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Abstract
In this paper, we are concerned with the symmetry and regularity of positive
solutions of the following integral system: u(x) =

∫
Rn

Gα (x–y)wr (y)vq(y)
|y|β dy,

v(x) =
∫
Rn

Gα (x–y)up(y)wr (y)
|y|β dy, w(x) =

∫
Rn

Gα (x–y)up(y)vq(y)
|y|β dy, where Gα (x) is the αth-order

Bessel kernel, n ≥ 3, 0≤ β < α < n, 1 < p,q, r < n–β
β

and 1
p+1 +

1
q+1 +

1
r+1 >

2n–α+β
n . We

show that every positive solution triple (u, v,w) of the system is radially symmetric and
monotonic decreasing about some point by the moving planes method in integral
forms. Moreover, by the regularity lifting method, we prove that (u, v,w) belongs to
L∞(Rn)× L∞(Rn)× L∞(Rn) and which is then locally Hölder continuous.
MSC: 45E10; 45G05
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1 Introduction
In this paper, we are concerned with the symmetry and regularity of positive solutions of
the following integral system:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(x) =
∫
Rn

Gα (x–y)wr(y)vq(y)
|y|β dy,

v(x) =
∫
Rn

Gα (x–y)up(y)wr(y)
|y|β dy,

w(x) =
∫
Rn

Gα (x–y)up(y)vq(y)
|y|β dy,

(.)

where Gα(x) is the αth-order Bessel kernel, n ≥ ,  ≤ β < α < n, p,q, r > , and


p + 

+


q + 
+


r + 

>
n – α + β

n
. (.)

Problem (.) is related to the αth-order Bessel potentials Bα = (–� + id)– α
 . The αth-

order Bessel kernel Gα(x) is given by

Gα(x) =


(π ) α
 �( α

 )

∫ ∞


exp

(
–

π

s
|x|

)
exp

(
–

s
π

)
s

α–n

ds
s
. (.)
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Suppose f ∈ Lp(Rn) with  ≤ p ≤ ∞, the αth-order Bessel potential Bα = (–� + id)– α
 of f

is defined by

Bα(f ) =

⎧⎨
⎩
Gα ∗ f , α > ,

f , α = ,

where ∗ denotes the convolution of functions.
The symmetry of the solutions to nonlinear elliptic problems are in general investigated

by the moving planes method, which was first used by Alexanderoff for differential equa-
tions, and developed by Serrin [], Gidas et al. [], Caffarelli et al. [] etc. In particular, it
was considered in [, ] the radial symmetry andmonotonicity of nonnegative solutions of
nonlinear elliptic equations by the moving planes method. Such a method is based on the
maximum principle, and hence it cannot be directly applied to problems in the absence of
the maximum principle. Especially for nonlinear integral equations or systems, one needs
a replacement of the maximum principle. It was observed by Chen et al. in [, ] that
when studying the radial symmetry andmonotonicity of nonnegative solutions of integral
equations, one can use a Hardy-Littlewood-Sobolev (HLS) type inequality, instead of the
maximum principle, in the moving planes method. They show in [, ] that nonnegative
solutions of integral equations

u(x) =
∫
Rn

u n+α
n–α (y)

|x – y|n–α
dy

are radially symmetric. Since then, radial symmetry andmonotonicity of positive solutions
for integral equations and integral systems with the Riesz potential have been extensively
studied; see [–] and [] etc.
To study the properties of positive solutions for integral equations with Bessel kernel,

Ma and Chen [] establish a HLS type inequality for the Bessel potentials and obtain the
radial symmetry and monotonicity of positive solutions of integral equations by using the
moving planes method in integral forms. Later, they [] studied the following integral
system with Bessel kernel:

u =Gα ∗ vq, v =Gα ∗ up. (.)

If α = α = , this system is the stationary Dirac-Schrödinger system, and if α = α = ,
system (.) becomes the stationary Schrödinger system. More equations associated with
Bessel potential can be found in [–] etc.
Recently, Chen and Yang established in [] the HLS type inequality for the Bessel

potentials with double weights, and they showed that positive solutions pairs (u, v) ∈
Lp+(Rn)× Lq+(Rn) of the integral system

u =Gα ∗ vq(y)
|y|β , v =Gα ∗ up(y)

|y|β (.)

areHölder continuous, radially symmetric, and strictly decreasing about the origin.More-
over, in [], the authors consider the radial symmetry and uniqueness of positive solution
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pairs (u, v) of integral system

u =Gα ∗ up(y)vq(y)
|y|β , v =Gα ∗ vp(y)uq(y)

|y|β . (.)

In this paper, we will investigate the regularity and symmetry as well as Hölder continu-
ity of solutions to problem (.), which can be deduced to neither problem (.) nor (.).
Firstly, using the moving planes method in integral forms, we have the following symmet-
ric result.

Theorem . Under condition (.), any positive solution triple (u, v,w) ∈ Lp+(Rn) ×
Lq+(Rn) × Lr+(Rn) to system (.) is radially symmetric and monotone decreasing about
some point in R

n.

Secondly, by the regularity liftingmethod, we show the boundedness of each component
of the solution triple. To state it precisely, we have the following.

Theorem . Let triple (u, v,w) ∈ Lp+(Rn)× Lq+(Rn)× Lr+(Rn) be a positive solution to
integral system (.), and p, q, r satisfies (.). Then (u, v,w) ∈ L∞(Rn)×L∞(Rn)×L∞(Rn).

In the proof of Theorem ., we first lift the integrability of a suitable cut-off function of
the solution by the regularity lifting method to some Lq̃, and then we show that they are
actually in L∞. Finally, we assert that the solution triple is locally Hölder continuous.

Theorem . u, v, and w are locally Hölder continuous.

In Section , we show that (u, v,w) is radially symmetric by the moving planes method.
Then, using the regularity lifting method, we prove (u, v,w) ∈ L∞(Rn)×L∞(Rn)×L∞(Rn)
in Section . In the last section, we prove Theorem ..

2 Proof of Theorem 1.1
This section is devoted to proving the symmetry and monotonicity of positive solutions
to system (.). Assume that λ ∈ R is a given real number, we define Tλ = {x ∈ R

n|x = λ},
�λ = {x = (x,x, . . . ,xn) ∈R

n|x ≤ λ}. For x ∈ �λ, let xλ = (λ – x,x, . . . ,xn), and define

uλ(x) = u(xλ), vλ(x) = v(xλ), wλ(x) = w(xλ).

Lemma . For any positive solution (u, v,w) of (.), we have

u(x) – uλ(x) =
∫

�λ

(
Gα(x – y) –Gα(xλ – y)

)(vqwr

|y|β –
vqλwr

λ

|yλ|β
)
dy, (.)

v(x) – vλ(x) =
∫

�λ

(
Gα(x – y) –Gα(xλ – y)

)(upwr

|y|β –
upλwr

λ

|yλ|β
)
dy, (.)

w(x) –wλ(x) =
∫

�λ

(
Gα(x – y) –Gα(xλ – y)

)(vqup

|y|β –
vqλu

p
λ

|yλ|β
)
dy. (.)
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Proof Let �c
λ = {x = (x,x, . . . ,xn) ∈ R

n|x > λ}. Since |x – yλ| = |xλ – y|, |x – y| = |xλ – yλ|,
and Gα is radially symmetric in R

n, it follows from (.) that

u(x) =
∫

�λ

Gα(x – y)wr(y)vq(y)
|y|β dy +

∫
�c

λ

Gα(x – y)wr(y)vq(y)
|y|β dy

=
∫

�λ

Gα(x – y)wr(y)vq(y)
|y|β dy +

∫
�λ

Gα(x – yλ)wr
λ(y)v

q
λ(y)

|yλ|β dy

=
∫

�λ

Gα(x – y)wr(y)vq(y)
|y|β dy +

∫
�λ

Gα(xλ – y)wr
λ(y)v

q
λ(y)

|yλ|β dy. (.)

Substituting x by xλ, we obtain

uλ(x) =
∫

�λ

Gα(xλ – y)wr(y)vq(y)
|y|β dy +

∫
�λ

Gα(x – y)wr
λ(y)v

q
λ(y)

|yλ|β dy. (.)

Hence,

u(x) – uλ(x) =
∫

�λ

(
Gα(x – y) –Gα(xλ – y)

)(vq(y)wr(y)
|y|β –

vqλ(y)wr
λ(y)

|yλ|β
)
dy.

Similarly, we have (.) and (.). The proof is complete. �

To prove Theorem ., we need Hardy-Littlewood-Sobolev’s inequality for the Bessel
potential, which can be found in [].

Lemma . Let  ≤ α < n,  < l,d < n
α
, τ ,β ≥ . In addition n( – 

l –

d +

α
n ) > β + τ > n( –


l –


d ). Then there exists a positive constant C independent of f ∈ Ll(Rn) and h ∈ Ld(Rn)

such that the following inequality holds:
∣∣∣∣
∫
Rn

∫
Rn

f (x)Gα(x – y)h(y)
|x|τ |y|β dxdy

∣∣∣∣ ≤ C‖f ‖l‖h‖d. (.)

Furthermore, let

Th(x) =
∫
Rn

Gα(x – y)h(y)
|x|τ |y|β dy,

then

‖Th‖l′ = sup
‖f ‖l=

∣∣〈Th, f 〉∣∣ ≤ C‖h‖d, (.)

where 
l +


l′ = ,  + 

l′ ≥ 
d +

n–α+β+τ

n , h ∈ Ld(Rn), which means d > nl′
n+(α–β–τ ) .

Proof of Theorem . First, we show that there exists a negative number λ, such that

u(x)≤ uλ(x), v(x)≤ vλ(x), w(x)≤ wλ(x), ∀x ∈ �λ. (.)

Define

�u
λ =

{
x ∈ �λ

∣∣u(x) > uλ(x)
}
, �v

λ =
{
x ∈ �λ

∣∣v(x) > vλ(x)
}
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and

�w
λ =

{
x ∈ �λ|w(x) > wλ(x)

}
.

We derive from Lemma . that

u(x) – uλ(x) =
∫

�λ

(
Gα(x – y) –Gα(xλ – y)

)(vq(y)wr(y)
|y|β –

vqλ(y)wr
λ(y)

|yλ|β
)
dy.

Observing that for x, y ∈ �λ, |x–y| ≤ |xλ–y|, |y| ≥ |yλ|, and thatGα is decreasing, if x ∈ �u
λ ,

we obtain

 ≤ u(x) – uλ(x)

≤
∫

�λ

(
Gα(x – y) –Gα(xλ – y)

)(wr(vq – vqλ)
|y|β +

vqλ(wr –wr
λ)

|y|β
)
dy

=
∫

�v
λ

Gα(x – y)wr(vq – vqλ)
|y|β dy +

∫
�w

λ

Gα(x – y)vqλ(wr –wr
λ)(y)

|y|β dy

+
∫
(�v

λ)
c

(
Gα(x – y) –Gα(xλ – y)

)wr(vq – vqλ)(y)
|y|β dy

+
∫
(�w

λ )c

(
Gα(x – y) –Gα(xλ – y)

)vqλ(wr –wr
λ)(y)

|y|β dy

–
∫

�v
λ

Gα(xλ – y)
wr(vq – vqλ)(y)

|y|β dy –
∫

�w
λ

Gα(xλ – y)
vqλ(wr –wr

λ)(y)
|y|β dy

≤
∫

�v
λ

Gα(x – y)
wr(vq – vqλ)(y)

|y|β dy +
∫

�w
λ

Gα(x – y)
vqλ(wr –wr

λ)(y)
|y|β dy

≤ q
∫

�v
λ

Gα(x – y)vq–(v – vλ)wr(y)
|y|β dy + r

∫
�w

λ

Gα(x – y)wr–(w –wλ)v
q
λ

|y|β dy

=: A(x) + B(x).

Since condition (.) holds, we can choose 
d

= r
r+ +

q–
q+ +


q+ . By Hardy-Littlewood-

Sobolev’s inequality and Hölder’s inequality, we have

∥∥A(x)∥∥Lp+(�u
λ )

≤ C
∥∥vq–(v – vλ)wr∥∥

Ld (�v
λ)

≤ C‖v‖q–Lq+(�v
λ)
‖v – vλ‖Lq+(�v

λ)
‖w‖rLr+(�v

λ)
.

Similarly, choosing 
d

= r–
r+ +


r+ +

q
q+ , we get

∥∥B(x)∥∥Lp+(�u
λ )

≤ C
∥∥wr–(w–wλ)v

q
λ

∥∥
Ld (�w

λ ) ≤ C‖w‖r–Lr+(�w
λ )‖w–wλ‖Lr+(�w

λ )‖vλ‖qLq+(�v
λ)
.

Hence,

‖u – uλ‖Lp+(�u
λ )

≤ C‖v‖q–Lq+(�v
λ)
‖v – vλ‖Lq+(�v

λ)
‖w‖rLr+(�v

λ)

+C‖w‖r–Lr+(�w
λ )‖w –wλ‖Lr+(�w

λ )‖vλ‖qLq+(�v
λ)
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/222
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On the other hand, using the fact that (u, v,w) ∈ Lp+(Rn) × Lq+(Rn) × Lr+(Rn), we can
choose λ small enough, such that

C‖w‖rLr+(�v
λ)
‖v‖q–Lq+(�v

λ)
≤ 


, C‖w‖rLr+(�w

λ )‖vλ‖qLq+(�w
λ ) ≤



.

Thus,

‖u – uλ‖Lp+(�u
λ )

≤ 


(‖v – vλ‖Lq+(�v
λ)
+ ‖w –wλ‖Lr+(�w

λ )
)
.

Similarly,

‖v – vλ‖Lq+(�v
λ)

≤ 


(‖w –wλ‖Lr+(�w
λ ) + ‖u – uλ‖Lp+(�u

λ )
)

and

‖w –wλ‖Lr+(�w
λ ) ≤ 


(‖u – uλ‖Lp+(�u

λ )
+ ‖v – vλ‖Lq+(�v

λ)
)
.

Therefore

‖u – uλ‖Lp+(�u
λ )
+ ‖v – vλ‖Lq+(�v

λ)
+ ‖w –wλ‖Lr+(�w

λ )

≤ 

(‖u – uλ‖Lp+(�u

λ )
+ ‖v – vλ‖Lq+(�v

λ)
+ ‖w –wλ‖Lr+(�w

λ )
)
.

This implies

‖u – uλ‖Lp+(�u
λ )
= ‖v – vλ‖Lq+(�v

λ)
= ‖w –wλ‖Lr+(�w

λ ) = .

That is, �u
λ , �v

λ, and �w
λ are zero-measure sets. Define

λ := sup{λ|uλ – u≥ , vλ – v≥ ,wλ –w≥ ,∀x ∈ �λ}. (.)

Obviously λ ≤ , by the same method in [], we can get λ =  and the proof of Theo-
rem . is complete. �

3 Proof of Theorem 1.2
In this section, we show that any solution triple of (.) in Lp+(Rn)× Lq+(Rn)× Lr+(Rn)
belongs to L∞(Rn)×L∞(Rn)×L∞(Rn). To this purpose, we will use the regularity method
developed in [], which we will state as follows. Let Z be a given vector space, ‖ · ‖X and
‖ · ‖Y be two norms on Z. Define a new norm ‖ · ‖Z by

‖ · ‖Z =
(‖ · ‖sX + ‖ · ‖sY

) 
s .

Suppose that Z is complete with respect to the norm ‖ · ‖Z . Let X and Y be the completion
under ‖ · ‖X and ‖ · ‖Y , respectively. Here one can choose s such that  ≤ s ≤ ∞. According
to what one needs, it is easy to see that Z = X∩Y . The following regularity lifting theorem
was obtained in [].

http://www.journalofinequalitiesandapplications.com/content/2014/1/222
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Lemma . (Regularity lifting) Let T be a contracting map from X into itself and from Y
into itself. Assume that f ∈ X and that there exists a function g ∈ Z such that f = Tf + g ,
then f also belongs to Z.

Proof of Theorem . Let (u, v,w) ∈ Lp+(Rn) × Lq+(Rn) × Lr+(Rn) be a triple of solution
to integral systems (.). We first show by Lemma . that (uξ , vξ ,wξ ), a cut-off function of
(u, v,w) defined below, belongs to Lp̃(Rn)× Lq̃(Rn)× Lr̃(Rn) for p̃, q̃, r̃ >  satisfying


p̃
–

q̃
=


p + 

–


q + 
,


q̃
–

r̃
=


q + 

–


r + 
,


r̃
–

p̃
=


r + 

–


p + 
,

then we prove that (u, v,w) ∈ L∞(Rn)×L∞(Rn)×L∞(Rn). For any sufficient large positive
real number ξ , define

⎧⎨
⎩
uξ (x) = u(x), if |u(x)| ≥ ξ or |x| > ξ ,

uξ (x) = , otherwise.
(.)

Similarly, we may define vξ and wξ . Let

(
T ξ
 g

)
(x) =

∫
Rn

Gα(x – y)vq–ξ (y)wr
ξ (y)g(y)

|y|β dy,

(
Tξ
h

)
(x) =

∫
Rn

Gα(x – y)wr–
ξ (y)upξ (y)h(y)
|y|β dy,

(
Tξ
 f

)
(x) =

∫
Rn

Gα(x – y)up–ξ (y)vqξ (y)f (y)
|y|β dy

and

Tξ (f , g,h) =
(
T ξ
 g,T

ξ
h,T

ξ
 f

)
.

Denote ũξ (x) = u(x) – uξ (x), Eu
ξ = {x ∈ R

n : |u(x)| ≥ ξ or |x| > ξ}. ṽξ , w̃ξ , and Ev
ξ , Ew

ξ can be
defined in the same way.
By (.), we have

u(x) =
∫
Rn

Gα(x – y)wr(y)vq(y)
|y|β dy

=
∫
Rn

Gα(x – y)wr(y)vqξ (y)
|y|β dy +

∫
Rn

Gα(x – y)wr(y)ṽqξ (y)
|y|β dy

=
∫
Rn

Gα(x – y)wr
ξ (y)v

q
ξ (y)

|y|β dy +
∫
Rn

Gα(x – y)w̃r
ξ (y)v

q
ξ (y)

|y|β dy

+
∫
Rn

Gα(x – y)wr
ξ (y)ṽ

q
ξ (y)

|y|β dy +
∫
Rn

Gα(x – y)w̃r
ξ (y)ṽ

q
ξ (y)

|y|β dy. (.)

Thus,

uξ (x) =
∫
Rn

Gα(x – y)wr
ξ (y)v

q
ξ (y)

|y|β dy +M(x),

http://www.journalofinequalitiesandapplications.com/content/2014/1/222
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where

M(x) =
∫
Rn

Gα(x – y)w̃r
ξ (y)v

q
ξ (y)

|y|β dy +
∫
Rn

Gα(x – y)wr
ξ (y)ṽ

q
ξ (y)

|y|β dy

+
∫
Rn

Gα(x – y)w̃r
ξ (y)ṽ

q
ξ (y)

|y|β dy – ũξ (x). (.)

Similarly,

vξ (x) =
∫
Rn

Gα(x – y)wr
ξ (y)u

p
ξ (y)

|y|β dy +M(x),

wξ (x) =
∫
Rn

Gα(x – y)upξ (y)v
q
ξ (y)

|y|β dy +M(x),

where

M(x) =
∫
Rn

Gα(x – y)ũpξ (y)wr
ξ (y)

|y|β dy +
∫
Rn

Gα(x – y)upξ (y)w̃r
ξ (y)

|y|β dy

+
∫
Rn

Gα(x – y)w̃r
ξ (y)ũ

p
ξ (y)

|y|β dy – ṽξ (x) (.)

and

M(x) =
∫
Rn

Gα(x – y)ṽqξ (y)u
p
ξ (y)

|y|β dy +
∫
Rn

Gα(x – y)vqξ (y)ũ
p
ξ (y)

|y|β dy

+
∫
Rn

Gα(x – y)ũpξ (y)ṽ
q
ξ (y)

|y|β dy – w̃ξ (x). (.)

Therefore

(uξ , vξ ,wξ ) = Tξ (uξ , vξ ,wξ ) +
(
M(x),M(x),M(x)

)
.

Now, we show that Tξ (f , g,h) is a contraction map from Lp̃(Rn)× Lq̃(Rn)× Lr̃(Rn) into
Lp̃(Rn)× Lq̃(Rn)× Lr̃(Rn) for p̃, q̃, r̃ satisfying


p̃
–

q̃
=


p + 

–


q + 
,


q̃
–

r̃
=


q + 

–


r + 
,


r̃
–

p̃
=


r + 

–


p + 
. (.)

We may verify that q̃ > np̃
n+(α–β)p̃ , p̃ > nr̃

n+(α–β)r̃ , r̃ >
nq̃

n+(α–β)q̃ according to (.) and (.).
Choosing d such that


d

=
q – 
q + 

+
r

r + 
+

q̃
,

we may infer by (.) that

q̃ > d >
np̃

n + (α – β)p̃
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/222
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By Hardy-Littlewood-Sobolev’s inequality and Hölder’s inequality, we find

∥∥T ξ
 g

∥∥
p̃ ≤ C

∥∥vq–ξ wr
ξ g

∥∥
d

≤ C‖vξ‖q–q+‖wξ‖rq+‖g‖q̃.

In the same way, choosing 
d

= r–
r+ +

p
p+ +


r̃ and


d

= p–
p+ +

q
q+ +


p̃ , we obtain

∥∥T ξ
h

∥∥
q̃ ≤ C

∥∥wr–
ξ upξh

∥∥
d

≤ C‖wξ‖r–r+‖uξ‖pp+‖h‖r̃

and

∥∥T ξ
 f

∥∥
r̃ ≤ C

∥∥up–ξ vqξ f
∥∥
d

≤ C‖uξ‖p–p+‖vξ‖qq+‖f ‖p̃.

Since (u, v,w) ∈ Lp+(Rn)× Lq+(Rn)× Lr+(Rn), one can choose ξ sufficiently large so that

C‖vξ‖q–q+‖wξ‖rq+ ≤ 

, C‖uξ‖pp+‖wξ‖rr+ ≤ 


, C‖uξ‖p–p+‖vξ‖qq+ ≤ 


.

Therefore

∥∥T ξ
 g

∥∥
p̃ ≤ 


‖g‖q̃,

∥∥T ξ
h

∥∥
q̃ ≤ 


‖h‖r̃ ,

∥∥T ξ
 f

∥∥
r̃ ≤ 


‖f ‖p̃

and

∥∥Tξ (f , g,h)
∥∥
p̃×q̃×r̃ =

∥∥(
T ξ
 g,T

ξ
h,T

ξ
 f

)∥∥
p̃×q̃×r̃

=
∥∥T ξ

 g
∥∥
p̃ +

∥∥T ξ
h

∥∥
q̃ +

∥∥T ξ
 f

∥∥
r̃

≤ 

‖g‖q̃ + 


‖h‖r̃ + 


‖f ‖p̃

=


∥∥(f , g,h)∥∥p̃×q̃×r̃ .

In other words, Tξ (f , g,h) is a contraction map from Lp̃(Rn) × Lq̃(Rn) × Lr̃(Rn) into itself
for

p̃, q̃, r̂ > ,

p̃
–

q̃
=


p + 

–


q + 
,


p̃
–

r̃
=


p + 

–


r + 
,


q̃
–

r̃
=


q + 

–


r + 
.

In particular, for p̃ = p + , q̃ = q + , r̃ = r + , we see that Tξ (f , g,h) is also a contraction
map from Lp+(Rn)× Lq+(Rn)× Lr+(Rn) into itself.
Wemay assume, without loss of generality, that q < p < r. Then 

q̃ –

p̃ =


q+ –


p+ > , and

p̃ > q̃. Similarly, r̃ > p̃. Choosing q̃ large such that q̃ > n
α–β

, we also have r̃ > p̃ > n
α–β

. This is
possible because we may require α–β

n > 
q̃ >


q+ –


p+ . By Lemma ., we conclude that

(uξ , vξ ,wξ ) ∈
(
Lp̃

(
R

n) × Lq̃
(
R

n) × Lr̃
(
R

n)) ∩ (
Lp+

(
R

n) × Lq+
(
R

n) × Lr+
(
R

n)).
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Let

I(x) =
∫
Rn

Gα(x – y)w̃r
ξ (y)v

q
ξ (y)

|y|β dy +
∫
Rn

Gα(x – y)wr
ξ (y)ṽ

q
ξ (y)

|y|β dy

+
∫
Rn

Gα(x – y)w̃r
ξ (y)ṽ

q
ξ (y)

|y|β dy

:= J(x) + J(x) + J(x), (.)

I(x) =
∫
Rn

Gα(x – y)ũpξ (y)wr
ξ (y)

|y|β dy +
∫
Rn

Gα(x – y)upξ (y)w̃r
ξ (y)

|y|β dy

+
∫
Rn

Gα(x – y)w̃r
ξ (y)ũ

p
ξ (y)

|y|β dy, (.)

I(x) =
∫
Rn

Gα(x – y)ṽqξ (y)u
p
ξ (y)

|y|β dy +
∫
Rn

Gα(x – y)vqξ (y)ũ
p
ξ (y)

|y|β dy

+
∫
Rn

Gα(x – y)ũpξ (y)ṽ
q
ξ (y)

|y|β dy. (.)

Next, we claim that I, I, I ∈ Ls(Rn). We estimate I only, the estimations for I and I
can be done in the sameway. From (.), we need to show J, J, J ∈ Ls(Rn) to get I ∈ Ls(Rn)
for any s > .
Condition (.) implies 

q+ >
n–α+β

n . Thus, for any s > , we have ns
n+(α–β)s <

q+
q , which

means there exists a t such that ns
n+(α–β)s < t < q+

q . By using Hardy-Littlewood-Sobolev’s
inequality and Hölder’s inequality, we get

‖J‖Ls(Rn) ≤
∥∥vqξ w̃r

ξ

∥∥
Lt (Rn) ≤ C

(∫
{x:|x|≤ξ}

vqtξ (x)dx
) 

t
≤ C‖vξ‖qq+

∣∣Bξ ()
∣∣ t – q

q+ ≤ C.

Hence, J ∈ Ls(Rn) for all s > . The fact J ∈ Ls(Rn) can be done in the same way. As for J,
it is trivial.
By the fact that I, I, I ∈ Ls(Rn), and ũξ , ṽξ , w̃ξ belong to Ls(Rn), which is obvious by

their definitions, we obtainM,M,M ∈ Ls(Rn).
Now, we claim thatM,M,M ∈ L∞(Rn) for any s > .
It is easy to see from the definition that ũξ , ṽξ , w̃ξ ∈ L∞(Rn). So we need only to show

I, I, I ∈ L∞(Rn). Since

J(x) =
∫

{y:|w|≤ξ ,|y|≤ξ}

Gα(x – y)wr(y)vqξ (y)
|y|β dy≤ C

∫
{y:|y|≤ξ}

Gα(x – y)vqξ (y)
|y|β dy,

if x ∈R
n \ Bξ (), y ∈ Bξ (), then |x – y| > |x| – |y| > ξ > |y| and

J(x)≤ C
∫

{y:|y|≤ξ}

e–
|x–y|
 vqξ (y)
|y|β dy≤ C

∫
{y:|y|≤ξ}

vqξ (y)
|y|β dy

≤ C
(∫

{y:|y|≤ξ}
vq+ξ (y)dy

) q
q+

(∫
{y:|y|≤ξ}


|y|(q+)β dy

) 
q+ ≤ C.

http://www.journalofinequalitiesandapplications.com/content/2014/1/222
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If x ∈ Bξ (), then

J(x)≤ C
∫

{y:|y|≤ξ ,|x–y|≥}

Gα(x – y)vqξ (y)
|y|β dy +C

∫
{y:|y|≤ξ ,|x–y|≤}

Gα(x – y)vqξ (y)
|y|β dy

≤ C
∫

{y:|y|≤ξ ,|x–y|≥}

e–
|x–y|
 vqξ (y)
|y|β dy +C

∫
{y:|y|≤ξ ,|x–y|≤}

vqξ (y)
|x – y|n–α|y|β dy

:= C
(
J,(x) + J,(x)

)
. (.)

Now we estimate J, and J,, respectively,

J,(x) =
∫

{y:|y|≤ξ ,|x–y|≥}

e–
|x–y|
 vqξ (y)
|y|β dy

≤ C
(∫

{y:|y|≤ξ}
vq+ξ (y)dy

) q
q+

(∫
{y:|y|≤ξ}


|y|(q+)β dy

) 
q+ ≤ C

and

J,(x) =
∫

{y:|y|≤ξ ,|x–y|≤}

vqξ (y)
|x – y|n–α|y|β dy

=
∫

{y:|y|≤ξ ,|x–y|≤,|x–y|≥|y|}

vqξ (y)
|x – y|n–α|y|β dy

+
∫

{y:|y|≤ξ ,|x–y|≤,|x–y|≤|y|}

vqξ (y)
|x – y|n–α|y|β dy

≤
∫

{y:|y|≤ξ}

vqξ (y)
|y|n–α+β

dy +
∫

{y:|y|≤ξ ,|x–y|≤}

vqξ (y)
|x – y|n–α+β

dy

≤
(∫

{y:|y|≤ξ}
vq+ξ (y)dy

) q
q+

(∫
{y:|y|≤ξ}


|y|(n–α+β)(q+) dy

) 
q+

+
(∫

{y:|y|≤ξ}
vq+ξ (y)dy

) q
q+

(∫
{y:|x–y|≤}


|x – y|(n–α+β)(q+) dy

) 
q+ ≤ C,

where we use the fact that 
q+ >

n–α+β

n . Therefore, J ∈ L∞(Rn). Similarly, we have J ∈
L∞(Rn).
As for J(x), we have

J(x) =
∫
Rn

Gα(x – y)w̃r
ξ (y)ṽ

q
ξ (y)

|y|β dy≤ C
∫

{y:|y|≤ξ}
Gα(x – y)

|y|β dy

≤ C
∫

{y:|y|≤ξ ,|x–y|≥}
e–

|x–y|


|y|β dy +C
∫

{y:|y|≤ξ ,|x–y|<}


|x – y|n–α|y|β dy

:= J,(x) + J,(x).

Since

J,(x)≤ C
∫

{y:|y|≤ξ}


|y|β dy≤ C

http://www.journalofinequalitiesandapplications.com/content/2014/1/222
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and

J,(x)≤ C
∫

{y:|y|≤ξ ,|x–y|<,|x–y|≥|y|}


|x – y|n–α|y|β dy

+C
∫

{y:|y|≤ξ ,|x–y|<,|x–y|<|y|}


|x – y|n–α|y|β dy

≤ C
∫

{y:|y|≤ξ}


|y|n–α+β
dy +C

∫
{y:|x–y|<}


|x – y|n–α+β

dy ≤ C,

we infer J ∈ L∞(Rn).
Thus, we have shown that I ∈ L∞(Rn) ∩ Ls(Rn) for any s > . Similarly, we can deduce

that I, I ∈ L∞(Rn) ∩ Ls(Rn) for any s > . Consequently, M,M,M ∈ L∞(Rn) ∩ Ls(Rn)
for any s > .
Finally, we show that u, v,w ∈ L∞(Rn). Since u(x) = uξ (x) + ũξ (x), v(x) = vξ (x) + ṽξ (x),

w(x) = wξ (x) + w̃ξ (x), and ũξ , ṽξ , w̃ξ ∈ L∞(Rn), we only need to verify uξ , vξ ,wξ ∈ L∞(Rn).
By (.)-(.) and M,M,M ∈ L∞(Rn), it is sufficient to verify that L,L,L ∈ L∞(Rn),
where

L(x) =
∫
Rn

Gα(x – y)wr
ξ (y)v

q
ξ (y)

|y|β dy, L(x) =
∫
Rn

Gα(x – y)wr
ξ (y)u

p
ξ (y)

|y|β dy,

L(x) =
∫
Rn

Gα(x – y)upξ (y)v
q
ξ (y)

|y|β dy.

In fact,

L(x) =
∫

{y:|y|≤ξ}

Gα(x – y)wr
ξv

q
ξ

|y|β dy +
∫

{y:|y|≥ξ}

Gα(x – y)wr
ξv

q
ξ

|y|β dy

:=N(x) +K (x). (.)

Choosing q̃ large enough such that q̃ > q(p+)(q+)
pq– , that is,


q̃
<


q + 

–


q(p + )
. (.)

If x ∈R
n \ Bξ (), y ∈ Bξ (), then |x – y| > |x| – |y| > ξ > |y|. Thus,

N(x)≤ C
∫

{y:|y|≤ξ}

e–
|x–y|
 wr

ξv
q
ξ

|y|β dy≤ C
∫

{y:|y|≤ξ}

wr
ξv

q
ξ

|y|β dy

≤ C‖wξ‖rr+‖vξ‖qq̃
(∫

{y:|y|≤ξ}


|y|
β

– r
r+ –

q
q̃

dy
) 

r+ –
q
q̃ ≤ C, (.)

where we use the fact that q̃ > q(p+)(q+)
pq– > nq(r+)

n–(r+)(n–α+β) >
nq(r+)
n–(r+)β .
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If x ∈ Bξ (), then

N(x)≤ C
∫

{y:|y|≤ξ ,|x–y|≥}

e–
|x–y|
 wr

ξv
q
ξ

|y|β dy +C
∫

{y:|y|≤ξ ,|x–y|≤}

wr
ξv

q
ξ

|x – y|n–α|y|β dy

:= C
(
N(x) +N(x)

)
. (.)

Now we estimate N(x), N(x), respectively. By Hölder’s inequality, we have

N(x)≤ C
∫

{y:|y|≤ξ}

wr
ξv

q
ξ

|y|β dy

≤ C‖wξ‖rr+‖vξ‖qq̃
(∫

{y:|y|≤ξ}


|y|
β

– r
r+ –

q
q̃

dy
)– 

r+ –
q
q̃ ≤ C (.)

since q̃ > nq(r+)
n–(r+)β . On the other hand, we deduce

N(x) =
∫

{y:|y|≤ξ ,|x–y|≤,|x–y|≥|y|}

wr
ξv

q
ξ

|x – y|n–α|y|β dy

+
∫

{y:|y|≤ξ ,|x–y|≤,|x–y|≤|y|}

wr
ξv

q
ξ

|x – y|n–α|y|β dy

≤
∫

{y:|y|≤ξ}

wr
ξv

q
ξ

|y|n–α+β
dy +

∫
{y:|y|≤ξ ,|x–y|≤}

wr
ξv

q
ξ

|x – y|n–α+β
dy

≤ ‖wξ‖rr+‖vξ‖qq̃
(∫

{y:|y|≤ξ}


|y|
n–α+β

– r
r+ –

q
q̃

dy
) 

r+ –
q
q̃

+ ‖wξ‖rr+‖vξ‖qq̃
(∫

{y:|x–y|≤}


|x – y|
n–α+β

– r
r+ –

q
q̃

dy
) 

r+ –
q
q̃

≤ C (.)

by the fact that q̃ > nq(r+)
n–(r+)(n–α+β) .

Inequalities (.)-(.) imply that N(x) ∈ L∞(Rn). Now we estimate K (x). For any x ∈
R

n,

K (x) =
∫

{y:|y|≥ξ}

Gα(x – y)wr
ξv

q
ξ

|y|β dy

≤ C
∫

{y:|y|≥ξ ,|x–y|≥}

e–
|x–y|
 wr

ξv
q
ξ

|y|β dy +C
∫

{y:|y|≥ξ ,|x–y|≤}

wr
ξv

q
ξ

|x – y|n–α|y|β dy

≤ C
∫

{y:|y|≥ξ ,|x–y|≥}

e–
|x–y|
 wr

ξv
q
ξ

|y|β dy +C
∫

{y:|x–y|≤}

wr
ξv

q
ξ

|x – y|n–α+β
dy

:= C
(
K(x) +K(x)

)
. (.)
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By Hölder’s inequality,

K(x)≤ ‖wξ‖rr+‖vξ‖qq̃
(∫

{y:|x–y|≤}


|x – y|
n–α+β

– r
r+ –

q
q̃

dy
) 

r+ –
q
q̃ ≤ C.

Now we estimate K(x). Using the fact that q̃ > q(p+)(q+)
pq– > nq(r+)

n–(r+)(n–α+β) , we can choose a t
such that  < t < n(r+)q̃

(n–β(r+))q̃–nq(r+) . Hence, Hölder’s inequality implies that

K(x)≤ ‖wξ‖rr+‖vξ‖qq̃
(∫

{y:|x–y|≥}
e–

|x–y|t
 dy

) 
t

×
(∫

{y:|y|≥ξ}


|y|
β

– r
r+ –

q
q̃ –


t

dy
) 

r+ –
q
q̃–


t ≤ C. (.)

Consequently, both N and K belong to L∞(Rn), so we have L.
By (.), (.), (.), and the assumption that q < p < r, we see that p̃, r̃ satisfies


p̃
<


p + 

–


(p + )q
<


p + 

–


(r + )p

=

p

(
 –


p + 

–


r + 

)
<

p

(


q + 
–
n – α + β

n

)
, (.)


r̃
<


r + 

–


(p + )q
<


r + 

–


(q + )r

=

r

(
 –


r + 

–


q + 

)
<

r

(


p + 
–
n – α + β

n

)
. (.)

Inequalities (.) and (.) allow us to show in the same way that L,L ∈ L∞(Rn). Con-
sequently, (u, v,w) ∈ L∞(Rn)× L∞(Rn)× L∞(Rn). Theorem . is proved. �

4 Hölder continuity
We will show in this section that solution triples of (.) are Hölder continuous by regu-
larity lifting Theorem II in []. We first recall the theorem.
Let V be a Hausdorff topological vector space. Suppose there are two extended norms

defined on V , ‖ · ‖X ,‖ · ‖Y : V → [,∞]. Let

X :=
{
v ∈ V : ‖v‖X <∞}

, Y :=
{
v ∈ V : ‖v‖Y < ∞}

.

We also assume that X is complete and that the topology in V is weaker than the topology
of X and the weak topology of Y , which means that the convergence in X or weak con-
vergence in Y will imply convergence in V . The pair of spaces (X,Y ) described as above
is called an XY -pair, if whenever the sequence {un} ⊂ X with un → u in X and ‖un‖Y ≤ C
will imply u ∈ Y .
It is known from Remark .. in [] that if X = Lp(U) for  ≤ p ≤ ∞, Y = C,γ (U) for

 < γ ≤ , and V is the space of distributions, whereU can be any subset ofRn orRn itself,
then (X,Y ) is an XY -pair.
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Lemma . (Regularity lifting II []) Let X, Y be Banach spaces contained in some larger
topological space V satisfying properties described above, and that X andY be closed sub-
sets of X and Y , respectively. Suppose that (X,Y ) is an XY-pair, T : X → X is a contrac-
tion:

‖Tf – Tg‖X ≤ η‖f – g‖X, ∀f , g ∈X and for some  < η < ;

and T :Y→ Y is shrinking:

‖Tg‖Y ≤ θ‖g‖Y, ∀g ∈Y and for some  < θ < .

Define

Sf = Tf + F for some F ∈X∩Y.

Moreover, assume that

S :X∩Y→X∩Y.

Then there exists a unique solution u of equation

u = Tf + F in X,

and,more importantly,

u ∈ Y .

Proof of Theorem . Since

–
∫ ∞


G′

α(t)
∫
Bt (x)

wr(y)vq(y)
|y|β dydt =

∫
Rn

Gα(x – y)wr(y)vq(y)
|y|β dy,

the solution triples (u, v,w) of (.) are solutions of the following system:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(x) = –
∫ ∞
 G′

α(t)
∫
Bt (x)

wr(y)vq(y)
|y|β dydt,

v(x) = –
∫ ∞
 G′

α(t)
∫
Bt (x)

up(y)wr(y)
|y|β dydt,

w(x) = –
∫ ∞
 G′

α(t)
∫
Bt (x)

up(y)vq(y)
|y|β dydt.

(.)

Hence, it is sufficient to prove that the solutions of (.) are Hölder continuous.
For any � ⊂⊂R

n \ {}, denote d = dist(,�) > . Let X = L∞(�) and Y = C,γ (�), where
γ =  – β

n . By Theorem ., u, v,w ∈ L∞(Rn), so we may define

X =
{
g ∈ X|‖g‖∞ ≤ ‖u‖∞ + ‖v‖L∞ + ‖w‖∞

}
,

Y =
{
g ∈ Y |‖g‖∞ ≤ ‖u‖∞ + ‖v‖L∞ + ‖w‖∞

}
.
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For every  < ε < d
 , we define

Tε
 (g,h)(x) = –

∫ ε


G′

α(t)
∫
Bt (x)

hr(y)gq(y)
|y|β dydt,

Tε
 (h, f )(x) = –

∫ ε


G′

α(t)
∫
Bt (x)

f p(y)hr(y)
|y|β dydt,

Tε
 (f , g)(x) = –

∫ ε


G′

α(t)
∫
Bt (x)

gq(y)f p(y)
|y|β dydt

and

Tε(f , g,h) =
(
Tε
 (g,h),T

ε
 (h, f ),T

ε
 (f , g)

)
.

Furthermore, we define

U(x) = –
∫ ∞

ε

G′
α(t)

∫
Bt (x)

wr(y)vq(y)
|y|β dydt,

V (x) = –
∫ ∞

ε

G′
α(t)

∫
Bt (x)

up(y)wr(y)
|y|β dydt,

W (x) = –
∫ ∞

ε

G′
α(t)

∫
Bt (x)

vq(y)up(y)
|y|β dydt.

Obviously, a solution (u, v,w) of (.) is a solution of the equation

(u, v,w) = Tε(u, v,w) +G,

where G = (U ,V ,W ). Write

Sε(u, v,w) = Tε(u, v,w) +G.

We will show for ε >  small that

Tε :X×X×X→ X ×X ×X

is a contracting operator and

Tε :Y×Y×Y→ Y × Y × Y

is a shrinking operator. Furthermore,

G ∈ (X×X×X)∩ (Y×Y×Y),

and

Sε : (X×X×X)∩ (Y×Y×Y) → (X×X×X)∩ (Y×Y×Y).

This then will yield (u, v,w) ∈ Y × Y × Y by Lemma ..

http://www.journalofinequalitiesandapplications.com/content/2014/1/222


Chen and Wang Journal of Inequalities and Applications 2014, 2014:222 Page 17 of 21
http://www.journalofinequalitiesandapplications.com/content/2014/1/222

We first show that Tε is a contracting operator from X×X×X to X ×X ×X. We have
(g,h), (g,h) ∈X×X. By the mean value theorem, we have

∣∣Tε
 (g,h)(x) – Tε

 (g,h)(x)
∣∣

≤
∣∣∣∣
∫ ε


G′

α(t)
∫
Bt (x)

hr(y)g
q
 (y) – hr(y)g

q
 (y)

|y|β dydt
∣∣∣∣

≤
∫ ε


G′

α(t)
∫
Bt (x)

∣∣∣∣ (h
r
(y) – hr(y))g

q
 (y) + hr(y)(g

q
 (y) – gq (y))

|y|β
∣∣∣∣dydt

≤ ‖g‖q∞ max
{‖h‖r–∞ ,‖h‖r–∞

}‖h – h‖∞
∫ ε



∣∣G′
α(t)

∣∣ ∫ t


rn–β– dr dt

+ ‖h‖r∞ max
{‖g‖q–∞ ,‖g‖q–∞

}‖g – g‖∞
∫ ε



∣∣G′
α(t)

∣∣ ∫ t


rn–β– dr dt

≤ C
(‖h – h‖∞ + ‖g – g‖∞

)
εα–β ,

where we use the fact that
∫ ε


sn–β

∣∣G′
α(s)

∣∣ds =O
(
εα–β

)
.

Choosing ε >  small so that Cεα–β < 
 , we see that Tε

 is a contracting operator from
X×X to X ×X. Similarly, Tε

 and Tε
 are also contracting operators from X×X to X ×X.

Therefore, Tε is a contracting operator from X×X×X to X ×X ×X.
Next, we verify that Tε is a shrinking operator from Y × Y × Y to Y × Y × Y . We

only show it for Tε
 ; it can be done in the same way for Tε

 and Tε
 . For any x, z ∈ � and

(g,h) ∈Y×Y we have

∣∣Tε
 (g,h)(x) – Tε

 (g,h)(z)
∣∣

≤
∫ ε



∣∣G′
α(t)

∣∣∣∣∣∣
∫
Bt (x)

gq(y)hr(y)
|y|β dy –

∫
Bt (z)

gq(y)hr(y)
|y|β dy

∣∣∣∣dt

=
∫ ε



∣∣G′
α(t)

∣∣
∣∣∣∣
∫
Bt (x)

hr(y)gq(y)
|y|β dy –

∫
Bt (x)

hr(y + z – x)gq(y + z – x)
|y + z – x|β dy

∣∣∣∣dt

≤
∫ ε



∣∣G′
α(t)

∣∣∣∣∣∣
∫
Bt (x)

hr(y)gq(y)
|y|β dy –

∫
Bt (x)

hr(y)gq(y)
|y + z – x|β dy

∣∣∣∣dt

+
∫ ε



∣∣G′
α(t)

∣∣∣∣∣∣
∫
Bt (x)

hr(y)gq(y) – hr(y + z – x)gq(y + z – x)
|y + z – x|β dy

∣∣∣∣dt
=: A(x) + B(x).

For y ∈ Bt(x),  < t < ε, we have |y| ≥ |x| – t ≥ d – d
 = d

 and |y + z – x| ≥ |z| – |y – x| ≥
d – t ≥ d

 . So both 
|y|β and 

|y+z–x|β are regular in Bt(x) for  < t < ε. In particular, there
exists C >  such that | 

|y|β – 
|y+z–x|β | ≤ C|x – z|. Hence,

A(x) =
∫ ε



∣∣G′
α(t)

∣∣∣∣∣∣
∫
Bt (x)

hr(y)gq(y)
(


|y|β –


|y + z – x|β

)
dy

∣∣∣∣dt

≤ C‖g‖q∞‖h‖r∞|x – z|
∫ ε



∣∣G′
α(t)

∣∣tn dt = C‖g‖q∞‖h‖r∞|x – z|εα .
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If |x – z| ≤ , |x – z| ≤ |x – z|γ ; if |x – z| > , |x – z| ≤ (diam�)–γ |x – z|γ . Therefore,

A(x)≤ C‖g‖q∞‖h‖r–∞ ‖h‖C,γ |x – z|γ εα .

On the other hand, by the mean value theorem,

B(x) =
∫ ε



∣∣G′
α(t)

∣∣∣∣∣∣
∫
Bt (x)

hr(y)gq(y) – hr(y + z – x)gq(y + z – x)
|y + z – x|β dy

∣∣∣∣dt

≤
∫ ε



∣∣G′
α(t)

∣∣∣∣∣∣
∫
Bt (x)

(gq(y) – gq(y + z – x))hr(y)
|y + z – x|β dy

∣∣∣∣dt

+
∫ ε



∣∣G′
α(t)

∣∣∣∣∣∣
∫
Bt (x)

(hr(y) – hr(y + z – x))gq(y + z – x)
|y + z – x|β dy

∣∣∣∣dt

≤ C
(

d

)β(‖g‖q–∞ ‖h‖r∞‖g‖C,γ |x – z|γ )∫ ε



∣∣G′
α(t)

∣∣tn dt

+C
(

d

)β(‖g‖q∞‖h‖r–∞ ‖h‖C,γ |x – z|γ )∫ ε



∣∣G′
α(t)

∣∣tn dt
≤ C

(‖g‖q–∞ ‖h‖r∞‖g‖C,γ |x – z|γ + ‖g‖q∞‖h‖r–∞ ‖h‖C,γ |x – z|γ )
εα .

So

∣∣Tε
 (g,h)(x) – Tε

 (g,h)(z)
∣∣ ≤ C

(‖g‖C,γ |x – z|γ + ‖h‖C,γ |x – z|γ )
εα .

Choosing ε sufficiently small, we obtain

sup
x �=z

|Tε
 (g,h)(x) – Tε

 (g,h)(z)|
|x – z|γ ≤ 


(‖g‖C,γ + ‖h‖C,γ

)
.

Similarly, we have

sup
x �=z

|Tε
 (h, f )(x) – Tε

 (h, f )(z)|
|x – z|γ ≤ 


(‖h‖C,γ + ‖f ‖C,γ

)

and

sup
x �=z

|Tε
 (f , g)(x) – Tε

 (f , g)(z)|
|x – z|γ ≤ 


(‖f ‖C,γ + ‖g‖C,γ

)
.

Consequently,

sup
x �=z

|Tε(f , g,h)(x) – Tε(f , g,h)(z)|
|x – z|γ ≤ 


∥∥(f , g,h)∥∥C,γ

for (f , g,h) ∈Y×Y×Y, that is, T is a shrinking operator fromY×Y×Y to Y ×Y ×Y .
Now, we show that (U ,V ,W ) is Hölder continuous. We will show that ‖U‖C,γ is finite.

Indeed,

U(x) =
∫ 

ε

∣∣G′
α(t)

∣∣ ∫
Bt (x)

wr(y)vq(y)
|y|β dydt +

∫ ∞



∣∣G′
α(t)

∣∣ ∫
Bt (x)

wr(y)vq(y)
|y|β dydt

=:U(x) +U(x).
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For any x, z ∈ �, we have

∣∣U(x) –U(z)
∣∣

=
∣∣∣∣
∫ 

ε

∣∣G′
α(t)

∣∣ ∫
Bt (x)

wr(y)vq(y)
|y|β dydt –

∫ 

ε

∣∣G′
α(t)

∣∣ ∫
Bt (z)

wr(y)vq(y)
|y|β dydt

∣∣∣∣
=

∣∣∣∣
∫ 

ε

∣∣G′
α(t)

∣∣(∫
Bt (x)

wr(y)vq(y)
|y|β dy –

∫
Bt (z)

wr(y)vq(y)
|y|β dy

)
dt

∣∣∣∣
≤ ‖v‖q∞‖w‖r∞

∫ 

ε

∣∣G′
α(t)

∣∣(∫
(Bt (x)\Bt (z))∪(Bt (z)\Bt (x))


|y|β dy

)
dt.

On the other hand, we get from []

∫
(Bt (x)\Bt (z))∪(Bt (z)\Bt (x))


|y|β dy≤ Ctn––β |x – z|γ .

Therefore,

∣∣U(x) –U(z)
∣∣ ≤ C‖v‖q∞‖w‖r∞|x – z|γ

∫ 

ε

∣∣G′
α(t)

∣∣tn––β dt ≤ C(ε)|x – z|γ .

That is,

sup
x �=z

|U(x) –U(z)|
|x – z|γ ≤ C(ε). (.)

For the second part, we use a different approach. We have

U(x) –U(z) ≤
∫ ∞



∣∣G′
α(t)

∣∣ ∫
Bt(+δ)(z)

wr(y)vq(y)
|y|β dydt –U(z)

≤
∫ ∞

+δ

∣∣G′
α(t)

∣∣ ∫
Bt (z)

wr(y)vq(y)
|y|β dydt( + δ)α –U(z)

≤U(z)
[
( + δ)α – 

] ≤ u(z)( + ξ )α–δ

≤ C‖u‖∞δ ≤ C‖u‖∞|x – z|γ .

Note that here we have applied the mean value theorem with ξ valued between  and δ.
The same inequality holds for U(z) –U(x). Therefore,

sup
x �=z

|U(x) –U(z)|
|x – z|γ ≤ C‖u‖∞. (.)

By the definition of U(x), we immediately have

‖U‖∞ ≤ ‖u‖∞. (.)

Inequalities (.) and (.) imply that U(x) is Hölder continuous, which together with
(.) yields U ∈ X ∩ Y. Similarly, we can show V ,W ∈ X ∩ Y. As a result, (U ,V ,W ) ∈
(X×X×X)∩ (Y×Y×Y).
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Finally, we show that Sε maps (X × X × X) ∩ (Y × Y × Y) into itself. We only need to
verify that if (u, v,w) ∈X×X×X, then

Tε(u, v,w) ≤ ‖u‖∞ + ‖v‖∞ + ‖w‖∞. (.)

In fact,

Tε
 (v,w)(x) =

∫ ε



∣∣G′
α(t)

∣∣ ∫
Bt (x)

wr(y)vq(y)
|y|β dydt

≤ ‖v‖q∞‖w‖r∞
∫ ε



∣∣G′
α(t)

∣∣ ∫
Bt (x)


|y|β dydt

≤ C
(
‖u‖∞ + ‖v‖∞ + ‖w‖∞

)q+r
εα–β .

Similarly,

Tε
 (w,u)(x)≤ C

(
‖u‖∞ + ‖v‖∞ + ‖w‖∞

)p+r
εα–β

and

Tε
 (u, v)(x)≤ C

(
‖u‖∞ + ‖v‖∞ + ‖w‖∞

)p+q
εα–β .

Choosing ε sufficiently small, we obtain (.). The proof is complete. �
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