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Abstract
In this paper, we study the higher-order Daehee polynomials of the second kind from
the umbral calculus viewpoint and give various identities of the higher-order Daehee
polynomials of the second kind arising from umbral calculus.

1 Introduction
Let k ∈ Z≥. The Daehee polynomials of the second kind of order k are defined by the
generating function to be

(
( + t) log( + t)

t

)k

( + t)x =
∞∑
n=

D̂(k)
n (x)

tn

n!
()

(see []).
When x = , D̂(k)

n = D̂(k)
n () are called the Daehee numbers of the second kind of order k.

The Stirling number of the first kind is defined by the falling factorial to be

(x)n = x(x – ) · · · (x – n + ) =
n∑
l=

S(n, l)xl. ()

Thus, by (), we get

(
log( + t)

)m =m!
∞∑
l=m

S(l,m)
tl

l!
()

(see [–]), wherem ∈ Z≥.
For λ ∈C with λ �= , the Frobenius-Euler polynomials of order s (∈N) are given by

(
 – λ

et – λ

)s

ext =
∞∑
n=

H (s)
n (x|λ) t

n

n!
()

(see [–]).
When x = , H (s)

n (λ) =H (s)
n (λ|) are called the Frobenius-Euler numbers of order s.
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As is well known, the Bernoulli polynomials of order k (∈ N) are defined by the gener-
ating function to be

(
t

et – 

)k

ext =
∞∑
n=

B(k)
n (x)

tn

n!
()

(see [–]).
When x = , B(k)

n = B(k)
n () are called the Bernoulli numbers of order k.

In this paper, we study the higher-order Daehee polynomials of the second kind with
umbral calculus viewpoint and give various identities of the higher-order Daehee polyno-
mials of the second kind arising from umbral calculus.

2 Umbral calculus
Let C be the complex number field and let F be the set of all formal power series

F =

{
f (t) =

∞∑
k=

ak
tk

k!

∣∣∣ak ∈C

}
.

Let P = C[x], and let P∗ be the vector space of all linear functionals on P. 〈L|p(x)〉 indi-
cates the action of the linear functional L on the polynomial p(x). Then the vector space
operations on P

∗ are given by 〈L+M|p(x)〉 = 〈L|p(x)〉+ 〈M|p(x)〉, and 〈cL|p(x)〉 = c〈L|p(x)〉,
where c is a complex constant in C. For f (t) ∈ F , the linear functional on P is defined by
〈f (t)|xn〉 = an. Then, in particular, we have

〈
tk|xn〉 = n!δn,k (n,k ≥ ) ()

(see [, ]), where δn,k is the Kronecker symbol.
Let fL(t) =

∑∞
k=

〈L|xk 〉
k! tk . By (), we get 〈fL(t)|xn〉 = 〈L|xn〉. That is, L = fL(t). The map

L 	→ fL(t) is a vector space isomorphism from P
∗ onto F . Henceforth, F denotes both

the algebra of the formal power series in t and the vector space of all linear functionals
on P, and so an element f (t) of F will be thought of as both a formal power series and a
linear functional. We callF the umbral algebra and the umbral calculus is the study of the
umbral algebra. The order o(f (t)) of the power series f (t) ( �= ) is the smallest integer for
which the coefficient of tk does not vanish. If o(f (t)) = , then f (t) is called an invertible
series; if o(f (t)) = , then f (t) is called a delta series.
Let f (t), g(t) ∈ F with o(f (t)) =  and o(g(t)) = . Then there exists a unique sequence

sn(x) (deg sn(x) = n) such that 〈g(t)f (t)k|sn(x)〉 = n!δn,k , for n,k ≥ . The sequence sn(x)
is called the Sheffer sequence for (g(t), f (t)) which is denoted by sn(x) ∼ (g(t), f (t)). For
f (t), g(t) ∈ F , we have

〈
f (t)g(t)|p(x)〉 = 〈

f (t)|g(t)p(x)〉 = 〈
g(t)|f (t)p(x)〉. ()

From (), we note that

f (t) =
∞∑
k=

〈
f (t)|xk 〉 tk

k!
, p(x) =

∞∑
k=

〈
tk|p(x)〉xk

k!
()
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and, by (), we get

tkp(x) = p(k)(x) =
dkp(x)
dxk

and eytp(x) = p(x + y) ()

(see [, ]).
For sn(x)∼ (g(t), f (t)), we have

dsn(x)
dx

=
n–∑
l=

(
n
l

)〈
f (t)|xn–l〉sl(x), ()

where f (t) is the compositional inverse of f (t) with f (f (t)) = t. We have


g(f (t))

exf (t) =
∞∑
n=

sn(x)
tn

n!
, for all x ∈C, ()

f (t)sn(x) = nsn–(x) (n≥ ), sn(x) =
n∑
j=


j!
〈
g
(
f (t)

)–f (t)j|xn〉xj, ()

sn(x + y) =
n∑
j=

(
n
j

)
sj(x)pn–j(y), ()

where pn(x) = g(t)sn(x).

〈
f (t)|xp(x)〉 = 〈

∂t f (t)|p(x)
〉
, ()

with ∂t f (t) = df (t)
dt , and

sn+(x) =
(
x –

g ′(t)
g(t)

)


f ′(t)
sn(x) (n≥ ) ()

(see [, ]).
Let us assume that sn(x)∼ (g(t), f (t)) and rn(x)∼ (h(t), l(t)). Then we see that

sn(x) =
n∑

m=

Cn,mrm(x) (n≥ ), ()

where

Cn,m =

m!

〈
h(f (t))
g(f (t))

l
(
f (t)

)m∣∣∣xn〉 ()

(see [, ]).

3 Higher-order Daehee polynomials of the second kind
By (), we see that

D̂(k)
n (x)∼

((
et – 
tet

)k

, et – 
)
. ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/195


Kim and Kim Journal of Inequalities and Applications 2014, 2014:195 Page 4 of 13
http://www.journalofinequalitiesandapplications.com/content/2014/1/195

From (), we have

(
et – 
tet

)k

D̂(k)
n (x)∼ (

, et – 
)

and (x)n ∼ (
, et – 

)
. ()

By (), we get

D̂(k)
n (x) =

(
tet

et – 

)k

(x)n

=
n∑

m=

S(n,m)
(

tet

et – 

)k

xm

=
n∑

m=

S(n,m)ektB(k)
n (x)

=
n∑

m=

S(n,m)B(k)
m (x + k). ()

From () and (), we have

D̂(k)
n (x) =

n∑
j=


j!

〈(
( + t) log( + t)

t

)k(
log( + t)

)j∣∣∣xn〉xj, ()

where

〈(
( + t) log( + t)

t

)k(
log( + t)

)j∣∣∣xn〉

=
〈(

log( + t)
t

)k+j

( + t)k
∣∣∣tjxn〉

= (n)j

〈(
log( + t)

t

)k+j
∣∣∣∣∣
min{k,n–j}∑

m=

(
k
m

)
tmxn–j

〉

= (n)j
n–j∑
m=

(
k
m

)
(n – j)m

∞∑
l=

(k + j)!
(l + k + j)!

S(l + k + j,k + j)
〈
tl|xn–j–m〉

= (n)j
n–j∑
m=

(
k
m

)
(n – j)m

(k + j)!
(n + k –m)!

S(n + k –m,k + j)(n – j –m)!

= (n)j
n–j∑
m=

(
k
m

)
(n – j)m

S(n + k –m,k + j)(n+k–m
k+j

) . ()

Therefore, by () and (), we obtain the following theorem.

Theorem  For n ∈ Z≥ and k ≥ , we have

D̂(k)
n (x) =

n∑
j=

{(
n
j

) n–j∑
m=

(
k
m

)
(n – j)m

S(n + k –m,k + j)(n+k–m
k+j

)
}
xj.
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By () and (), we get

D̂(k)
n (y) =

〈 ∞∑
l=

D̂(k)
l (y)

tl

l!

∣∣∣∣xn
〉

=
〈(

log( + t)
t

)k

( + t)y
∣∣∣( + t)kxn

〉

=
∑

≤r≤min{k,n}

(
k
r

)
(n)r

〈(
log( + t)

t

)k

( + t)y
∣∣∣xn–r〉

=
∑

≤r≤min{k,n}

(
k
r

)
(n)r

∑
≤m≤n–r

(
y
m

)
(n – r)m

×
∑

≤l≤n–r–m

k!S(l + k,k)
(l + k)!

〈
tl|xn–r–m〉

=
∑
≤r≤n

∑
≤m≤n–r

(n)r
(k
r
)(n–r

m
)

(n–r–m+k
k

) S(n – r –m + k,k)(y)m. ()

Therefore, by (), we obtain the following theorem.

Theorem  For n ≥ , we have

D̂(k)
n (x)

=
∑

≤m≤n

{ ∑
≤r≤n–m

(n)r
(k
r
)(n–r

m
)

(n–r–m+k
k

) S(n – r –m + k,k)
}
(x)m

=
∑

≤m≤n

{ ∑
≤r≤n–m

(n)r
(k
r
)( n–r

n–m
)

(m–r+k
k

) S(m – r + k,k)
}
(x)n–m.

From () and (), we have

(
et – 

)
D̂(k)

n (x) = nD̂(k)
n–(x) ()

and

(
et – 

)
D̂(k)

n (x) = D̂(k)
n (x + ) – D̂(k)

n (x).

Thus, by (), we get

D̂(k)
n (x + ) – D̂(k)

n (x) = nD̂(k)
n–(x) (n≥ ). ()

From () and (), we derive the following equation:

D̂(k)
n+(x) =

(
x + k

et –  – t
t(et – )

)
e–tD̂(k)

n (x)

= xD̂(k)
n (x – ) + ke–t

et –  – t
t(et – )

D̂(k)
n (x), ()
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where

e–t
et –  – t
t(et – )

D̂(k)
n (x)

= e–t
et –  – t
t(et – )

∑
≤j≤n

{(
n
j

) ∑
≤m≤n–j

m!
( k
m
)(n–j

m
)

(n+k–m
k+j

)
× S(n + k –m,k + j)

}
xj

=
∑
≤j≤n

(
n
j

) ∑
≤m≤n–j

m!
( k
m
)(n–j

m
)

(n+k–m
k+j

)
× S(n + k –m,k + j)e–t

et –  – t
t(et – )

xj

=
∑
≤j≤n

(
n
j

) ∑
≤m≤n–j

m!
(m+k

m
)(n–j

m
)

(n+k–m
k+j

)
× S(n + k –m,k + j)e–t

(
et –  – t
et – 

)
xj+

j + 

=
∑
≤j≤n

(
n
j

) ∑
≤m≤n–j

m!
(m+k

m
)(n–j

m
)

(n+k–m
k+j

)
× S(n + k –m,k + j)

j + 
e–t

(
xj+ – Bj+(x)

)

=
∑
≤j≤n

(
n
j

) ∑
≤m≤n–j

m!
(m+k

m
)(n–j

m
)

(n+k–m
k+j

)
× S(n + k –m,k + j)

j + 
e–t

(
(x – )j+ – Bj+(x – )

)
. ()

Therefore, from () and (), we obtain the following theorem.

Theorem  For n ≥ , k ≥ , we have

D̂(k)
n+(x)

= xD̂(k)
n (x – ) + k

∑
≤j≤n

(
n
j

) ∑
≤m≤n–j

m!
(m+k

m
)(n–j

m
)

(n+k–m
k+j

)
× S(n + k –m,k + j)

j + 
{
(x – )j+ – Bj+(x – )

}
.

Now, we observe that

e–t
et –  – t
t(et – )

D̂(k)
n (x)

=
n∑
j=

(n
j
)

(n+k
j+k

)S(n + k, j + k)e–t
et –  – t
t(et – )

(x + k)j
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=
n∑
j=

(n
j
)

(n+k
j+k

)S(n + k, j + k)e(k–)t
et –  – t
t(et – )

xj

=
n∑
j=

(n
j
)

(n+k
j+k

) S(n + k, j + k)
j + 

e(k–)t
(
xj+ – Bj+(x)

)

=
n∑
j=

(n
j
)

(n+k
j+k

) S(n + k, j + k)
j + 

(
(x + k – )j+ – Bj+(x + k – )

)
. ()

Thus, by (), we get

D̂(k)
n+(x) = xD̂(k)

n (x – ) + k
n∑
j=

(n
j
)

(n+k
j+k

) S(n + k, j + k)
j + 

(
(x + k – )j+ – Bj+(x + k – )

)
.

From () and (), we note that

d
dx

D̂(k)
n (x) = n!

n–∑
l=

(–)n–l–

l!(n – l)
D̂(k)

l (x). ()

By () and (), we see that

D̂(k)
n (y) =

〈 ∞∑
l=

D̂(k)
l (y)

tl

l!

∣∣∣xn
〉

(n≥ )

=
〈(

( + t) log( + t)
t

)k

( + t)y
∣∣∣xn〉

=
〈
∂t

((
( + t) log( + t)

t

)k

( + t)y
)∣∣∣xn–〉

=
〈(

∂t

(
( + t) log( + t)

t

)k)
( + t)y

∣∣∣xn–〉

+ y
〈(

( + t) log( + t)
t

)k

( + t)y–
∣∣∣xn–〉

= yD̂(k)
n–(y – )

+ k
〈(

( + t) log( + t)
t

)k–

( + t)y
∣∣∣∣
(
log( + t) +  –

( + t) log( + t)
t

)
xn

n

〉

= yD̂(k)
n–(y – ) +

k
n

〈(
( + t) log( + t)

t

)k–

( + t)y
∣∣∣ log( + t)xn

〉

+
k
n

〈(
( + t) log( + t)

t

)k–

( + t)y
∣∣∣xn〉

–
k
n

〈(
( + t) log( + t)

t

)k

( + t)y
∣∣∣xn〉

= yD̂(k)
n–(y – ) +

k
n
D̂(k–)

n (y) –
k
n
D̂(k)

n (y)

+
k
n

∑
≤l≤n

(–)l–(n)l
l

〈(
( + t) log( + t)

t

)k–

( + t)y
∣∣∣xn–l〉. ()
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Thus, by (), we get

D̂(k)
n (x) =

n
n + k

xD̂(k)
n–(x – ) +

k
n + k

D̂(k–)
n (x)

+
k

n + k
∑
≤l≤n

(–)l–
(
n
l

)
(l – )!D̂(k–)

n–l (x). ()

Therefore, by (), we obtain the following theorem.

Theorem  For n ≥ , k ≥ , we have

D̂(k)
n (x) =

n
n + k

xD̂(k)
n–(x – ) +

k
n + k

D̂(k–)
n (x)

+
k

n + k
∑
≤l≤n

(–)l–
(
n
l

)
(l – )!D̂(k–)

n–l (x).

Now, we compute 〈( (+t) log(+t)t )k(log( + t))m|xn〉 in two different ways:

〈(
( + t) log( + t)

t

)k(
log( + t)

)m∣∣∣xn〉

=
〈(

( + t) log( + t)
t

)k∣∣∣(log( + t)
)mxn〉

=
∑

≤l≤n–m

m!
(l +m)!

S(l +m,m)(n)l+m
〈(

( + t) log( + t)
t

)k∣∣∣xn–l–m〉

=
∑

≤l≤n–m

m!
(

n
l +m

)
S(l +m,m)D̂(k)

n–l–m

=
∑

≤l≤n–m

m!
(
n
l

)
S(n – l,m)D̂(k)

l . ()

On the other hand,

〈(
( + t) log( + t)

t

)k(
log( + t)

)m∣∣∣xn〉

=
〈
∂t

((
( + t) log( + t)

t

)k(
log( + t)

)m)∣∣∣xn–〉

= k
〈(

( + t) log( + t)
t

)k–( log( + t) +  – (+t) log(+t)
t

t

)(
log( + t)

)m∣∣∣xn–〉

+m
〈(

( + t) log( + t)
t

)k

( + t)–
(
log( + t)

)m–
∣∣∣xn–〉

=
k
n

〈(
( + t) log( + t)

t

)k–(
log( + t)

)m+
∣∣∣xn〉

+
k
n

〈(
( + t) log( + t)

t

)k–(
log( + t)

)m∣∣∣xn〉
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–
k
n

〈(
( + t) log( + t)

t

)k(
log( + t)

)m∣∣∣xn〉

+m
〈(

( + t) log( + t)
t

)k

( + t)–
(
log( + t)

)m–
∣∣∣xn–〉. ()

Thus, by (), we get

n + k
n

〈(
( + t) log( + t)

t

)k(
log( + t)

)m∣∣∣xn〉

=
k
n

〈(
( + t) log( + t)

t

)k–(
log( + t)

)m+
∣∣∣xn〉

+
k
n

〈(
( + t) log( + t)

t

)k–(
log( + t)

)m∣∣∣xn〉

+m
〈(

( + t) log( + t)
t

)k

( + t)–
(
log( + t)

)m–
∣∣∣xn–〉. ()

From (), we derive the following equation:

n + k
k

∑
≤l≤n–m

m!
(
n
l

)
S(n – l,m)D̂(k)

l

=
k
n

∑
≤l≤n–m–

(m + )!
(
n
l

)
S(n – l,m + )D̂(k–)

l

+
k
n

∑
≤l≤n–m

m!
(
n
l

)
S(n – l,m)D̂(k–)

l

+m
∑

≤l≤n–m

(m – )!
(
n – 
l

)
S(n – l – ,m – )D̂(k)

l (–). ()

Therefore, by (), we obtain the following theorem.

Theorem  For n –  ≥m ≥ , we have

n–m∑
l=

(
n
l

)
S(n – l,m)D̂(k)

l

=
k(m + )
n + k

∑
≤l≤n–m–

(
n
l

)
S(n – l,m + )D̂(k–)

l

+
k

n + k
∑

≤l≤n–m

(
n
l

)
S(n – l,m)D̂(k–)

l

+
n

n + k
∑

≤l≤n–m

(
n – 
l

)
S(n – l – ,m – )D̂(k)

l (–).

For D̂(k)
n (x)∼ (( et–tet )

k , et – ), and (x)n ∼ (, et – ), let us assume that

D̂(k)
n (x) =

n∑
m=

Cn,m(x)m. ()
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Then, by () and (), we get

Cn,m =

m!

〈(
( + t) log( + t)

t

)k∣∣∣tmxn〉

=
(
n
m

)〈(
( + t) log( + t)

t

)k∣∣∣xn–m〉

=
(
n
m

)
D̂(k)

n–m. ()

Therefore, by () and (), we obtain the following theorem.

Theorem  For n ≥ , we have

D̂(k)
n (x) =

∑
≤m≤n

(
n
m

)
D̂(k)

n–m(x)m

=
∑

≤m≤n

m!
(
n
m

)
D̂(k)

n–m

(
x
m

)
.

Now, we consider the following two Sheffer sequences:

D̂(k)
n (x)∼

((
et – 
tet

)k

, et – 
)

()

and

H (s)
n (x|λ)∼

((
et – λ

 – λ

)s

, t
)
, s ∈N,λ ∈C with λ �= .

Let

D̂(k)
n (x) =

n∑
m=

Cn,mH (s)
m (x|λ). ()

Here

Cn,m =


m!( – λ)s

〈(
( + t) log( + t)

t

)k(
log( + t)

)m( – λ + t)s
∣∣∣xn〉

=


m!( – λ)s

n∑
j=

(
s
j

)
( – λ)s–j(n)j

×
〈(

( + t) log( + t)
t

)k(
log( + t)

)m∣∣∣xn–j〉

=
n–m∑
j=

(
s
j

)
( – λ)–j(n)j

n–m–j∑
l=

(
n – j
l +m

)
S(l +m,m)D̂(k)

n–j–l–m

=
n–m∑
j=

n–m–j∑
l=

(
s
j

)(
n – j
l

)
(n)j( – λ)–jS(n – j – l,m)D̂(k)

l . ()

Therefore, by () and (), we obtain the following theorem.

http://www.journalofinequalitiesandapplications.com/content/2014/1/195
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Theorem  For n ≥ , k ≥  and λ ∈ C with λ �= , we have

D̂(k)
n (x) =

n∑
m=

{n–m∑
j=

n–m–j∑
l=

(
s
j

)(
n – j
l

)
(n)j

× ( – λ)–jS(n – j – l,m)D̂(k)
l

}
H (s)

m (x|λ).

We consider the following two Sheffer sequences:

D̂(k)
n (x)∼

((
et – 
tet

)k

, et – 
)
, B(s)

n (x)∼
((

et – 
t

)s

, t
)
.

Let

D̂(k)
n (x) =

n∑
m=

Cn,mB(s)
m (x). ()

Here

Cn,m =

m!

〈 ( t
log(+t) )

s

( t
(+t) log(+t) )k

(
log( + t)

)m∣∣∣xn〉

=

m!

〈
( + t)s

( t
(+t) log(+t) )

s

( t
(+t) log(+t) )k

(
log( + t)

)m∣∣∣xn〉. ()

Case . For s > k, we have

Cn,m =

m!

〈(
t

( + t) log( + t)

)s–k(
log( + t)

)m∣∣∣( + t)sxn
〉

=

m!

∑
≤j≤n

(
s
j

)
(n)j

〈(
t

( + t) log( + t)

)s–k∣∣∣(log( + t)
)mxn–j〉

=
∑

≤j≤n–m

(
s
j

)
(n)j

∑
m≤l≤n–j

S(l,m)

×
(
n – j
l

)〈(
t

( + t) log( + t)

)s–k∣∣∣xn–j–l〉

=
∑

≤j≤n–m

∑
m≤l≤n–j

(
s
j

)(
n – j
l

)
(n)jS(l,m)Ĉ(s–k)

n–j–l, ()

where Ĉ(s–k)
i is the ith Cauchy number of the second kind of order s – k (see []).

Case . For s = k, we have

Cn,m =

m!

〈(
log( + t)

)m|( + t)sxn
〉

=

m!

〈(
log( + t)

)m∣∣∣∣
s∑

j=

(
s
j

)
tjxn

〉
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=
∑

≤j≤n–m

(
s
j

)
(n)j

∑
m≤l<∞

S(l,m)
l!

〈
tl|xn–j〉

=
∑

≤j≤n–m

(
s
j

)
(n)jS(n – j,m). ()

Case . For s < k, we have

Cn,m =

m!

〈(
( + t) log( + t)

t

)k–s(
log( + t)

)m∣∣∣( + t)sxn
〉

=
∑

≤j≤n–m

∑
m≤l≤n–j

(
s
j

)(
n – j
l

)
(n)jS(l,m)D̂(k–s)

n–j–l. ()

Therefore, by (), (), (), (), and (), we obtain the following theorem.

Theorem  Let n ≥ , we have:
(I) For s > k, we have

D̂(k)
n (x) =

∑
≤m≤n

{ ∑
≤j≤n–m

∑
m≤l≤n–j

(
s
j

)(
n – j
l

)

× (n)jS(l,m)Ĉ(s–k)
n–j–l

}
B(s)
m (x).

(II) For s = k, we have

D̂(k)
n (x) =

∑
≤m≤n

{ ∑
≤j≤n–m

(
s
j

)
(n)jS(n – j,m)

}
B(s)
m (x).

(III) For s < k, we have

D̂(k)
n (x) =

∑
≤m≤n

{ ∑
≤j≤n–m

∑
m≤l≤n–j

(
s
j

)(
n – j
l

)

× (n)jS(l,m)D̂(k–s)
n–j–l

}
B(s)
m (x).
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