
Yao et al. Journal of Inequalities and Applications 2014, 2014:206
http://www.journalofinequalitiesandapplications.com/content/2014/1/206

RESEARCH Open Access

Construction of minimum-norm fixed points
of pseudocontractions in Hilbert spaces
Yonghong Yao1, Giuseppe Marino2, Hong-Kun Xu3 and Yeong-Cheng Liou4,5*

*Correspondence:
simplex_liou@hotmail.com
4Department of Information
Management, Cheng Shiu
University, Kaohsiung, 833, Taiwan
5Center for General Education,
Kaohsiung Medical University,
Kaohsiung, 807, Taiwan
Full list of author information is
available at the end of the article

Abstract
An iterative algorithm is introduced for the construction of the minimum-norm fixed
point of a pseudocontraction on a Hilbert space. The algorithm is proved to be
strongly convergent.
MSC: 47H05; 47H10; 47H17

Keywords: fixed point; minimum-norm; pseudocontraction; nonexpansive
mapping; projection

1 Introduction
Construction of fixed points of nonlinear mappings is a classical and active area of nonlin-
ear functional analysis due to the fact that many nonlinear problems can be reformulated
as fixed point equations of nonlinear mappings. The research of this area dates back to Pi-
card’s and Banach’s time. As amatter of fact, the well-known Banach contraction principle
states that the Picard iterates {Tnx} converge to the unique fixed point of T whenever T
is a contraction of a complete metric space. However, if T is not a contraction (nonexpan-
sive, say), then the Picard iterates {Tnx} fail, in general, to converge; hence, other iterative
methods are needed. In ,Mann [] introduced the now calledMann’s iterativemethod
which generates a sequence {xn} via the averaged algorithm

xn+ = ( – αn)xn + αnTxn, n≥ , (.)

where {αn} is a sequence in the unit interval [, ], T is a self-mapping of a closed convex
subset C of a Hilbert spaceH , and the initial guess x is an arbitrary (but fixed) point of C.
Mann’s algorithm (.) has extensively been studied [–], and in particular, it is known

that if T is nonexpansive (i.e., ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C) and if T has a fixed
point, then the sequence {xn} generated by Mann’s algorithm (.) converges weakly to a
fixed point of T provided the sequence {αn} satisfies the condition

∞∑
n=

αn( – αn) = ∞. (.)

This algorithm, however, does not converge in the strong topology in general (see [,
Corollary .]).
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Browder and Petryshyn [] studied weak convergence of Mann’s algorithm (.) for the
class of strict pseudocontractions (in the case of constant stepsizes αn = α for all n; see []
for the general case of variable stepsizes). However, Mann’s algorithm fails to converge
for Lipschitzian pseudocontractions (see the counterexample of Chidume and Mutan-
gadura []). It is therefore an interesting question of inventing iterative algorithms which
generate a sequence converging in the norm topology to a fixed point of a Lipschitzian
pseudocontraction (if any). The interest of pseudocontractions lies in their connection
withmonotone operators; namely, T is a pseudocontraction if and only if the complement
I – T is a monotone operator.
We also notice that it is quite usual to seek a particular solution of a given nonlinear

problem, in particular, the minimum-norm solution. For instance, given a closed convex
subset C of a Hilbert space H and a bounded linear operator A : H → H, where H is
another Hilbert space. The C-constrained pseudoinverse of A, A†

C is then defined as the
minimum-norm solution of the constrained minimization problem

A†
C(b) := argmin

x∈C ‖Ax – b‖ (.)

which is equivalent to the fixed point problem

x = PC
(
x – λA∗(Ax – b)

)
, (.)

where PC is themetric projection fromH ontoC,A∗ is the adjoint ofA, λ >  is a constant,
and b ∈H is such that PA(C)(b) ∈ A(C).
It is therefore an interesting problem to invent iterative algorithms that can generate

sequences which converge strongly to the minimum-norm solution of a given fixed point
problem. The purpose of this paper is to solve such a problem for pseudocontractions.
More precisely, we shall introduce an iterative algorithm for the construction of fixed
points of Lipschitzian pseudocontractions and prove that our algorithm (see (.) in Sec-
tion ) converges in the strong topology to theminimum-normfixed point of themapping.
For the existing literature on iterative methods for pseudocontractions, the reader can

consult [, –]; for finding minimum-norm solutions of nonlinear fixed point and
variational inequality problems, see [–]; and for related iterative methods for nonex-
pansive mappings, see [, , , ] and the references therein.

2 Preliminaries
Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖, respectively.
Let C be a nonempty closed convex subset of H . The class of nonlinear mappings which
we will study is the class of pseudocontractions. Recall that a mapping T : C → C is a
pseudocontraction if it satisfies the property

〈Tx – Ty,x – y〉 ≤ ‖x – y‖, ∀x, y ∈ C. (.)

It is not hard to find that T is a pseudocontraction if and only if T satisfies one of the
following two equivalent properties:
(a) ‖Tx – Ty‖ ≤ ‖x – y‖ + ‖(I – T)x – (I – T)y‖ for all x, y ∈ C; or
(b) I – T is monotone on C: 〈x – y, (I – T)x – (I – T)y〉 ≥  for all x, y ∈ C.
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Recall that a mapping T : C → C is nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

It is immediately clear that nonexpansive mappings are pseudocontractions.
Recall also that the nearest point (or metric) projection from H onto C is defined as

follows: For each point x ∈ H , PCx is the unique point in C with the property

‖x – PCx‖ ≤ ‖x – y‖, y ∈ C.

Note that PC is characterized by the inequality

PCx ∈ C, 〈x – PCx, y – PCx〉 ≤ , y ∈ C. (.)

Consequently, PC is nonexpansive.
In the sequel we shall use the following notations:
• Fix(S) stands for the set of fixed points of S;
• xn ⇀ x stands for the weak convergence of (xn) to x;
• xn → x stands for the strong convergence of (xn) to x.
Below is the so-called demiclosedness principle for nonexpansive mappings.

Lemma . (cf. []) Let C be a nonempty closed convex subset of a real Hilbert space H ,
and let S : C → C be a nonexpansive mapping with fixed points. If {xn} is a sequence in C
such that xn ⇀ x∗ and (I – S)xn → y, then (I – S)x∗ = y.

We also need the following lemma whose proof can be found in literature (cf. []).

Lemma . Let C be a nonempty closed convex subset of a real Hilbert space H . As-
sume that a mapping F : C → H is monotone and weakly continuous along segments (i.e.,
F(x + ty) → F(x) weakly as t → , whenever x + ty ∈ C for x, y ∈ C). Then the variational
inequality

x∗ ∈ C,
〈
Fx∗,x – x∗〉 ≥ , ∀x ∈ C (.)

is equivalent to the dual variational inequality

x∗ ∈ C,
〈
Fx,x – x∗〉 ≥ , ∀x ∈ C. (.)

Finally, we state the following elementary result on convergence of real sequences.

Lemma . ([]) Let {an} be a sequence of nonnegative real numbers satisfying

an+ ≤ ( – γn)an + γnσn, n ≥ ,

where {γn} ⊂ (, ) and {σn} satisfy
(i)

∑∞
n= γn =∞;

(ii) either lim supn→∞ σn ≤  or
∑∞

n= |γnσn| < ∞.
Then {an} converges to .
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3 An iterative algorithm and its convergence
Throughout this section we assume that C is a nonempty closed subset of a real Hilbert
space H and T : C → C is a pseudocontraction with a nonempty fixed point set Fix(T).
The aim of this section is to introduce an iterative method for finding theminimum-norm
fixed point of T . Towards this, we select two sequences of real numbers, {αn} and {βn} in
the interval (, ) such that

αn + βn <  (.)

for all n. We also take an arbitrary initial guess x ∈ C. We then define an iterative algo-
rithm which generates a sequence {xn} via the following recursion:

xn+ = PC
[
( – αn – βn)xn + βnTxn

]
, n≥ . (.)

We shall prove that this sequence strongly converges to the minimum-norm fixed point
of T provided {αn} and {βn} satisfy certain conditions. To this end, we need the following
lemma.

Lemma . Let f : C → H be a contraction with coefficient ρ ∈ (, ). Let S : C → C be a
nonexpansive mapping with Fix(S) = ∅. For each t ∈ (, ), let xt be defined as the unique
solution of the fixed point equation

xt = SPC
[
tf (xt) + ( – t)xt

]
. (.)

Then, as t → +, the net {xt} converges strongly to a point x∗ ∈ Fix(S) which solves the
following variational inequality:

x∗ ∈ Fix(S),
〈
(I – f )x∗,x – x∗〉 ≥ , x ∈ Fix(S).

In particular, if we take f = , then the net {xt} defined via the fixed point equation

xt = SPC
[
( – t)xt

]
, (.)

converges in norm, as t → +, to the minimum-norm fixed point of S.

Proof First observe that, for each t ∈ (, ), xt is well defined. Indeed, if we define a map-
ping St : C → C by

Stx = SPC
[
tf (x) + ( – t)x

]
, x ∈ C.

For x, y ∈ C, we have

‖Stx – Sty‖ =
∥∥SPC

[
tf (x) + ( – t)x

]
– SPC

[
tf (y) + ( – t)y

]∥∥
≤ t

∥∥f (x) – f (y)
∥∥ + ( – t)‖x – y‖

≤ [
 – ( – ρ)t

]‖x – y‖,

http://www.journalofinequalitiesandapplications.com/content/2014/1/206
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which implies that St is a self-contraction of C. Hence St has a unique fixed point xt ∈ C
which is the unique solution of fixed point equation (.).
Next we prove that {xt} is bounded. Take u ∈ Fix(S). From (.) we have

‖xt – u‖ =
∥∥SPC

[
tf (xt) + ( – t)xt

]
– SPCu

∥∥
≤ t

∥∥f (xt) – f (u)
∥∥ + t

∥∥f (u) – u
∥∥ + ( – t)‖xt – u‖

≤ [
 – ( – ρ)t

]‖xt – u‖ + t
∥∥f (u) – u

∥∥,
that is,

‖xt – u‖ ≤ ‖f (u) – u‖
 – ρ

.

Hence, {xt} is bounded and so is {f (xt)}.
From (.) we have

‖xt – Sxt‖ =
∥∥SPC

[
tf (xt) + ( – t)xt

]
– SPCxt

∥∥
≤ t

∥∥f (xt) – xt
∥∥ →  as t → +. (.)

Next we show that {xt} is relatively norm-compact as t → +, i.e., we show that from any
sequence in {xt}, a convergent subsequence can be extracted. Let {tn} ⊂ (, ) be a sequence
such that tn → + as n→ ∞. Put xn := xtn . From (.) we have

‖xn – Sxn‖ → . (.)

Again from (.) we get

‖xt – u‖ =
∥∥SPC

[
tf (xt) + ( – t)xt

]
– SPCu

∥∥

≤ ∥∥xt – u + t
(
f (xt) – xt

)∥∥

= ‖xt – u‖ + t
〈
f (xt) – xt ,xt – u

〉
+ t

∥∥f (xt) – xt
∥∥

= ‖xt – u‖ + t
〈
f (xt) – f (u),xt – u

〉
+ t

〈
f (u) – u,xt – u

〉
+ t〈u – xt ,xt – u〉 + t

∥∥f (xt) – xt
∥∥

≤ [
 – ( – ρ)t

]‖xt – u‖ + t
〈
f (u) – u,xt – u

〉
+ t

∥∥f (xt) – xt
∥∥.

It turns out that

‖xt – u‖ ≤ 
 – ρ

〈
f (u) – u,xt – u

〉
+ tM, (.)

whereM >  is a constant such that

M >


( – ρ)
sup

{∥∥f (xt) – xt
∥∥ : t ∈ (, )

}
.

In particular, we get from (.)

‖xn – u‖ ≤ 
 – ρ

〈
f (u) – u,xn – u

〉
+ tnM, u ∈ Fix(S). (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/206
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Since {xn} is bounded, without loss of generality, we may assume that {xn} converges
weakly to a point x∗ ∈ C. Noticing (.) we can use Lemma . to get x∗ ∈ Fix(S). Therefore
we can substitute x∗ for u in (.) to get

∥∥xn – x∗∥∥ ≤ 
 – ρ

〈
f
(
x∗) – x∗,xn – x∗〉 + tnM. (.)

However, xn ⇀ x∗. This together with (.) guarantees that xn → x∗. The net {xt} is there-
fore relatively compact, as t → +, in the norm topology.
Now we return to (.) and take the limit as n→ ∞ to get

∥∥x∗ – u
∥∥ ≤ 

 – ρ

〈
f (u) – u,x∗ – u

〉
, u ∈ Fix(S).

In particular, x∗ solves the following variational inequality:

x∗ ∈ Fix(S),
〈
(I – f )u,u – x∗〉 ≥ , u ∈ Fix(S).

By Lemma ., we see that x∗ solves the variational inequality

x∗ ∈ Fix(S),
〈
(I – f )x∗,u – x∗〉 ≥ , u ∈ Fix(S). (.)

Therefore, x∗ = (PFix(S)f )x∗. That is, x∗ is the unique fixed point in Fix(S) of the contraction
PFix(S)f . Clearly this is sufficient to conclude that the entire net {xt} converges in norm to
x∗ as t → +.
Finally, if we take f = , then variational inequality (.) is reduced to

 ≤ 〈
x∗,u – x∗〉, u ∈ Fix(S).

Equivalently,

∥∥x∗∥∥ ≤ 〈
x∗,u

〉
, u ∈ Fix(S).

This clearly implies that

∥∥x∗∥∥ ≤ ‖u‖, u ∈ Fix(S).

Therefore, x∗ is the minimum-norm fixed point of S. This completes the proof. �

We are now in a position to prove the strong convergence of algorithm (.).

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H , and
let T : C → C be L-Lipschitzian and pseudocontractive with Fix(T) = ∅. Suppose that the
following conditions are satisfied:

(i) limn→∞ αn =  and
∑∞

n= αn = ∞;
(ii) limn→∞ αn

βn
= limn→∞

β
n

αn
= ;

(iii) limn→∞ αnβn––αn–βn
αnβn–

= .

http://www.journalofinequalitiesandapplications.com/content/2014/1/206
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Then the sequence {xn} generated by algorithm (.) converges strongly to the minimum-
norm fixed point of T .

Proof First we prove that the sequence {xn} is bounded. We will show this fact by induc-
tion. According to conditions (i) and (ii), there exists a sufficiently large positive integerm
such that

 – (L + )(L + )
(

αn + βn +
β
n

αn

)
> , n≥m. (.)

Fix p ∈ Fix(T) and take a constant M >  such that

max
{‖x – p‖,‖x – p‖, . . . ,‖xm – p‖, ‖p‖} ≤M. (.)

Next, we show that ‖xm+ – p‖ ≤M.
Set

ym = ( – αm – βm)xm + βmTxm; thus xm+ = PC[ym].

Then, by using property (.) of the metric projection, we have

〈xm+ – ym,xm+ – p〉 ≤ . (.)

By the fact that I – T is monotone, we have

〈
(I – T)xm+ – (I – T)p,xm+ – p

〉 ≥ . (.)

From (.), (.) and (.), we obtain

‖xm+ – p‖ = 〈xm+ – p,xm+ – p〉
= 〈xm+ – ym,xm+ – p〉 + 〈ym – p,xm+ – p〉
≤ 〈ym – p,xm+ – p〉
= 〈xm – p,xm+ – p〉 – αm〈xm,xm+ – p〉 + βm〈Txm – xm,xm+ – p〉
= 〈xm – p,xm+ – p〉 + αm〈xm+ – xm,xm+ – p〉 – αm〈p,xm+ – p〉

– αm〈xm+ – p,xm+ – p〉 + βm〈Txm – Txm+,xm+ – p〉
+ βm〈xm+ – xm,xm+ – p〉 – βm〈xm+ – Txm+,xm+ – p〉

≤ ‖xm – p‖‖xm+ – p‖ + αm‖xm+ – xm‖‖xm+ – p‖
+ αm‖p‖‖xm+ – p‖ – αm‖xm+ – p‖

+ βm
(‖Txm – Txm+‖ + ‖xm+ – xm‖)‖xm+ – p‖

≤ ‖xm – p‖‖xm+ – p‖ + αm‖p‖‖xm+ – p‖ – αm‖xm+ – p‖

+ (L + )(αm + βm)‖xm+ – xm‖‖xm+ – p‖.

http://www.journalofinequalitiesandapplications.com/content/2014/1/206
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It follows that

( + αm)‖xm+ – p‖ ≤ ‖xm – p‖ + αm‖p‖ + (L + )(αm + βm)‖xm+ – xm‖. (.)

By (.), we have

‖xm+ – xm‖ =
∥∥PC

[
( – αm – βm)xm + βmTxm

]
– PC[xm]

∥∥
≤ ∥∥( – αm – βm)xm + βmTxm – xm

∥∥
≤ αm

(‖p‖ + ‖xm – p‖) + βm
(‖Txm – p‖ + ‖xm – p‖)

≤ αm
(‖p‖ + ‖xm – p‖) + (L + )βm‖xm – p‖

≤ (L + )(αm + βm)‖xm – p‖ + αm‖p‖
≤ (L + )(αm + βm)M. (.)

Substitute (.) into (.) to obtain

( + αm)‖xm+ – p‖ ≤ ‖xm – p‖ + αm‖p‖ + (L + )(L + )(αm + βm)M

≤
(
 +



αm

)
M + (L + )(L + )(αm + βm)M,

that is,

‖xm+ – p‖ ≤
[
 –

(αm/) – (L + )(L + )(αm + βm)

 + αm

]
M

=
{
 –

(αm/)[ – (L + )(L + )(αm + βm + (β
m/αm))]

 + αm

}
M

≤ M.

By induction, we get

‖xn – p‖ ≤M, ∀n≥ , (.)

which implies that {xn} is bounded and so is {Txn}. Now we take a constant M >  such
that

M = sup
n

{‖xn‖ ∨ ‖Txn – xn‖
}
.

[Here a∨ b =max{a,b} for a,b ∈R.]
Set S = (I – T)– (i.e., S is a resolvent of the monotone operator I – T ). We then have

that S is a nonexpansive self-mapping of C and Fix(S) = Fix(T) (cf. Theorem  of []).
By Lemma ., we know that whenever {γn} ⊂ (, ) and γn → +, the sequence {zn}

defined by

zn = SPC
[
( – γn)zn

]
(.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/206
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converges strongly to theminimum-norm fixed point x∗ of S (and of T as Fix(S) = Fix(T)).
Without loss of generality, we may assume that ‖zn‖ ≤M for all n.
It suffices to prove that ‖xn+ – zn‖ →  as n → ∞ (for some γn → +). To this end, we

rewrite (.) as

(I – T)zn = PC
[
( – γn)zn

]
, n≥ .

By using the property of metric projection (.), we have

〈
( – γn)zn – (zn – Tzn),xn+ – (zn – Tzn)

〉 ≤ 

⇒ 〈
–γnzn,xn+ – zn – (zn – Tzn)

〉
+

〈
Tzn – zn,xn+ – zn – (zn – Tzn)

〉 ≤ 

⇒ 〈–γnzn + Tzn – zn,xn+ – zn〉 + ‖zn – Tzn‖ ≤ 〈γnzn,Tzn – zn〉
⇒ 〈–γnzn + Tzn – zn,xn+ – zn〉 ≤ γn‖zn‖‖Tzn – zn‖

⇒
〈
–zn +

Tzn – zn
γn

,xn+ – zn
〉
≤ ‖zn‖‖Tzn – zn‖.

Note that

‖zn – Tzn‖ =
∥∥PC

[
( – γn)zn

]
– zn

∥∥
≤ ∥∥( – γn)zn – zn

∥∥
= γn‖zn‖.

Hence, we get

〈
–zn +

Tzn – zn
γn

,xn+ – zn
〉
≤ γn‖zn‖. (.)

From (.) we have

‖zn+ – zn‖ =
∥∥SPC

[
( – γn+)zn+

]
– SPC

[
( – γn)zn

]∥∥
≤ ∥∥( – γn+)zn+ – ( – γn)zn

∥∥
=

∥∥( – γn+)(zn+ – zn) + (γn – γn+)zn
∥∥

≤ ( – γn+)‖zn+ – zn‖ + |γn+ – γn|‖zn‖.

It follows that

‖zn+ – zn‖ ≤ |γn+ – γn|
γn+

‖zn‖. (.)

Set

γn :=
αn

βn
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/206
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By condition (ii), γn → + and γn ∈ (, ) for n large enough. Hence, by (.) and (.)
we have

〈
–zn +

βn(Tzn – zn)
αn

,xn+ – zn
〉
≤ αn

βn
‖zn‖ ≤ αn

βn
M

 (.)

and

‖zn – zn–‖ ≤ αnβn– – αn–βn

αnβn–
M. (.)

By (.) we have

‖xn+ – xn‖ =
∥∥PC

[
( – αn – βn)xn + βnTxn

]
– PCxn

∥∥
≤ αn‖xn‖ + βn‖Txn – xn‖
≤ (αn + βn)M. (.)

Next, we estimate ‖xn+ – zn+‖. Since xn+ = PC[yn], 〈xn+ – yn,xn+ – zn〉 ≤ . Using (.)
and by the fact that T is L-Lipschitzian and pseudocontractive, we infer that

‖xn+ – zn‖ = 〈xn+ – zn,xn+ – zn〉
= 〈xn+ – yn,xn+ – zn〉 + 〈yn – zn,xn+ – zn〉
≤ 〈yn – zn,xn+ – zn〉
=

〈[
( – αn – βn)xn + βnTxn

]
– zn,xn+ – zn

〉
= ( – αn – βn)〈xn – zn,xn+ – zn〉 + βn〈Txn – Txn+,xn+ – zn〉

+ βn〈Txn+ – Tzn,xn+ – zn〉 +
〈
–αnzn + βn(Tzn – zn),xn+ – zn

〉
,

which leads to

‖xn+ – zn‖ ≤ ( – αn – βn)‖xn – zn‖‖xn+ – zn‖ + βnL‖xn – xn+‖‖xn+ – zn‖

+ βn‖xn+ – zn‖ + αn

〈
–zn +

βn

αn
(Tzn – zn),xn+ – zn

〉

≤  – αn – βn


(‖xn – zn‖ + ‖xn+ – zn‖

)
+

β
n


‖xn+ – zn‖

+
L


‖xn – xn+‖ + βn‖xn+ – zn‖ + α

n
βn

‖zn‖.

It follows that, using (.), (.) and (.), we get

‖xn+ – zn‖ ≤  – αn – βn

 + αn – βn
‖xn – zn‖ + L

 + αn – βn
‖xn+ – xn‖

+
α

n
( + αn – βn)βn

‖zn‖ + β
n

 + αn – βn
‖xn+ – zn‖

≤
(
 –

αn

 + αn – βn

)
‖xn – zn‖ + (αn + βn)

 + αn – βn
LM
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+
α

n
( + αn – βn)βn

M
 +

β
n

 + αn – βn
M



≤
(
 –

αn

 + αn – βn

)(‖xn – zn–‖ + ‖zn – zn–‖
)

+
{
(αn + βn)

 + αn – βn
+

α
n

( + αn – βn)βn
+

β
n

 + αn – βn

}
M

≤
(
 –

αn

 + αn – βn

)
‖xn – zn–‖

+


 + αn – βn
‖zn – zn–‖

(
‖xn – zn–‖ + ‖zn – zn–‖

)

+
{
(αn + βn)

 + αn – βn
+

α
n

( + αn – βn)βn
+

β
n

 + αn – βn

}
M

≤
(
 –

αn

 + αn – βn

)
‖xn – zn–‖ + 

 + αn – βn

αnβn– – αn–βn

αnβn–
M

+
{
(αn + βn)

 + αn – βn
+

α
n

( + αn – βn)βn
+

β
n

 + αn – βn

}
M, (.)

where the finite constantM >  is given by

M :=max
{
LM

, M

,M sup

n

(
‖xn – zn–‖ + ‖zn – zn–‖

)}
.

Let

δn =
αn

 + αn – βn
≈ αn (as n→ ∞)

and note that by (.) it follows that {δn} ⊂ (, ). Moreover, set

θn =
{

αnβn– – αn–βn

α
nβn–

+



(
αn + βn +

β
n

αn

)
+

αn

βn
+

β
n

αn

}
M.

Then relation (.) is rewritten as

‖xn+ – zn‖ ≤ ( – δn)‖xn – zn–‖ + δnθn. (.)

By conditions (i), (ii) and (iii), it is easily found that

lim
n→∞ δn = ,

∞∑
n=

δn =∞, lim
n→∞ θn = .

We can therefore apply Lemma . to (.) and conclude that ‖xn+ –zn‖ →  as n → ∞.
This completes the proof. �

Remark . Choose the sequences (αn) and (βn) such that

αn =


(n + )a
and βn =


(n + )b

, n≥ ,
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where  < b < a < b < . It is clear that conditions (i) and (ii) of Theorem . are satisfied.
To verify condition (iii), we compute

∣∣∣∣αnβn– – αn–βn

α
nβn–

∣∣∣∣ = 
αn

∣∣∣∣ – αn–βn

αnβn–

∣∣∣∣
= (n + )a

∣∣∣∣ – (n + )a–b

na–b

∣∣∣∣
= (n + )a

[(
 +


n

)a–b

– 
]

≈ a – b
n

(n + )a → .

Therefore, {αn} and {βn} satisfy all three conditions (i)-(iii) in Theorem ..

4 Application
To show an application of our results, we deal with the following problem.

Problem . Let  < x <  and define the sequence {xn} by the recursion

xn+ =
(
 – n–/ – n–/

)
xn + n–/

xn
 + xn

. (.)

At which value does {xn} approach as n goes to infinity?

We claim that limn→∞ xn =  and it can be easily derived by applying Theorem ..

Proof In order to apply our result, let H =R, C = [, ] and define T : C → C by

Tx :=
x

 + x
.

Observe that T is Lipschitzian, pseudocontractive and that Fix(T) = {}. Moreover, if we
set αn = n–/ and βn = n–/, then

(i) limn→∞ αn =  and
∑∞

n= αn =∞;
(ii) limn→∞ αn

βn
= limn→∞

β
n

αn
= ;

(iii) limn→∞ αnβn––αn–βn
αnβn–

= .
Then Theorem . ensures that

lim
n→∞xn = . �
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