj
j

(
a +

k(b – a)
n

)
b – a
n

>  (j = , , . . . ,m).

Consequently, there exists a positive integer N , such that

Aλj
j –

n∑
k=

f λj
j

(
a +

k(b – a)
n

)
b – a
n

> ,

for all n, l >N and j = , , . . . ,m.
By using Theorem ., for any n >N , the following inequality holds:

m∏
j=

[
Aλj
j –

n∑
k=

f λj
j

(
a +

k(b – a)
n

)
b – a
n

] 
λj

≥
m∏
j=

Aλj
j –

n∑
k=

[ m∏
j=

fj
(
a +

k(b – a)
n

)](
b – a
n

) 
λ

+ 
λ

+···+ 
λm
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–
AA · · ·Am

(m – )min{λ,λ, . . . ,λm}
∑

≤i<j≤m

{ n∑
k=

[

Aλi
i

f λi
i

(
a +

k(b – a)
n

)
b – a
n

–


Aλj
j

f λj
j

(
a +

k(b – a)
n

)
b – a
n

]}

. ()

Since

m∑
j=


λj

= ,

we have

m∏
j=

[
Aλj
j –

n∑
k=

f λj
j

(
a +

k(b – a)
n

)
b – a
n

] 
λj

≥
m∏
j=

Aλj
j –

n∑
k=

[ m∏
j=

fj
(
a +

k(b – a)
n

)](
b – a
n

)

–
AA · · ·Am

(m – )min{λ,λ, . . . ,λm}
∑

≤i<j≤m

{ n∑
k=

[

Aλi
i

f λi
i

(
a +

k(b – a)
n

)
b – a
n

–


Aλj
j

f λj
j

(
a +

k(b – a)
n

)
b – a
n

]}

. ()

Noting that fj(x) (j = , , . . . ,m) are positive Riemann integrable functions on [a,b], we
know that

∏m
j= fj(x) and f λj

j (x) are also integrable on [a,b]. Letting n → ∞ on both sides
of inequality (), we get the desired inequality (). The proof of Theorem . is com-
pleted. �

Remark . Obviously, inequality () is sharper than inequality ().
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