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Abstract
Let p be a fixed prime and k be a fixed odd positive integer. Further let N(pk) denote
the number of pairs of integer points (x,±y) on the elliptic curve E : y2 = x3 – pkx with
y > 0. Using some properties of the Diophantine equations, we gave an exact upper
bound estimate for N(pk). That is, we proved that N(pk)≤ 4.
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1 Introduction
Let Z,N be the sets of all integers and positive integers, respectively. Let p be a fixed prime
and k be a fixed positive integer. Recently, the integer points on the elliptic curve

E : y = x – pkx (.)

have been investigated in many papers (see [–] and []). In this paper we will deal with
the number of integer points on (.) for odd k.
An integer point (x, y) on (.) is called trivial or non-trivial according to whether y = 

or not. Obviously, for odd k, (.) has only the trivial integer point (x, y) = (, ). If (x, y) is
a non-trivial integer point on (.), then (x, –y) is too. Therefore, (x, y) along with (x, –y)
are called a pair of non-trivial integer points and denoted by (x,±y) with y > . Let a, b
be coprime positive integers and s be a nonnegative integer. Using some properties of the
Diophantine equations, we give an exact upper bound estimate forN(pk). That is, we shall
prove the following results.

Theorem . For any odd integer k ≥ , all non-trivial integer points on (.) are given as
follows:

(i) p = , k = s + , (x,±y) = (–s,±s), (s+,±s+) and (s+ · ,±s+ · ).
(ii) p = , k = s + , (x,±y) = (s · ,±s · ).
(iii) p = , k = s + , (x,±y) = (s · ,±s · ).
(iv) p = a – , k = s + , (x,±y) = (psa,±psa(a – )).
(v) p = a + b, k = s + , (x,±y) = (–psa,±psab).
(vi) p = a + b, k = s + , (x,±y) = (–psa,±psab).
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(vii) p is an odd prime with p≡ (mod),

k =

{
s + ,
s + ,

(x,±y) =

{
(ps+(n+)/Y ,±ps+(n+)/XY ), n≡ (mod),
(ps+(n+)/Y ,±ps+(n+)/XY ), n≡ (mod),

where (X,Y ,n) is a solution of the equation

X – pnY  = –, X,Y ,n ∈N,  � n. (.)

Theorem . Let N(pk) denote the number of pairs of non-trivial integer points on (.).
For odd k, if p �≡ (mod), then

N
(
pk

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
, for p =  and k ≡ (mod),
, for p =  and k ≡ (mod),p =  and k ≡ (mod),

or p = a –  and k ≡ (mod),
, otherwise.

(.)

If p ≡ (mod), then

N
(
pk

) ≤
{
, for k ≡ (mod),
, for k ≡ (mod).

(.)

2 Preliminaries
Lemma . ([]) The equation

X – Y  = –, X,Y ∈N (.)

has only the solutions (X,Y ) = (, ) and (, ).

Lemma . ([, Theorem D]) Let D be a non-square positive integer. If D ≥ , then the
equation

X –DY  = –, X,Y ∈N (.)

has at most one solution (X,Y ).

Lemma . ([]) The equation

X – Yn = , X,Y ,n ∈ N,min{X,Y ,n} >  (.)

has only the solution (X,Y ,n) = (, , ).

Lemma . ([, Proposition .]) The equation

X – Yn = , X,Y ∈N,min{X,Y } > ,  � n (.)
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has only the solutions (X,Y ,n) = (, , ) and (a, a – , ), where a is a positive integer
with a > .

Lemma . The equation

X – Y  = n, X,Y ,n ∈N,gcd(X,Y ) =  (.)

has only the solution (X,Y ,n) = (, , ).

Proof By (.), since gcd(X,Y ) = , both X and Y are odd and gcd(X + Y ,X – Y ) = .
Hence, we have X + Y = n–, X – Y =  and

X = n– + , Y = n– – . (.)

Applying Lemma . to the first equality of (.), we only get X =  and n = . Therefore,
by the second equality of (.), (.) has only the solution (X,Y ,n) = (, , ). The lemma
is proved. �

Lemma . If p is an odd prime, then the equation

X – Y  = pn, X,Y ,n ∈N,gcd(X,Y ) = ,  � n (.)

has only the solutions (p,X,Y ,n) = (, , , ) and (a – ,a,a – , ), where a is a
positive integer with a > .

Proof By (.), since  � p and gcd(X,Y ) = , we have  | XY , gcd(X + Y ,X – Y ) = , X +
Y = pn, X – Y =  and

X = pn + , Y = pn – . (.)

Since  � n, applying Lemma . to the first equality of (.), we get either (X,p,n) =
(, , ) or (X,p,n) = (a, a – , ). Thus, by the second equality of (.), the lemma is
proved. �

Lemma . ([, Theorem ]) For any fixed positive integer n, if p ≡ (mod), then the
equation

X + Y  = pn, X,Y ∈N,gcd(X,Y ) = ,  | Y (.)

has exactly one solution (X,Y ). If p≡ (mod), then (.) has no solution.

Lemma . ([, p.]) The equation

X + Y  = Z, X,Y ,Z ∈N,gcd(X,Y ) =  (.)

has no solution (X,Y ,Z).
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Lemma . ([, Theorem ]) The equation

X + Y  = Zn, X,Y ,Z,n ∈N,gcd(X,Y ) = ,n >  (.)

has no solution (X,Y ,Z,n).

3 Proof of Theorem 1.1
Assume that  � k and (x,±y) is a pair of non-trivial integer points on (.). Since y > , we
have x �=  and either  > x > –pk/ or x > pk/.
We first consider the case that  > x > –pk/. Then x can be expressed as

x = –prz, r ∈ Z, r ≥ , z ∈N,p � z. (.)

Applying (.) to (.) yields

prz
(
pk–r – z

)
= y. (.)

Further, since p � z and pk > x ≥ pr , we have p � z(pk–r – z) and gcd(z,pk–r – z) = .
Therefore, by (.), we get

r = s, z = f , pk–r – z = g, y = psfg, f , g, s ∈N ,gcd(f , g) = , (.)

whence we obtain

f  + g = pk–s. (.)

If p = , then from (.) we get k – s =  and f = g = . Hence, by (.) and (.), we
obtain

p = , k = s + , (x,±y) =
(
–s,±s

)
. (.)

If p is an odd prime, applying Lemma . to (.), we get either k – s =  or k – s = .
Therefore, by (.), (.), and (.), we obtain the integer points of types (v) and (vi).
We next consider the case that x > pk/. Then x can be expressed as

x = prz, r ∈ Z, r ≥ , z ∈N,p � z. (.)

Case I: k > r.
By (.) and (.), we have

prz
(
z – pk–r

)
= y. (.)

Since p � z(z – pk–r) and gcd(z, z – pk–r) = , by (.), we get

r = s, z = f , z – pk–r = g, y = psfg,

s ∈ Z, s≥ , f , g ∈N,gcd(f , g) = , (.)
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and hence,

f  – g = pk–s. (.)

If p = , applying Lemma . to (.), we get k – s = , f =  and g = . Therefore, by
(.) and (.), we obtain the integer points of type (ii).
If p is an odd prime, applying Lemma . to (.) yields either p = , k – s = , f = 

and g =  or p = a – , k – s = , f = a, and g = a – . Therefore, by (.) and (.),
we obtain the integer points of types (iii) and (iv).
Case II: k < r.
Then we have pr+kz(pr–kz – ) = y and

r + k = t, z = f , pr–kz –  = g, y = ptfg,

f , g, t ∈N,gcd(f , g) = , (.)

whence we get

g – pt–kf  = –. (.)

If p = , then from (.) we get t – k = . It implies that t ≡ (mod) and t = s + ,
where s is a nonnegative integer. Hence, we have k = s +  and r = s + . Further, by
Lemma ., we get from (.) that (f , g) = (, ) and (, ). Therefore, by (.) and (.),
we obtain

p = , k = s + , (x,±y) =
(
s+,±s+

)
,
(
s+ · ,±s+ · ). (.)

If p is an odd prime, we see from (.) that (.) has a solution

(X,Y ,n) = (g, f , t – k). (.)

While n ≡ (mod), since n ≡ t – k ≡ –k ≡ (mod), we have k ≡ (mod) and k =
s+, where s is a nonnegative integer. Hence, we get t = s+(n+)/ and r = s+(n+)/.
Therefore, by (.), (.), and (.), we obtain

k = s + , (x,±y) =
(
ps+(n+)/Y ,±ps+(n+)/XY

)
. (.)

While n≡ (mod), since n≡ t–k ≡ –k ≡ (mod), we have k ≡ (mod) and k =
s + . Hence, we get t = s + (n + )/ and r = s + (n + )/. Therefore, by (.), (.),
and (.), we obtain

k = s + , (x,±y) =
(
ps+(n+)/Y ,±ps+(n+)/XY

)
. (.)

Combining of (.) and (.), we get the integer points of type (vii).
Finally, by (.) and (.), we obtain the integer points of type (i). To sum up, all non-

trivial integer points on (.) are determined. The theorem is proved.
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4 Proof of Theorem 1.2
Since p ≡ (mod) if (.) has integer points belonging to one of types (v), (vi), and (vii),
by Theorem ., (.) is true.
For p �≡ (mod), let Nj (j = , , , ) denote the number of pairs of integer points of

types (iv), (v), (vi), and (vii) respectively. Then we have

N
(
pk

)
=N +N +N +N. (.)

Since p and k are fixed, we get

N

{
≤ , if k ≡ (mod),
= , if k ≡ (mod).

(.)

By Lemmas . and ., we have

N

{
≤ , if k ≡ (mod),
= , if k ≡ (mod),

N

{
= , if k ≡ (mod),
≤ , if k ≡ (mod).

(.)

On the other hand, for any fixed δ ∈ {, }, by Lemma ., (.) has at most one solution
(X,Y ,n) satisfying n≡ δ(mod). It implies that

N ≤ . (.)

Therefore, the combination of (.)-(.) yields (.). The theorem is proved.
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