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Abstract
This work is concerned with positive classical solutions for a quasilinear parabolic
equation with a gradient term and nonlinear boundary flux. We find sufficient
conditions for the existence of global and blow-up solutions. Moreover, an upper
bound for the ‘blow-up time’, an upper estimate of the ‘blow-up rate’ and an upper
estimate of the global solution are given. Finally, some application examples are
presented.
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1 Introduction
In this paper, we consider the quasilinear parabolic equation with a gradient term

(
g(u)

)
t =∇ · (a(u)b(x)c(t)∇u

)
+ f (x,u,q, t) in D× (,T), (.)

subject to the nonlinear boundary flux and initial conditions

∂u
∂n

= h(x, t)r(u) on ∂D× (,T), (.)

u(x, ) = u(x) in D. (.)

Here D ⊂ R
N (N ≥ ) is a bounded domain with a smooth boundary ∂D, D is the closure

of D, q = |∇u|, n is the outer normal vector and T is the maximum existence time of
u(x, t). a(u)b(x)c(t), f (x,u,q, t) and h(x, t)r(u) are nonlinear diffusion coefficient, reaction
termandboundary flux, respectively. LetR+ = (,+∞),R+ = [,+∞), and suppose that the
function g(s) ∈ C(R+), g ′(s) >  for any s > , a(s) ∈ C(R+), b(x) ∈ C(D), c(t) ∈ C(R+),
f (x,u,q, t) ∈ C(D × R

+ × R+ × R+) is a nonnegative function, h(x, t) ∈ C(D × (,T)),
r(s) ∈ C(R+) is a positive function, and the positive function u(x) ∈ C(D) satisfies the
compatibility conditions. Under these assumptions, the classical parabolic equation the-
ory [, Section ] ensures that there exists a unique classical solution u(x, t) to problem
(.)-(.) for some T > , and the solution is positive over D × [,T). Moreover, by the
regularity theorem [, Chapter ], we know u ∈ C(D× (,T))∩C(D× (,T)).
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Equation (.) describes the diffusion of concentration of some Newtonian fluids
through porous media or the density of some biological species in many physical phe-
nomena and combustion theories (see [, ]). The nonlinear Neumann boundary value
condition (.) can be physically interpreted as the nonlinear radial law (see, e.g., [, ]).
In recent years the questions like blow-up and global solvability for nonlinear evolu-

tion equations have been investigated extensively by many authors. In particular, for the
parabolic equations with a gradient term, we refer to [–] etc. For example, Souplet and
Weissler [] studied the semilinear parabolic equation

ut =�u + f (u,∇u) in D× (,T),

subject to the homogeneous Dirichlet boundary condition. By using the comparison prin-
ciple and constructing a self-similar lower solution, they obtained sufficient conditions for
global existence and blow-up solutions. Andreu [] used a similar method to study the
quasilinear parabolic equation

ut =�um + f
(
u,∇um

)
in D× (,T).

Chen [] considered the following semilinear parabolic equation:

ut =�u + f (u) + g(u)|∇u| in D× (,T),

with the homogeneous Dirichlet boundary condition. By estimating the integral of ratio
of one solution to the other, the author proved both global existence and blow-up results.
Then he used the samemethod to study amore generalized equationwith a gradient term,
see [].
For the nonlinear parabolic equations with Neumann boundary conditions, Lair and

Oxley [] considered the quasilinear parabolic equation without a gradient term

ut =∇ · (a(u)∇u
)
+ f (u) in D× (,T),

subject to the homogeneous Neumann boundary conditions, and they obtained the nec-
essary and sufficient conditions for the global existence and blow-up solution by the ap-
proximation method. Recently, Ding and Gao [] investigated an initial boundary value
problem of the quasilinear parabolic equation with a gradient term

(
g(u)

)
t =�u + f

(
x,u, |∇u|, t) in D× (,T),

subject to boundary flux ∂u
∂n = r(u), and they obtained sufficient conditions for the global

existence and blow-up solution, the upper estimate of global solution and blow-up time.
Motivated by the above works, we construct an appropriate auxiliary function and use

theHopfmaximumprinciple to study problem (.)-(.). The aimof this paper is to obtain
sufficient conditions for the existence of blow-up and global solution, an upper bound for
the ‘blow-up time’, an upper estimate of the ‘blow-up rate’ and an upper estimate of the
global solution and then to give some examples.
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2 Main results and proof
Wenow state and prove themain results of this paper. Firstly, we give sufficient conditions
of the existence of a blow-up solution of problem (.)-(.).

Theorem  Let u ∈ C(D × (,T)) ∩ C(D × (,T)) be a solution of problem (.)-(.).
Assume that the following conditions hold:
() For any (x, s,q, t) ∈ D×R×R

+ ×R
+,

a(s) > , b(x) > , c(t) > , r(s) > , h(x, t) ≥ ; (.)

() For any (x, s,q, t) ∈ D×R
+ ×R

+ ×R
+,

a′(s)≥ , ht(x, t)≥ , fq ≥ ,
(
a(s)
g ′(s)

)′
≥ , r′(s)≥ a′(s)

a(s)
r(s),

r′′(s)≥ a′(s)
a(s)

r′(s),
(.)

c′(t)≥ , g ′(s) > , ft(x, s,q, t)≥ c′(t)
c(t)

f (x, s,q, t),

fs(x, s,q, t)≥ r′(s)
r(s)

f (x, s,q, t);
(.)

() For any x ∈ {x | f (x,u,q, ) = ,x ∈ D},

∇(
a(u)b(x)c()∇u

) ≥ ; (.)

() The constant

β =min
D

{
a(u)

g ′(u)r(u)
[∇(

a(u)b(x)c()∇u
)
+ f (x,u,q, )

]}
> , (.)

where D = {x | f (x,u,q, ) 	= ,x ∈ D} 	= φ, q = |∇u|;
() The integration

∫ +∞

M

a(s)
r(s)

ds < +∞, where M =max
D

u(x); (.)

then the solution u(x, t) of system (.)-(.)must blow up in finite time T and

T ≤ 
β

∫ +∞

M

a(s)
r(s)

ds, (.)

u(x, t)≤ �–(β(T – t)
)
, (.)

where �(z) =
∫ +∞
z

a(s)
r(s) ds, z > , and �– is the inverse function of �.

Proof Consider the auxiliary function

� = –


r(u)
ut + β


a(u)

. (.)
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Li et al. Journal of Inequalities and Applications 2014, 2014:234 Page 4 of 10
http://www.journalofinequalitiesandapplications.com/content/2014/1/234

We find that

∇� =
r′

r
ut∇u –


r
∇ut – β

a′

a
∇u, (.)

�� =
(
r′′

r
– 

(r′)

r

)
qut + 

r′

r
∇u · ∇ut +

r′

r
ut�u –


r
�ut

– β

(
a′′

a
– 

(a′)

a

)
q – β

(a′)
a

�u, (.)

and

�t =
r′

r
(ut) –


r
(ut)t – β

(a′)
a

ut

=
r′

r
(ut) –


r

[

g ′

(
abc�u + a′bcq + ac∇b · ∇u + f

)]
t
– β

(a′)
a

ut

=
r′

r
(ut) – β

(a′)
a

ut –

g ′r

(
a′bcut�u + abc′�u + abc�ut + a′′bcqut

+ a′bc′q + a′bc∇u · ∇ut

+ a′cut∇b · ∇u + ac′∇b · ∇u + ac∇b · ∇ut + fq∇u · ∇ut + ft + fuut
)

+
g ′′

(g ′)r
(
abc�u + a′bcq + ac∇b · ∇u + f

)
ut . (.)

Hence, from (.) and (.) we have

abc
g ′ �� –�t

=
(
abc
g ′

r′′

r
– 

abc
g ′

(r′)

r
+
a′′bc
g ′


r
–
a′bc
r

g ′′

(g ′)

)
qut

+
(

abc
g ′

r′

r
+ 

abc
g ′


r
+ 

fq
g ′

r

)
∇u · ∇ut

+
(
abc
g ′

r′

r
+
abc
g ′


r
–
abc
r

g ′′

(g ′)

)
ut�u +

(
a′bc′

g ′

r
– β

abc
g ′

a′′

a
+ β

abc
g ′

(a′)

a

)
q

+
(
a′bc′

g ′

r
– β

abc
g ′

a′

a

)
�u –

r′

r
(ut) + β

a′

a
ut +

a′c
g ′r

ut∇b · ∇u +
ac′

g ′r
∇b · ∇u

+
ft
g ′r

+
fu
g ′r

ut –
ac
r

g ′′

(g ′)
ut∇b · ∇u –

f
r

g ′′

(g ′)
ut . (.)

Using (.) leads to

∇ut = –r∇� – β
a′r
a

∇u +
r′

r
ut∇u. (.)

Now substituting (.) into (.) yields

abc
g ′ �� +

(
ac
g ′ ∇b + 

fq
g ′ ∇u + 

bc
g ′

(ar)′

r
∇u

)
∇� –�t

=
(
abc
g ′

r′′

r
+
a′′bc
g ′


r
+ 

a′bc
g ′

r′

r
+ 

fq
g ′
r′

r
–
a′bc
r

g ′′

(g ′)

)
qut
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+
(
abc′

g ′

r
– β

abc
g ′

a′

a

)
�u

+
(
abc
g ′

r′

r
+
abc
g ′


r
–
abc
r

g ′′

(g ′)

)
ut�u +

(
a′c
g ′r

+
ac
g ′

r′

r
–
ac
r

g ′′

(g ′)

)
ut∇b · ∇u

+
(
a′bc′

g ′

r
– β

abc
g ′

a′′

a
– β

abc
g ′

a′

a
r′

r
– β

fq
g ′
a′r
a

)
q +

(
β
a′

a
+

fu
g ′r

–
f
r

g ′′

(g ′)

)
ut

–
r′

r
(ut) +

(
ac′

g ′r
– β

ac
g ′

a′

a

)
∇b · ∇u +

ft
g ′r

. (.)

In fact, from (.) we see that

�u =


abc
(
g ′ut – a′bcq – ac∇b · ∇u – f

)
. (.)

Thus combining (.) and (.), we arrive at

abc
g ′ �� +

(
ac
g ′ ∇b + 

fq
g ′ ∇u + 

bc
g ′

(ar)′

r
∇u

)
∇� –�t

=
(
abc
g ′

r′′

r
+
a′′bc
g ′


r
+
a′bc
g ′

r′

r
+ 

fq
g ′
r′

r
–
(a′)bc
ag ′


r

)
qut

+
(

β
(a′)bc′

ag ′ – β
a′′bc
ag ′ – β

a′bc
ag ′


r
– β

a′r
a

fq
g ′

)
q

+
(
c′

c

r
–

f
g ′

r′

r
–
a′

a
f
g ′

r
+

fu
g ′r

)
ut +

ft
g ′r

–
c′

c
f
g ′r

+ β
a′

a
f
g ′ +

(
a′

a

r
–

r

g ′′

(g ′)

)
(ut). (.)

In view of (.), we have

ut = –r� + β
r
a
. (.)

If we substitute (.) into (.), then it is easy to obtain

abc
g ′ �� +

(
ac
g ′ ∇b + 

fq
g ′ ∇u + 

bc
g ′

(ar)′

r
∇u

)
∇�

+
{[(

a′r
a

)′
+ r′′

]
q
abc
g ′r

+ 
fq
g ′
r′

r
q +

ar
g ′

(
f
ar

)
u
+
c′

c

}
� –�t

= β
bc
g ′

(
r′′

r
–
a′

a
r′

r

)
q + β

fq
g ′

(
r′

a
–
a′r
a

)
q + β

c′

ac
+

(
a′

a

r
–

r
g ′′

g ′

)
(ut)

+

g ′r

(
ft –

c′

c
f
)
+ β


ag ′

(
fu – f

r′

r

)

= β
abc
g ′r

(
r′

a

)′
q + β

fq
g ′

(
r
a

)′
q + β

c′

ac
+

g ′

ar

(
a
g ′

)′
(ut)

+
c
g ′r

(
f
c

)
t
+ β

r
ag ′

(
f
r

)
u
. (.)
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From assumptions (.)-(.), it follows that the right-hand side of (.) is nonnegative,
i.e.,

abc
g ′ �� +

(
ac
g ′ ∇b + 

fq
g ′ ∇u + 

bc
g ′

(ar)′

r
∇u

)
∇�

+
{[(

a′r
a

)′
+ r′′

]
q
abc
g ′r

+ 
fq
g ′
r′

r
q +

ar
g ′

(
f
ar

)
u
+
c′

c

}
� –�t ≥ . (.)

Then from (.) and (.) we have

max
D

�(x, ) =max
D

{
–


g ′(u)r(u)

[∇(
a(u)b(x)c()∇u

)
+ f (x,u,q, )

]
+ β


a(u)

}

≤ . (.)

And as we can see, an explicit calculation

∂�

∂n
=

r′

r
ut

∂u
∂n

–

r
∂ut
∂n

– β
a′

a
∂u
∂n

=
r′

r
hut –


r
(hr)t – β

a′

a
hr

=
r′

r
hut – ht –

r′

r
hut – β

a′

a
hr = –ht – β

a′

a
hr ≤  (.)

holds on ∂D × (,T). Thus, by combining (.)-(.) and using the Hopf maximum
principle, we find that the maximum of � on ∂D× (,T) is , i.e.,

� ≤  on ∂D× (,T),

and by (.), it gives

a(u)
r(u)

ut ≥ β . (.)

Integrating (.) over [, t] at the point x ∈D, where u(x) =M, yields


β

∫ u(x,t)

M

a(s)
r(s)

ds≥ t. (.)

This together with assumption (.) shows that u(x, t) must blow up in finite timeT ; more-
over,

T ≤ 
β

∫ +∞

M

a(s)
r(s)

ds. (.)

For each fixed x, integrating inequality (.) over [t, s] ( < t < s < T ) leads to

�
(
u(x, t)

) ≥ �
(
u(x, t)

)
–�

(
u(x, s)

)
=

∫ u(x,s)

u(x,t)

a(s)
r(s)

ds≥ β(s – t).

If we let s → T , then formally

�
(
u(x, t)

) ≥ β(T – t),

http://www.journalofinequalitiesandapplications.com/content/2014/1/234
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therefore

u(x, t)≤ �–(β(T – t)
)
.

The proof is completed. �

The result on the global solution is stated as Theorem  below.

Theorem  Let u ∈ C(D × (,T)) ∩ C(D × (,T)) be a solution of problem (.)-(.).
Assume that the following conditions hold:
() For any (x, s,q, t) ∈ D×R×R

+ ×R
+,

a(s) > , b(x) > , c(t) > , r(s) > , h(x, t) ≥ ; (.)

() For any (x, s,q, t) ∈ D×R
+ ×R

+ ×R
+,

a′(s)≤ , ht(x, t)≤ , fq ≤ ,
(
a(s)
g ′(s)

)′
≤ ,

r′(s) ≥ a′(s)
a(s)

r(s), r′′(s) ≤ a′(s)
a(s)

r′(s),
(.)

c′(t)≤ , g ′(s) > , ft(x, s,q, t)≤ c′(t)
c(t)

f (x, s,q, t),

fs(x, s,q, t)≤ r′(s)
r(s)

f (x, s,q, t);
(.)

() For any x ∈ {x | f (x,u,q, ) = ,x ∈ D},

∇(
a(u)b(x)c()∇u

) ≥ ; (.)

() The constant

α =max
D

{
a(u)

g ′(u)r(u)
[∇(

a(u)b(x)c()∇u
)
+ f (x,u,q, )

]}
> , (.)

where D = {x | f (x,u,q, ) = ,x ∈ D} 	= φ, q = |∇u|;
() The integration

∫ +∞

m

a(s)
r(s)

ds < +∞, where m =min
D

u(x); (.)

then the solution u(x, t) of system (.)-(.)must be a global solution and

u(x, t)≤ �–(αt +�
(
u(x)

))
, (.)

where �(z) =
∫ z
m

a(s)
r(s) ds, z > , and �– is the inverse function of � .

Proof Consider the auxiliary function

� = –


r(u)
ut + α


a(u)

. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/234
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We first replace � and β in (.) with � and α, respectively, and under assumptions
(.)-(.), we get

abc
g ′ �� –

(
ac
g ′ ∇b + 

fq
g ′ ∇u + 

bc
g ′

(ar)′

r
∇u

)
∇�

+
{[(

a′r
a

)′
+ r′′

]
q
abc
g ′r

+ 
fq
g ′
r′

r
q +

ar
g ′

(
f
ar

)
u
+
c′

c

}
� –�t ≤ . (.)

In fact, from (.) and (.) we can see that

min
D

�(x, ) =min
D

{
–


g ′(u)r(u)

[∇(
a(u)b(x)c()∇u

)
+ f (x,u,q, )

]
+ α


a(u)

}

≥ . (.)

Also, on ∂D× (,T), it gives

∂�

∂n
= –ht – α

a′

a
hr ≥ . (.)

By combining (.)-(.) and using the Hopf maximum principle, we find that the min-
imum of � on ∂D× (,T) is , i.e.,

� ≥  in ∂D× (,T),

and by (.), we can see that

a(u)
r(u)

ut ≤ α. (.)

For each fixed x, integrating (.) over [, t] yields


α

∫ u(x,t)

u(x)

a(s)
r(s)

ds≤ t. (.)

This together with assumption (.) shows that u(x, t) must be a global solution; more-
over,

�
(
u(x, t)

)
–�

(
u(x)

)
=

∫ u(x,t)

u(x)

a(s)
r(s)

ds≤ αt,

therefore

u(x, t)≤ �–(αt +�
(
u(x)

))
.

The proof is completed. �

3 Applications
In what follows, we present several examples to demonstrate the applications of Theo-
rems  and .

http://www.journalofinequalitiesandapplications.com/content/2014/1/234
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Example  Let u be a solution of

(
eu

)
t =∇ ·

(
eu

(
 +

∑
i=

xi

)
et∇u

)
+

(
 +

∑
i=

xi

)
euqet in D× (,T),

∂u
∂n

= 

(
 + t

∑
i=

xi

)
eu on ∂D× (,T),

u(x, ) = u(x) =  + e
∑
i=

xi in D,

where D = {x = (x,x,x) | ∑
i= xi < }, then we have

g(u) = eu, a(u) = eu, b(x) =  +
∑
i=

xi , c(t) = et ,

f (x,u,q, t) =

(
 +

∑
i=

xi

)
euqet , h(x, t) = 

(
 + t

∑
i=

xi

)
, r(u) = eu.

It is easy to verify that (.)-(.) hold. By (.), we find

β =min
D

{
a(u)

g ′(u)r(u)
[∇(

a(u)b(x)c()∇u
)
+ f (x,u,q, )

]}

= min
≤u<+e

{


[
u|∇u| + |∇u| + u�u + euu|∇u|

]}
= e.

It follows from Theorem  that u(x, t) must blow up in finite time T and

T ≤ 
β

∫ +∞

M

a(s)
r(s)

ds =

β

∫ +∞



es

es
ds =



e–,

and

u(x, t)≤ �–(β(T – t)
)
= ln

[

e

(T – t)–
]
.

Example  Let u be a solution of

(u
√
u)t =∇ ·

(
√
u

(
 +

∑
i=

xi

)


 + t
∇u

)
+

(
 +

∑
i=

xi

)
 – q
 + t

√
u in D× (,T),

∂u
∂n

=
√


(
 + t

∑
i=

xi

)–√
u in ∂D× (,T),

u(x, ) = u(x) =  +
∑
i=

xi in D,

http://www.journalofinequalitiesandapplications.com/content/2014/1/234
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where D = {x = (x,x,x) | ∑
i= xi < }, then we have

g(u) = u
√
u, a(u) =

√
u
, b(x) =

(
 +

∑
i=

xi

)
, c(t) =


 + t

,

f (x,u,q, t) =

(
 +

∑
i=

xi

)
 – q
 + t

√
u, h(x, t) =

√


(
 + t

∑
i=

xi

)–

, r(u) =
√
u.

It is easy to verify that (.)-(.) hold. By (.), we find

α =max
D

{
a(u)

g ′(u)r(u)
[∇(

a(u)b(x)c()∇u
)
+ f (x,u,q, )

]}

= max
≤u<

{


[
–u– |∇u| + u– �u + 

(
 – |∇u|–

)]}
=


.

It follows from Theorem  that u(x, t) must be a global solution and

u(x, t)≤ �–(αt +�
(
u(x)

))
= exp(αt + lnu) = u exp

(


t
)
.
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