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1 Introduction
In this paper, we study fixed points of quasi-contraction mappings in a cone metric space
(X,d) over a solid vector space (Y ,�). Cone metric spaces have a long history (see Col-
latz [], Zabrejko [], Janković et al. [], Proinov [] and references therein). A unified
theory of cone metric spaces over a solid vector space was developed in a recent paper
of Proinov []. Recall that an ordered vector space with convergence structure (Y ,�) is
called:
• a solid vector space if it can be endowed with a strict vector ordering (≺);
• a normal vector space if the convergence of Y has the sandwich property.

Every metric space (X,d) is a cone metric space over R (with usual ordering and usual
convergence). On the other hand, every cone metric space over a solid vector space is a
metrizable topological space (see Proinov [] and references therein). It is well known that
a lot of fixed point results in conemetric setting can be directly obtained from their metric
versions (see Du [], Amini-Harandi and Fakhar [], Feng and Mao [], Kadelburg et al.
[], Asadi et al. [], Proinov [], and Ercan []).
For instance, for this purpose we can use the following theorem. This theorem shows

that every cone metric is equivalent to a metric which preserves the completeness as well
as some inequalities.

Theorem . ([, Theorem .]) Let (X,d) be a cone metric space over a solid vector space
(Y ,�). Then there exists a metric ρ on X such that the following statements hold true.

(i) The topology of (X,d) coincides with the topology of (X,ρ).
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(ii) (X,d) is complete if and only if (X,ρ) is complete.
(iii) For x,x, . . . ,xn ∈ X , y, y, . . . , yn ∈ X and λ, . . . ,λn ∈R,

d(x, y) �
n∑
i=

λid(xi, yi) implies ρ(x, y)≤
n∑
i=

λiρ(xi, yi).

In , Banach [] proved his famous fixed point theorem for contraction mappings.
Banach’s contraction principle is one of the most useful theorems in the fixed point the-
ory. It has two versions: a short version and a full version. In a metric space setting its
full statement can be seen, for example, in the monograph of Berinde [, Theorem .].
Recently, full statements of Banach’s fixed point theorem in a cone metric spaces over a
solid vector space were given by Radenović and Kadelburg [, Theorem .] and Proinov
[, Theorem .].

Definition . ([]) Let (X,d) be a metric space. A mapping T : X → X is called a quasi-
contraction (with contraction constant λ) if there exists λ ∈ [, ) such that

d(Tx,Ty) ≤ λmax
{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
()

for all x, y ∈ X.

There are a large number of generalizations of Banach’s contraction principle (see, for
example, [–] and references therein). In , Ćirić [] introduced contraction map-
pings and proved the followingwell known generalization of Banach’s fixed point theorem.

Theorem . Let (X,d) be a complete metric space and T : X → X be a quasi-contraction
with contraction constant λ. Then the following statements hold true:

(i) Existence and uniqueness. T has a unique fixed point ξ in X .
(ii) Convergence of Picard iteration. For every starting point x ∈ X the Picard

iteration sequence (Tnx) converges to ξ .
(iii) A priori error estimate. For every point x ∈ X the following a priori error

estimate holds:

d
(
Tnx, ξ

) ≤ λn

 – λ
d(x,Tx) for all n≥ . ()

Following Zhang [], in the next definition, we define a useful binary relation between
an ordered vector space Y and the set of all subsets of Y . It plays a very important role in
this paper as it is used to prove our main result.

Definition . ([]) Let (Y ,�) be an ordered vector space, x ∈ Y and A⊂ Y . We say that
x � A if there exists at least one vector y ∈ A such that x � y.

In , Ilić and Rakočević [] generalized the concept of quasi-contraction to cone
metric space as follows: A selfmapping T of a cone metric space (X,d) over an ordered
vector space (Y ,�) is called a quasi-contraction on X if there exists λ ∈ [, ) such that

d(Tx,Ty) � λ
{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
()
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for all x, y ∈ X. They proved the following result [, Theorem .]: Let (X,d) be a cone
metric space over a normal solid Banach space (Y ,�); then every quasi-contraction T of
the type () has a unique fixed point in X, and for all x ∈ X the Picard iterative sequence
(Tnx) converges to this fixed point. Kadelburg et al. [, Theorem .] improved this result
by omitting the assumption of normality provided that λ ∈ [, /). Gajić and Rakočević
[, Theorem ] proved this result for any contraction constant λ ∈ [, ). Rezapour et al.
[, Theorem .] proved this result in the case when Y is a solid topological vector space
and λ ∈ [, ). Furthermore, Kadelburg et al. [, Theorem .(b)] proved that this result is
equivalent to the short version of Ćirić’s fixed point theorem.
In , Zhang [] presented the following new definition for quasi-contractions in

cone metric spaces.

Definition . ([]) Let (X,d) be a conemetric space over an ordered vector space (Y ,�).
A mapping T : X → X is called a quasi-contraction (with contraction constant λ) if there
exists λ ∈ [, ) such that

d(Tx,Ty) � λ co
{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
()

for all x, y ∈ X.

By applying Theorem . to the first two conclusions of Theorem ., we obtain the
following fixed point theorem in a cone metric setting.

Theorem . Let (X,d) be a complete cone metric space over a solid vector space (Y ,�)
and T : X → X be a quasi-contraction. Then the following statements hold true:

(i) Existence and uniqueness. T has a unique fixed point ξ in X .
(ii) Convergence of Picard iteration. For every starting point x ∈ X the Picard

iteration sequence (Tnx) converges to ξ .

In , Zhang [] proved Theorem . in the case when Y is a normal solid Banach
space. In , Ding et al. [] proved this theorem in the casewhen Y is a solid topological
vector space.
In this paper, we establish a full statement of Ćirić’s fixed point theorem in the setting of

cone metric spaces. Our result complements Theorem .. Thus it extends and comple-
ments the corresponding results of Zhang [], Ding et al. [], and others.
For some recent results on the topic, we refer the reader to [–]. In the papers [,

] one can find some applications of cone metric spaces to iterative methods for finding
all zeros of polynomial simultaneously.

2 Preliminaries
In this section, we introduce some basic definitions and theorems of cone metric spaces
over a solid vector space.

Definition . ([]) Let Y be a real vector space and S be the set of all infinite sequences
in Y . A binary relation → between S and Y is called a convergence on Y if it satisfies the
following axioms:
(C) If xn → x and yn → y, then xn + yn → x + y.
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(C) If xn → x and λ ∈R, then λxn → λx.
(C) If λn → λ in R and x ∈ Y , then λnx → λx.

A real vector space Y endowed with convergence is said to be a vector space with conver-
gence. If xn → x, then (xn) is said to be a convergent sequence in Y , and the vector x is said
to be a limit of (xn).

Definition . ([]) Let (Y ,→) be a vector space with convergence. An ordering � on
Y is said to be a vector ordering if it is compatible with the algebraic and convergence
structures on Y in the sense that the following are true:
(V) If x� y, then x + z � y + z.
(V) If λ ≥  and x � y, then λx� λy.
(V) If xn → x, yn → y, xn � yn for all n, then x � y.

A vector space with convergence Y endowed with vector ordering is called an ordered
vector space with convergence.

Definition . ([]) Let (Y ,�,→) be an ordered vector space with convergence. A strict
ordering ≺ on Y is said to be a strict vector ordering if it is compatible with the vector
ordering, the algebraic structure and the convergence structure on Y in the sense that the
following are true:
(S) If x ≺ y, then x� y.
(S) If x� y and y ≺ z, then x≺ z.
(S) If x ≺ y, then x + z ≺ y + z.
(S) If λ >  and x ≺ y, then λx≺ λy.
(S) If xn → x, yn → y and x≺ y, then xn ≺ yn for all but finitely many n.

It turns out that an ordered vector space can be endowed with at most one strict vector
ordering (see Proinov [, Theorem .]).

Definition . (Solid vector space) An ordered vector space with convergence endowed
with a strict vector ordering is said to be a solid vector space.

Let us consider an important example of a solid vector space.

Example . Let (Y , τ ) be a topological vector space and K ⊂ Y be a cone with nonempty
interior K◦. Define the vector ordering � on Y and the strict vector ordering ≺ on Y ,
respectively, by means of

x � y if and only if y – x ∈ K ,

x ≺ y if and only if y – x ∈ K◦.

Then Y is a solid vector space called a solid topological vector space.

Now let us recall the definition of a cone metric space known also as ‘K-metric spaces’
(see Zabrejko [], Proinov [] and references therein).

Definition . (Conemetric space) Let X be a nonempty set, and let (Y ,�) be an ordered
vector spacewith convergence. A vector-valued function d : X ×X → Y is said to be a cone
metric on Y if the following conditions hold:
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(i) d(x, y) 
  for all x, y ∈ X and d(x, y) =  if and only if x = y;
(ii) d(x, y) = d(y,x) for all x, y ∈ X ;
(iii) d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X .

The pair (X,d) is called a cone metric space over Y .

Let (X,d) be a cone metric space over a solid vector space (Y ,�,≺), x ∈ X and r ∈ Y
with r � . Then the set U(x, r) = {x ∈ X : d(x,x) ≺ r} is called an open ball with center
x and radius r.
Every cone metric space X over a solid vector space Y is a Hausdorff topological space

with topology generated by the basis of all open balls. Then a sequence (xn) of points in X
converges to x ∈ X if and only if for every vector c ∈ Y with c � , d(xn,x) ≺ c for all but
finitely many n.
Recall also that a sequence (xn) in X is called a Cauchy sequence if for every c ∈ Y with

c�  there isN ∈N such that d(xn,xm) ≺ c for all n,m >N . A conemetric spaceX is called
complete if each Cauchy sequence in X is convergent.
In order to prove our main result we need the following two theorems.

Theorem . ([]) Let (X,d) be a complete cone metric space over a solid vector space
(Y ,�). Suppose (xn) is a sequence in X satisfying

d(xn,xm)� bn for all n,m ≥  with m≥ n,

where (bn) is a sequence in Y which converges to . Then (xn) converges to a point ξ ∈ X
with error estimate

d(xn, ξ ) � bn for all n ≥ .

Theorem . ([]) Let (X,d) be a cone metric space over a solid vector space (Y ,�) and
T : X → X. Suppose that for some x ∈ X, the Picard iteration (Tnx) converges to a point
ξ ∈ X. Suppose also that there exist nonnegative numbers α and β such that

d(ξ ,Tξ )� αd(x, ξ ) + βd(Tx, ξ ) for each x ∈ X. ()

Then ξ is a fixed point of T .

3 Auxiliary results
Let A be a subset of a real vector space Y . Recall that the convex hull of A, denoted coA,
is the smallest convex set including A. Suppose x,x, . . . ,xn ∈ Y . It is well known that x ∈
co{x, . . . ,xn} if and only if there exist nonnegative numbers α, . . . ,αn such that

∑n
i= αi = 

and x =
∑n

i= αixi.

Lemma . Let (Y ,�) be an ordered vector space. Suppose that x, y, x, . . . ,xn, y, . . . , ym
are vectors in Y and λ is a real number. Then:
(P) x � co{x, . . . ,xn} ⇒ x� co{x, . . . ,xn, y};
(P) x � co{x, . . . ,xn} and xi � yi for all i⇒ x� co{y, . . . , yn};
(P) x� co{x, . . . ,xn, y} and y� co{y, . . . , ym} ⇒ x� co{x, . . . ,xn, y, . . . , ym};
(P) x � co{,x, . . . ,xn} ⇔ x� co{x, . . . ,xn} if xi 
  for some i;
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(P) x � co{λx,x, . . . ,xn} ⇔ x� co{x, . . . ,xn} if λ <  and xi 
  for some i;
(P) x � co{x, . . . ,xn, y} ⇔ x� co{x, . . . ,xn} if y = xi for some i.

Proof We only prove the necessity of (P) since the proofs of the other properties are
similar. The inequality x � co{λx,x, . . . ,xn, } implies that there exist nonnegative num-
bers α,α, . . . ,αn such that α +

∑n
i= αi =  and x � αλx +

∑n
i= αixi. From this inequality

and αλ < , we deduce

x �
n∑
i=

βixi, ()

where βi = αi/( –αλ). We have
∑n

i= βi = (–α)/( –αγ ) < . By the assumptions, we have
xi 
  for some i. Without loss of generality we may assume that x 
 . Define the non-
negative numbers γ, . . . ,γn by γ =  –

∑n
j= βj and γi = βi for i≥ . From () and β ≤ γ,

we obtain

x �
n∑
i=

γixi.

This implies x � co{x, . . . ,xn} since ∑n
i= γi = . �

Remark . Note that Lemma . remains true if we omit the expression ‘co’ from its
formulation.

The following lemma was given by Zhang [, Lemma ] in a slightly different form.We
give a simple proof of this lemma.

Lemma . Let (X,d) be a cone metric space over an ordered vector space (Y ,�),
T : X → X be a quasi-contraction with contraction constant λ ∈ [, ), and let x ∈ X . Then
for every m ∈ N, we have

d
(
Tix,Tmx

) � λi co
{
d(x,Tx), . . . ,d

(
x,Tmx

)}
for i = , . . . ,m. ()

Proof We prove the statement by induction on m. It is obviously true for m = . Assume
that n ∈N and assume that () is satisfied for any natural numberm ≤ n. We have to prove
that

d
(
Tix,Tn+x

) � λi co
{
d(x,Tx), . . . ,d

(
x,Tn+x

)}
for i = , . . . ,n + . ()

We divide the proof of () into three steps.
Step . We claim that for every natural number i≤ n the following inequality holds:

d
(
Tix,Tn+x

) � co
{
λid(x,Tx), . . . ,λid

(
x,Tnx

)
,λd

(
Tnx,Tn+x

)
,λd

(
Ti–x,Tn+x

)}
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/226
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By the definition of the quasi-contraction mapping, we obtain

d
(
Tix,Tn+x

)
= d

(
T

(
Ti–x

)
,T

(
Tnx

))
� λ co

{
d
(
Ti–x,Tnx

)
,d

(
Ti–x,Tix

)
,d

(
Tnx,Tn+x

)
,d

(
Ti–x,Tn+x

)
,d

(
Tix,Tnx

)}
.

From the induction hypothesis and properties (P) and (P), we get the following three
inequalities:

d
(
Ti–x,Tnx

) � λi– co
{
d(x,Tx), . . . ,d

(
x,Tnx

)}
,

d
(
Ti–x,Tix

) � λi– co
{
d(x,Tx), . . . ,d

(
x,Tnx

)}
,

d
(
Tix,Tnx

) � λi– co
{
d(x,Tx), . . . ,d

(
x,Tnx

)}
.

From the last four inequalities and properties (P) and (P), we obtain the desired inequal-
ity.
Step . We claim that for every natural number i≤ n the following inequality holds:

d
(
Tix,Tn+x

) � co
{
λid(x,Tx), . . . ,λid

(
x,Tn+x

)
,λd

(
Tnx,Tn+x

)}
.

We prove this by finite induction on i. Setting i =  in the claim of Step , we immediately
arrive at the following inequality:

d
(
Tx,Tn+x

) � co
{
λd(x,Tx), . . . ,λd

(
x,Tnx

)
,λd

(
Tnx,Tn+x

)
,λd

(
x,Tn+x

)}
,

which proves the claim of Step  for i = . Assume that for some i≤ n, the claim of Step 
holds. Now we shall show that

d
(
Ti+x,Tn+x

) � co
{
λi+d(x,Tx), . . . ,λi+d

(
x,Tn+x

)
,λd

(
Tnx,Tn+x

)}
. ()

It follows from Step  that

d
(
Ti+x,Tn+x

)
� co

{
λi+d(x,Tx), . . . ,λi+d

(
x,Tn+x

)
,λd

(
Tnx,Tn+x

)
,λd

(
Tix,Tn+x

)}
. ()

By the finite induction hypothesis and property (P), we have

d
(
Tix,Tn+x

) � co
{
λid(x,Tx), . . . ,λid

(
x,Tn+x

)
,d

(
Tnx,Tn+x

)}
. ()

From (), (), and properties (P) and (P), we obtain ().
Step . Now we shall prove (). From the claim of Step  with i = n, we get

d
(
Tnx,Tn+x

) � co
{
λnd(x,Tx), . . . ,λnd

(
x,Tn+x

)
,λd

(
Tnx,Tn+x

)}
.

According to the property (P), this inequality is equivalent to

d
(
Tnx,Tn+x

) � λn co
{
d(x,Tx), . . . ,d

(
x,Tn+x

)}
,
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which by (P) implies

d
(
Tnx,Tn+x

) � λi– co
{
d(x,Tx), . . . ,d

(
x,Tn+x

)}
. ()

Finally, by the claim of Step  and the inequality (), taking into account the properties
(P) and (P), we obtain (). This completes the proof of the lemma. �

In the following lemma,we show that ifT is a quasi-contraction of a conemetric spaceX,
then for every starting point x ∈ X, the Picard iteration sequence (Tnx) is bounded in the
space X.

Lemma . Let (X,d) be a cone metric space over an ordered vector space (Y ,�),
T : X → X be a quasi-contraction with contraction constant λ ∈ [, ), and let x ∈ X . Then
for every m ∈ N, we have

d
(
x,Tmx

) � 
 – λ

d(x,Tx). ()

Proof Weprove the statement by induction onm. Ifm = , then inequality () holds since
 ≤ λ < . Assume that n ∈ N and assume that () is satisfied for any natural numberm ≤ n.
Then we have to prove that

d
(
x,Tn+x

) � 
 – λ

d(x,Tx). ()

From the triangle inequality, we obtain

d
(
x,Tn+x

) � d(x,Tx) + d
(
Tx,Tn+x

)
. ()

By Lemma ., we get

d
(
Tx,Tn+x

) � λ co
{
d(x,Tx), . . . ,d

(
x,Tn+x

)}
. ()

By the induction hypothesis, we have that () holds for all m ≤ n. Then it follows from
(), (P), and (P) that

d
(
Tx,Tn+x

) � co

{
λ

 – λ
d(x,Tx),λd

(
x,Tn+x

)}
.

This inequality implies that there exists α ∈ [, ] such that

d
(
Tx,Tn+x

) � α
λ

 – λ
d(x,Tx) + ( – α)λd

(
x,Tn+x

)
. ()

Combining () and (), we get

d
(
x,Tn+x

) � d(x,Tx) + α
λ

 – λ
d(x,Tx) + ( – α)λd

(
x,Tn+x

)
,

which is equivalent to the following inequality:

( – λ + αλ)d
(
x,Tn+x

) �  – λ + αλ

 – λ
d(x,Tx).

http://www.journalofinequalitiesandapplications.com/content/2014/1/226
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Multiplying both sides of this inequality by /( – λ + αλ), we obtain (). This completes
the proof of the lemma. �

Lemma . Let (X,d) be a cone metric space over an ordered vector space (Y ,�), and let
T : X → X be a quasi-contraction with contraction constant λ ∈ [, ).Then for all x, y ∈ X,
we have

d(x,Tx)� αd(x, y) + βd(x,Ty), ()

where α = λ/( – λ) and β = ( + λ)/( – λ).

Proof Let x, y ∈ X be fixed. First we shall prove that

d(Tx,Ty) � λ
(
d(x, y) + d(x,Tx) + d(x,Ty)

)
. ()

It follows from Definition . that there exist five nonnegative numbers α,β ,γ ,μ,ν such
that α + β + γ +μ + ν =  and

d(Tx,Ty) � λ
(
αd(x, y) + βd(x,Tx) + γd(y,Ty) +μd(x,Ty) + νd(y,Tx)

)
.

From this and the inequalities

d(y,Ty) � d(x, y) + d(x,Ty) and d(y,Tx) � d(x, y) + d(x,Tx),

we obtain

d(Tx,Ty) � λ
(
(α + γ + ν)d(x, y) + (β + ν)d(x,Tx) + (γ +μ)d(x,Ty)

)
.

This inequality yields () since α + γ + ν ≤ , β + ν ≤  and γ +μ ≤ . Now we are ready
to prove (). From the triangle inequality, we get

d(x,Tx)� d(x,Ty) + d(Tx,Ty).

From this and (), we obtain

d(x,Tx)� d(x,Ty) + λ
(
d(x, y) + d(x,Tx) + d(x,Ty)

)
,

which can be presented in the following equivalent form:

( – λ)d(x,Tx)� λd(x, y) + ( + λ)d(x,Ty).

Multiplying both sides of this inequality by /( – λ), we get (). �

Lemma . Let (X,d) be a cone metric space over an ordered vector space (Y ,�). Then
every quasi-contraction T : X → X has at most one fixed point in X.

Proof Suppose that x and y are two fixed points of T . It follows from the inequality ()
and properties (P) and (P) that d(x, y) � λd(x, y) which implies d(x, y)� . On the other
hand, d(x, y)
 . Hence, d(x, y) = , which yields x = y. �

http://www.journalofinequalitiesandapplications.com/content/2014/1/226
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4 Main result
Now we are ready to state the main result of this paper. Let (X,d) be a complete cone
metric space over an ordered vector space Y . Recall that for a point x ∈ X and a vector
r ∈ Y with r 
 , the set U(x, r) = {x ∈ X : d(x,x) � r} is called a closed ball with center
x and radius r.

Theorem . Let (X,d) be a complete cone metric space over a solid vector space (Y ,�),
and let T : X → X be a quasi-contraction with contraction constant λ ∈ [, ). Then the
following statements hold true:

(i) Existence, uniqueness and localization. T has a unique fixed point ξ which
belongs to the closed ball U(x, r) with radius

r =


 – λ
d(x,Tx),

where x is any point in X .
(ii) Convergence of Picard iteration. Starting from any point x ∈ X the Picard

sequence (Tnx) remains in the closed ball U(x, r) and converges to ξ .
(iii) A priori error estimate. For every point x ∈ X the following a priori estimate

holds:

d
(
Tnx, ξ

) � λn

 – λ
d(x,Tx) for all n≥ . ()

(iv) A posteriori error estimates. For every point x ∈ X the following a posteriori
estimate holds:

d
(
Tnx, ξ

) � 
 – λ

d
(
Tnx,Tn+x

)
for all n≥ , ()

d
(
Tnx, ξ

) � λ

 – λ
d
(
Tnx,Tn–x

)
for all n≥ . ()

Proof Let x be an arbitrary point in X. By Lemma ., for allm,n ∈N withm ≥ n, we have

d
(
Tnx,Tmx

) � λn co
{
d(x,Tx), . . . ,d

(
x,Tmx

)}
.

From this, Lemma ., and properties (P) and (P), we deduce

d
(
Tnx,Tmx

) � bn, where bn =
λn

 – λ
d(x,Tx). ()

Note that (bn) is a sequence in Y which converges to  since λn →  in R. Now applying
Theorem. to the Picard sequence (Tnx), we conclude that there exists a point ξ ∈ X such
that (Tnx) converges to ξ and d(Tnx, ξ )� bn for every n≥ . The last inequality coincides
with the estimate (). Setting n =  in (), we get

d(x, ξ )� 
 – λ

d(x,Tx) ()
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which means that ξ ∈ U(x, r). The inequality () holds for every point x ∈ X. Applying
() to the point Tnx, we obtain (). Setting n =  in (), we get

d(Tx, ξ )� λ

 – λ
d(x,Tx). ()

Applying () to the pointTn–x, we get (). Setting n =  in (), we obtain d(x,Tmx)� b
for every m≥ . Hence, the sequence (Tnx) lies in the ball U(x, r) since r = b.
It follows from Lemma . that ξ satisfies condition (). Hence, by Theorem ., we

conclude that ξ is a fixed point of T . The uniqueness of the fixed point follows from
Lemma .. �

Theorem. extends and complements the recent results ofDing et al. [, Theorem.]
and Zhang [, Theorem ] as well as previous results due to Ilić and Rakočević [,
Theorem .], Kadelburg et al. [, Theorem .], Rezapour et al. [, Theorem .] and
Kadelburg et al. [, Theorem .(b)] who have studied quasi-contraction mappings of the
type ().
Theorem . also extends and complements the results of Abbas and Rhoades [,

Corollary .], Olaleru [, Theorem .], Azam et al. [, Theorem .], Song et al. [,
Corollary .]. These authors have studied the class of mappings satisfying a contractive
condition of the type

d(Tx,Ty) � αd(x, y) + βd(x,Tx) + γd(y,Ty) +μd(x,Ty) + νd(y,Tx) ()

for all x, y ∈ X, where α, β , γ , μ and ν are five nonnegative constants such that α +β + γ +
μ + ν < . In this case Theorem . holds with λ = α + β + γ +μ + ν since condition ()
implies condition () with this λ. Let us note that in this special case Theorem . holds
even with λ = (α + δ)/( – δ), where δ = (β + γ +μ + ν)/.

5 Examples
Zhang [, Example ] gives an example showing that the set of all quasi-contractions of
the type () is a proper subset of the set of all quasi-contractions defined by (). In order
to prove this, he considers a selfmapping of a cone metric space X over a normal solid
vector space Y . Ding et al. [, Example .] provide a similar example, but for the case of
a non-normal solid vector space Y .
The aim of this section is to unify these two examples. Let B denote the set of all quasi-

contractions of the type (), and let C denote the set of all quasi-contractions defined by (),
that is,

B =
{
T : X → X | d(Tx,Ty) � λ

{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}}
,

C =
{
T : X → X | d(Tx,Ty)� λ co

{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}}
.

Now we shall construct a family of examples which show that B is a proper subset of C . In
particular, this family contains both the example of Zhang [] and the example of Ding et
al. [].

http://www.journalofinequalitiesandapplications.com/content/2014/1/226


Proinov and Nikolova Journal of Inequalities and Applications 2014, 2014:226 Page 12 of 14
http://www.journalofinequalitiesandapplications.com/content/2014/1/226

Definition . Let (Y ,�) be an ordered vector space, and let a,b, c
  be three vectors
in Y . We say that the triple (a,b, c) satisfies property (C) if the following two statements
hold:
• a � λ co{b, c} for some λ ∈ [, ), b� a + c and c� a + b.
• a � k{b, c} is wrong for every k ∈ [, ).

Proposition . Let Y =R be endowedwith the usual ordering≤.Then there are no triples
(a,b, c) in Y satisfying property (C).

Proof Assume that there is a triple (a,b, c) in Y with property (C). Then a� λmax{b, c}
for some λ ∈ [, ). On the other hand, a� kmax{b, c} is wrong for every k ∈ [, ). This is
a contradiction which proves the proposition. �

Proposition . Let Y =R
n (n≥ ) be endowed with coordinate-wise ordering �. Then in

Y there exist infinitely many triples (a,b, c) satisfying property (C).

Proof Choose three real numbers α, β and γ such that

β < γ < β and max{β ,γ – β} ≤ α <
β + γ


.

Then the vectors a = (α, . . . ,α), b = (β , . . . ,β ,γ ) and c = (γ , . . . ,γ ,β) satisfy property (C)
with λ = α

β+γ
. �

Proposition . Let Y = Cn[, ] (n≥ ) be endowed with point-wise ordering �. Then in
Y there exist infinitely many triples (a,b, c) satisfying property (C).

Proof Choose three real numbersα,β and γ as in the proof of Proposition ., then choose
a real number δ such that

γ – α ≤ δ < γ and δ ≤ α + γ – β


.

Then the functions a(t) = α, b(t) = β + δt and c(t) = γ – δt satisfy property (C) with λ =
α

β+γ
. �

Example . Let (Y ,�) be an arbitrary solid vector space, and let (a,b, c) be any triple in
Y with property (C). Furthermore, let X = {x, y, z}, and let d : X ×X → Y be defined by

d(x, y) = a, d(x, z) = b, d(y, z) = c,

d(u, v) = d(u, v) and d(u,u) =  for u, v ∈ X. Then (X,d) is a complete cone metric space
over Y since the triple (a,b, c) satisfies property (C). Consider now themappingT : X → X
defined by

Tx = x, Ty = x, Tz = y.

Using Lemma ., it is easy to prove that T ∈ C if and only if a � λ co{b, c} for some λ ∈
[, ). Analogously, taking into account Remark ., one can easily prove that T ∈ B if
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and only if a � k{b, c} for some k ∈ [, ). Now taking into account that the triple (a,b, c)
satisfies property (C), we conclude that T ∈ C and T /∈ B. Hence, B is a proper subset of C .
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