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Abstract
The problem of maximal hyperplane section of Bp(Cn) with p≥ 1 is considered, which
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is established, an upper bound estimate for the volume of complex central
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and p is shown, which extends results of Oleszkiewicz and Pełczyński, Koldobsky and
Zymonopoulou, and Meyer and Pajor.
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1 Introduction
Let Bp(Rn) and Bp(Cn) denote the unit balls of the real and complex n-dimensional �p

spaces, �p(Rn) and �p(Cn), respectively. We denote by λn(K ) the n-dimensional Lebesgue
measure of a compact setK .Wewrite rn,p = λn(Bp(Rn))–/n and cn,p = λn(Bp(Cn))–/n such
that λn(rn,pBp(Rn)) =  and λn(cn,pBp(Cn)) = , respectively.
The extremal volume of central hyperplane section of Bp(Rn) is studied by various au-

thors (see, e.g., [–]). Especially, the left-hand side of the following inequalities is known
due to Meyer and Pajor [] for all p ≥  and p = , and Schmuckenschläger [] for all
 < p < . The right-hand side of the following inequalities is due to Ma and the third
named author [], and it shows an upper bound estimate for the volume of central hyper-
plane sections of normalized �p-balls that does not depend on n and p.

Theorem . Let n ∈ N, n≥ , p≥ , and H any central hyperplane in R
n. Then

≤ λn–
(
rn,pBp

(
R

n)∩H
)≤ √

πe.

Moreover, the minimum occurs for B∞(Rn) if ξ has only one non-zero coordinate where ξ

is the normal vector of H .

Note that Theorem . is proved by determining the extremal value of the isotropic con-
stant of Bp(Rn) together with the well-known relation between the slicing problem and
the isotropic constant of a body. Motivated by this idea, we define a new quantity, called

©2014 Lai et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.journalofinequalitiesandapplications.com/content/2014/1/235
mailto:hebinwu@shu.edu.cn
http://creativecommons.org/licenses/by/2.0


Lai et al. Journal of Inequalities and Applications 2014, 2014:235 Page 2 of 13
http://www.journalofinequalitiesandapplications.com/content/2014/1/235

the complex isotropic constant, and establish its relation to the complex slicing problem.
Thus, the complex version of Theorem . (see Theorem .) can be proved by estimating
the extremal value of the complex isotropic constant of Bp(Cn).
A noteworthy fact is that the extremal volume of complex central hyperplane section

of Bp(Cn) has not been studied until recent years. Other results concerning convex bod-
ies in a complex vector space as ambient space can be found in [–]. Especially, in [],
Oleszkiewicz and Pełczyński proved that  ≤ λn–(cn,∞B∞(Cn) ∩ Hξ ) ≤ , where Hξ is
the complex central hyperplane (see Section . for the definition). Furthermore, they
showed that the minimal sections are the ones orthogonal to vectors with only one non-
zero coordinate, and the maximal sections are orthogonal to vectors of the form ej + σ ek ,
where j �= k, ej and ek are standard basic vectors, and σ ∈ C, |σ | = . In [], Koldobsky
and Zymonopoulou studied the extremal sections of Bp(Cn), for  < p ≤  and showed
that the minimum corresponds to hyperplanes orthogonal to vectors ξ = (ξ, . . . , ξn) ∈ Cn

with |ξ| = · · · = |ξn| and the maximum corresponds to hyperplanes orthogonal to vec-
tors with only one non-zero coordinate. Moreover, a result of Meyer and Pajor [, Corol-
lary .] states the following. Suppose p ≥ , then λn–(cn–,pBp(Cn) ∩ Hξ ) ≥ ; Suppose
 ≤ p ≤ , then λn–(cn–,pBp(Cn) ∩ Hξ ) ≤ , where cn–,p = λn–(Bp(Cn–))–/(n–). Re-
cently, Koldobsky and König [] considered minimal volume of slabs for the complex
cube.
The case p ≤  of the following theorem follows directly from the work of Koldobsky

and Zymonopoulou []. The following theorem extends their results to p > , and it also
shows an upper bound estimate for the volume of complex central hyperplane sections of
normalized complex �p-balls that does not depend on n and p.

Theorem . Let n ∈N, n≥ , p ≥ , and Hξ any complex hyperplane in R
n. Then

≤ λn–
(
cn,pBp

(
C

n)∩Hξ

)≤ e.

Moreover, the minimum occurs for B∞(Cn) if ξ has only one non-zero coordinate.

Our problem is different from the extremal volume of central hyperplane section of
Bp(Rn) problem in two aspects. First, Bp(Cn) �= Bp(Rn) except p = ; Secondly, we do
only (n – )-dimensional sections, sections by subspaces coming from complex hyper-
planes, rather than all (n–)-dimensional sections, and (n– )-dimensional sections in
real case.

2 Notations and preliminaries
2.1 Background on complex vector space
Throughout this paper, we denote their real scalar product by 〈x, y〉 and the Euclidean
norm of x by ‖x‖ =

√〈x,x〉 for x, y ∈ R
n. For x, y ∈ C

n, their complex scalar product by
〈x, y〉c and the modulus of x by ‖x‖ =√〈x,x〉c.
Origin-symmetric convex bodies in C

n are the unit balls of norms on C
n. We denote by

‖ · ‖K the norm corresponding to the body K :

K =
{
z ∈C

n : ‖ · ‖K ≤ 
}
.
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We identify Cn with R
n using the standard mapping, that is, for

ξ = (ξ, . . . ξn) = (ξ + iξ, . . . , ξn + iξn) ∈C
n,

(ξ + iξ, . . . , ξn + iξn)
τ�→ (ξ, ξ, . . . , ξn, ξn). (.)

Since norms on C
n satisfy the equality

‖λz‖ = |λ|‖z‖, ∀z ∈C
n,∀λ ∈C,

origin-symmetric complex convex bodies correspond to those origin-symmetric convex
bodies K in Rn that are invariant with respect to any coordinate-wise two-dimensional
rotation, namely for each θ ∈ [, π ] and each (ξ, ξ, . . . ξn, ξn) ∈ R

n

‖ξ‖K =
∥∥Rθ (ξ, ξ), . . . ,Rθ (ξn, ξn)

∥∥
K , (.)

where Rθ stands for the counterclockwise rotation ofR by the angle θ with respect to the
origin. We define the map R

n →R
n:

ξ = (ξ, ξ, . . . , ξn, ξn)→
(
Rθ (ξ, ξ), . . . ,Rθ (ξn, ξn)

)
as R̃θ for each θ ∈ [, π ].
For ξ ∈C

n, |ξ | = , denote by

Hξ =

{
z ∈C

n : 〈z, ξ〉c =
n∑
k=

zkξk = 

}

the complex hyperplane through the origin, perpendicular to ξ . Under the standard map-
ping from C

n to R
n the hyperplane Hξ turns into a (n– )-dimensional subspace of Rn

orthogonal to the vectors

ξ = (ξ, ξ, . . . , ξn, ξn) and ξ † = (–ξ, ξ, . . . , –ξn, ξn).

The orthogonal two-dimensional subspace H⊥
ξ has an orthonormal basis ξ , ξ †.

Let Bp(Cn) be the �p(Cn)-balls, when viewed as a subset of Rn:

Bp
(
C

n) = {(x + ix, . . . ,xn + ixn) ∈ C
n :

n∑
j=

(
xj + xj

)p/ ≤ 

}

=

{
(x,x, . . . ,xn,xn) ∈R

n :
n∑
j=

(
xj + xj

)p/ ≤ 

}
,

if  < p < ∞, and

B∞
(
C

n) = {(x + ix, . . . ,xn + ixn) ∈ C
n : max

≤j≤n

(
xj + xj

)≤ 
}

=
{
(x,x, . . . ,xn,xn) ∈R

n : max
≤j≤n

(
xj + xj

)≤ 
}
.
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If p ≥ , Bp(Cn) is Rθ -invariant convex body in R
n. Here a convex body is a compact

convex set with non-empty interior.

2.2 Complex isotropic bodies
First, noting that a subsetK ⊂C

n is called a complex convex bodymeans thatK is a convex
body in R

n under the map (.). An important notion in asymptotic convex geometry is
the quantity called isotropic constant (see, e.g., [–]).
Recall that a convex body K in R

n is called isotropic with the isotropic constant LK > 
if λn(K ) = , the origin is the center of mass of K , and

∫
K
〈x, y〉 dx = LK‖y‖ (.)

for every y ∈R
n.

Inspired by the interplay of (real) slicing problem and isotropic constant (see, e.g.,
[, ]), we will consider the complex slicing problem via the quantity called complex
isotropic constant.

Definition A body K ⊂ R
n is called complex isotropic with the complex isotropic con-

stant LK > , if λn(K ) = , the origin is the center of mass of K , and

∫
K

(〈x, y〉 + 〈x†, y〉)dx = L

K‖y‖ (.)

for all y ∈R
n.

This definition is natural since we identify Cn with R
n using the mapping τ and

∣∣〈x, y〉c∣∣ = 〈τ (x), τ (y)〉 + 〈(τ (x))†, τ (y)〉
=
〈
τ (x), τ (y)

〉 + 〈(τ (x)), τ (y)†〉. (.)

Equivalently,

∫
K

(
x⊗ x + x† ⊗ x†

)
dx = L


KIn, (.)

where In denotes the identity operator on Rn, and x⊗ x is the rank  linear operator on
R

n that takes y to 〈x, y〉x. More precisely, (.) means

∫
K
(xixj + xixj)dx =  for  ≤ i �= j ≤ n, (.)∫

K
(xixj – xixj)dx =  for  ≤ i, j ≤ n (.)

and ∫
K

(
xi + xi

)
dx = L


K for ≤ i≤ n. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/235
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Summing (.) with i = , . . . ,n, we have∫
K

‖x‖ dx = nL
K . (.)

Now, we show the relation between real isotropic bodies and complex isotropic bodies
when we consider the convex body defined in R

n.

Theorem . Let K ⊂ R
n be a convex body with λn(K ) = , center of mass at the origin.

Then
(i) if K is (real) isotropic, then K is complex isotropic;
(ii) there exists a complex isotropic convex body K such that K is not (real) isotropic;
(iii) if K is complex isotropic and Rθ -invariant for every θ ∈ [, π ], then K is (real)

isotropic.

Proof (i) From (.) and the definition of isotropy (.), we have∫
K

(〈x, y〉 + 〈x†, y〉)dλn(x)

=
∫
K

(〈x, y〉 + 〈x, y†〉)dλn(x)

=
∫
K
〈x, y〉 dλn(x) +

∫
K

〈
x, y†

〉 dλn(x)

= LK‖y‖ + LK
∥∥y†∥∥ = LK‖y‖.

From (.), we also have L
K = LK .

(ii) We take K as

K = A× B
(
R

)× · · · × B
(
R

)︸ ︷︷ ︸
n–

,

where

A = conv{P,Q,R},

with P = (– 
 ,


 ), Q = (– 

 , –

 ), R = (, ). Then A is a right triangle and the origin is the

center of mass of A. Therefore, K is convex body and the origin is the center of mass of K .
Moreover, it follows that λ(A) = /,

∫
A
x dx dx =

∫ 

– 


∫ –x+

x–
x dx dx =




(.)

and ∫
A
x dx dx =

∫ 

– 


∫ –x+

x–
x dx dx =




. (.)

In this example, it is easy to verify that (.) and (.) are true.

http://www.journalofinequalitiesandapplications.com/content/2014/1/235
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In order to verify (.), we divide it into two cases. For the case that ≤ i≤ n,∫
K

(
xi + xi

)
dλn(x)

= πn–λ(A)
∫
B(R)

(
xi + xi

)
dxi dxi

= πn– 


· π
∫ 


r dr =



πn–.

For the case that i = , together with (.), (.), we obtain∫
K

(
x + x

)
dλn(x)

= πn–
∫
A

(
x + x

)
dx dx

= πn– ·
(




+



)
=


πn–.

Therefore, K is complex isotropic. However, K is not (real) isotropic in view of (.)
and (.).
(iii) From the assumption that K is a complex isotropic Rθ -invariant convex body in

R
n, we have R̃π/K = K . Note that R̃π/x = x† and |det(R̃π/)| = , together with (.), we

obtain

L

K‖y‖ =

∫
K

(〈x, y〉 + 〈x†, y〉)dλn(x)

=
∫
K
〈x, y〉 dλn(x) +

∫
K

〈
x†, y

〉 dλn(x)

=
∫
K
〈x, y〉 dλn(x) +

∫
R̃π/K

〈R̃π/x, y〉 dλn(x)

=
∫
K
〈x, y〉 dλn(x) +

∫
K
〈x, y〉 dλn(x)

= 
∫
K
〈x, y〉 dλn(x).

From (.), it follows that L
K = LK . �

ByTheorem ., the class of complex isotropic bodies is larger than ones of real isotropic
bodies.

3 The complex slicing problem
Observe that (K ∩ span{Hξ , ξ})∩ (Hξ + tξ ) = K ∩ (Hξ + tξ ), together with Brunn’s theorem
(see, e.g., [, p.]), we have the following lemma.

Lemma . Let K be an origin-symmetric convex body in R
n, and f (t) = λn–(K ∩ (Hξ +

tξ )) for t ∈ R. Then f (t)/(n–) is concave and f (t) is decreasing for t ≥ .Moreover, f (t) ≤
f ().

http://www.journalofinequalitiesandapplications.com/content/2014/1/235
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Lemma . Let K be a Rθ -invariant body in R
n, then λn–(K ∩ (Hξ + (rξ + rξ †))) is

constant for all
√
r + r = t.

Proof Since R̃θHξ =Hξ and R̃θK = K for θ ∈ [, π ], we obtain

R̃θ

[
K ∩ (Hξ +

(
rξ + rξ †

))]
= K ∩ (Hξ +

(
rR̃θ ξ + rR̃θ ξ

†
))
. (.)

Obviously, there exists a map R̃θ such that

rξ + rξ † = tR̃θ ξ

for any r, r >  satisfies
√
r + r = t.

Together with (.), we obtain

V
(
K ∩ (Hξ +

(
rξ + rξ †

)))
= V
(
K ∩ (Hξ + tR̃θ ξ )

)
= V
(
R̃θ

(
K ∩ (Hξ + tξ )

))
= V
(
K ∩ (Hξ + tξ )

)
for any r, r >  satisfies

√
r + r = t. �

Lemma . Let K be a Rθ -invariant complex isotropic body in R
n with λn(K ) = , then

λn(K ) = π
∫∞
 tf (t)dt and LK = π

∫∞
 tf (t)dt, where f (t) = λn–(K ∩ (Hξ + tξ )).

Proof From (.) and Lemma ., we have

L

K =

∫
K

(〈x, ξ〉 + 〈x, ξ †
〉)dx

= π
∫ ∞


tλn–

(
K ∩ (Hξ + tξ )

)
dt = π

∫ ∞


tf (t)dt.

A similar argument shows λn(K ) = π
∫∞
 tf (t)dt. �

The following lemma is given by Milman and Pajor in [, Lemma .].

Lemma . Let ϕ :Rn → R+ be a measurable function such that ‖ϕ‖∞ =  and let L be a
symmetric convex body in R

n. Then the function

F(p) =
(∫

Rn
‖x‖pLϕ(x)dx

/∫
L
‖x‖pL dx

)/(n+p)

is an increasing function of p on (–n, +∞).

Theorem . Let K be a Rθ -invariant complex isotropic convex body inR
n with λn(K ) =

, then

LK ≥ √
π


λn–(K ∩Hξ )/

. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/235
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Proof Let f (t) = λn–(K ∩ (Hξ + tξ )). From Lemma ., it follows that f (t) is an even func-
tion. Note that K is Rθ -invariant implies K is origin symmetric. From Lemma ., we have
‖f (t)‖∞ = f (). Taking ϕ(t) := f (t)/f () and L := [–, ] ⊂R in Lemma ., combining with
Lemma ., we get

F() =
(∫

R
|t|f (t)/f ()dt∫ 

– |t| dt
)/

=
(

L
K

πλn–(K ∩Hξ )

)/

and

F() =
(∫

R
|t|f (t)/f ()dt∫ 

– |t|dt
)/

=
(


πλn–(K ∩Hξ )

)/

.

From the comparison F()≥ F(), we have

L

K ≥ 

πλn–(K ∩Hξ )
. (.)

�

Remark If

f (t) =

⎧⎨⎩f (), if – a ≤ t ≤ a for some a > ,

, otherwise,

we have equality in (.).

The following lemma is due to Marshall et al. []. A simple proof is given in [, Lem-
ma .].

Lemma . Let h : R+ → R+ be a decreasing function and let 
 : R+ → R+ satisfying

() =  and such that 
 and 
(t)/t are increasing. Then

G(p) =
(∫∞

 h(
(t))tp dt∫∞
 h(t)tp dt

)/(p+)

is a decreasing function of p on (–,∞) (provided the integrals in G(p) are well defined).

Theorem . Let K be a Rθ -invariant complex isotropic convex body inR
n with λn(K ) =

, then

LK ≤
√


π


λn–(K ∩Hξ )/

.

Proof Let f (t) = λn–(K ∩ (Hξ + tξ )), t ≥ . Let h(t) = ( – t)n– for  ≤ t ≤ , h(t) = 
for t >  and set 
(t) = – (f (t)/f ())/(n–). Note that K is Rθ -invariant implies K is origin
symmetric. FromLemma .,
(t) is convex and all hypotheses of Lemma . are satisfied,
so by Lemma . we get

G() =
(∫∞

 tf (t)/f ()dt∫ 
 t( – t)n– dt

)/

=
(
n(n + )(n + )(n – )L

K
πλn–(K ∩Hξ )

)/

http://www.journalofinequalitiesandapplications.com/content/2014/1/235
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and

G() =
( ∫∞

 tf (t)/f ()dt∫ 
 t( – t)n– dt

)/

=
(

n(n – )
πλn–(K ∩Hξ )

)/

.

From the comparison G() ≤G(), we have

L

K ≤ n(n – )

π (n + )(n + )λn–(K ∩Hξ )
.

Note that

n(n – )
(n + )(n + )

(.)

is increasing when the positive integer n is increasing. Thus, the maximum of (.) occurs
as n tends to infinity. �

4 Extremum of the complex isotropic constant of Bp(Cn)
The following lemma is proved in the spirit of the real counterpart (see, e.g., [, p.]).

Lemma . Let  < p ≤ ∞, then

λn
(
Bp
(
C

n)) = πn(�( + 
p ))

n

�( + n
p )

.

Proof Obviously, λn(B∞(Cn)) = πn. We only need to consider the case that  < p < ∞.
Note that we identify �p(Cn) with the real n-dimensional space equipped with the norm

‖x‖p =
[(
x + x

)p/ + · · · + (xn + xn
)p/]/p.

Then∫
Rn

e–‖x‖pp dλn(x) =
n∏
i=

(∫
R

e–(x

i+x


i)

p/
dxi dxi

)

=
(

π�

(
 +


p

))n

.

On the other hand, we compute the same integral in polar coordinates and the polar for-
mula for the volume:∫

Rn
e–‖x‖pp dλn(x) =

∫
Sn–

∫ ∞


e–r

p‖θ‖pprn– dr dθ

=
�(n/p)

p

∫
Sn–

‖θ‖–np dθ

= �

(
 +

n
p

)
λn
(
Bp
(
C

n)).
Comparing these two expressions for the same integral, we get the result. �

http://www.journalofinequalitiesandapplications.com/content/2014/1/235
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Theorem . Let  ≤ p ≤ ∞, then cn,pBp(Cn) is a complex isotropic convex body in R
n.

Furthermore, its complex isotropic constant is

L

Bp(Cn) =

�( + n
p )

+/n�( + 
p )

π�( + n+
p )�( + 

p )
.

Proof Assume that  ≤ p < ∞. It is easy to verify that (.) and (.) are true for Bp(Cn).
Now, we only need to verify (.) for Bp(Cn). Actually, we can explicitly calculate LBp(Cn)

by using Lemma ., to find that

L

Bp(Cn) =


λn(Bp(Cn))+ 

n

∫
Bp(Cn)

(
x + x

)
dx

=
π

λn(Bp(Cn))+ 
n

∫ 


r
(
 – rp

) n–
p λn–

(
Bp
(
C

n–))dr
=

�( + n
p )

+/n�( + 
p )

π�( + n+
p )�( + 

p )
.

Thus, cn,pBp(Cn) (≤ p <∞) is complex isotropic.
Similarly, π–/B∞(Cn) is complex isotropic and L


B∞(Cn) = /π . �

Remark From Theorem .(iii), cn,pBp(Cn) is in fact isotropic since it is Rθ -invariant.
However, the complex isotropic constant of Bp(Cn) is more useful as the argument in Sec-
tion .

Next, we determine the extreme value ofLBp(Cn) for p ≥ . The approach that we adopted
is similar to the real case due to Ma and the third named author [].

Lemma . Let p > . Then, for each given positive integer n,

F(p) =
�( + n

p )
+/n�( + 

p )

�( + n+
p )�( + 

p )

is a decreasing function for  < p <  and an increasing function for p ≥ .

Proof Making the change of variables q = /p, we have

G(q) = F
(

q

)
=

�( + nq)+/n�( + q)
�( + (n + )q)�( + q)

. (.)

It follows that

d lnG(q)
dq

= 
(
ψ( + q) –ψ( + q)

)
– (n + )

(
ψ
(
 + (n + )q

)
–ψ( + nq)

)
,

where ψ(x) = �′(x)/�(x). Now,

ψ
(
 + (n + )q

)
–ψ( + nq) =

∫ ∞




z

(


( + z)+nq
–


( + z)+(n+)q

)
dz

= –


(n + )q

∫ ∞



t – 

t

q – 

d


tn+
, (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/235
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where we use the following integral representation for the function ψ :

ψ(x) =
∫ ∞




z

(
e–z –


( + z)x

)
dz,

and a change of variable t = ( + z)q.
Let n =  in (.), then

ψ( + q) –ψ( + q) = –

q

∫ ∞



t – 

t

q – 

d

t
.

Thus,

d lnG(q)
dq

=

q

∫ ∞



t – 

t

q – 

d
(


tn+

–

t

)
.

Then it follows that

d lnG(q)
dq

∣∣∣∣
q=

=
∫ ∞


d
(


tn+

–

t

)
= 

and, if  < q < ,

d lnG(q)
dq

=

q

∫ ∞



t – 

t

q – 

d
(


tn+

–

t

)

=
∫ ∞



( – q)t

q + qt – t


q–

q(t

q – )

(


tn+
–


t

)
dt

< ,

where we use the arithmetic-geometric mean inequality, i.e., ( – λ)x + λy ≥ x–λyλ.
Similarly, if q > , we have

d lnG(q)
dq

=

q

∫ ∞



t – 

t

q – 

d
(


tn+

–

t

)

=
∫ ∞



( – 
q )t


q + 

q t

q– – 

q(t

q – )

(

t

–


tn+

)
dt

> .

The result follows from (.). �

The following lemma can be simply deduced as in [, p.].

Lemma . For every complex isotropic convex body K in R
n,

LK ≥ LB(Cn).

Recall that

L

Bp(Cn) =

�( + n
p )

+/n�( + 
p )

π�( + n+
p )�( + 

p )
(.)
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for p≥ . Thus, from Lemma ., we have

LBp(Cn) ≥ LB(Cn) =
(

(n!) n
π (n + )

) 
 ≥ √

πe
. (.)

From Lemma . and (.), it follows that

LBp(Cn) ≤max{LB(Cn),LB∞(Cn)} (.)

for p≥ . The following lemma is given by Gao [].

Lemma . Let  ≤ x≤  and y > . For fixed x, the function

f (x, y) =
(
 +


y

)
ln�( + xy) – ln�

(
 + (y + )x

)
(.)

is a decreasing function of y for y >  when  ≤ x≤ / and for y ≥  when / < x ≤ .

If we set x = /p and y = n in (.) for p≥ , n≥ , by (.), it follows that

LBp(Cn) ≤ LBp(C).

Combining with (.), we have

LBp(Cn) ≤ LB(C) = LB∞(Cn) =
√
π

. (.)

Together with (.) and (.), we have the following theorem.

Theorem . Let ≤ p ≤ ∞, then

√
πe

≤ LBp(Cn) ≤ √
π

.

Now we complete the proof of our main result.

Proof of Theorem . Combining with Theorem ., Theorem ., and Theorem ., we
obtain

≤ √
π


LBp(Cn)

≤ λn–
(
cn,pBp

(
C

n)∩Hξ

)/ ≤
√


π


LBp(Cn)

≤ √
e.

The equality of the left inequality in this theorem holds for B∞(Cn) from the remark after
Theorem . and (.). �
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