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Abstract
This paper deals with blow-up solutions to a class of reaction-diffusion equations
under non-local boundary conditions. We prove that under certain conditions on the
data the blow-up will occur at some finite time and when the blow-up does occur,
lower and upper bounds are derived.
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1 Introduction
Quittner and Souplet in [] consider different classes of reaction-diffusion problems with
non-local source terms involving space integrals and investigate under what conditions
the solutions blow up or exist globally (see also [, ]). Recently Song [] has considered
parabolic problems under Dirichlet or Neumann boundary conditions, containing a non-
local term in the nonlinearities and, for solutions that blow up at some finite time, they
derive lower bounds for the blow-up time. For other contributions in this field, see [, ,
] and [–] for reaction-diffusion equations, and see [] and [–] for systems.
In this paper we consider a class of reaction-diffusion equations where a space integral

is present on the boundary condition and time dependent coefficients are present both in
the nonlinearity term and in the boundary condition. Our aim is to introduce conditions
on the data and geometry of the spatial domain, sufficient for the solution to blow up in
finite time t∗. Moreover, lower and upper bounds are derived. More precisely we consider
the following problem:

ut =�u +K(t)f (u), x ∈ �, t ∈ (
, t∗

)
, ()

∂u
∂ν

= K(t)
∫

�

g(u)dx, x ∈ ∂�, t ∈ (
, t∗

)
, ()

u(x, ) = u(x)≥ , x ∈ �, ()

where � is a bounded domain in R
N , with smooth boundary, ∂u

∂ν
is the outward normal

derivative of u on the boundary ∂�, f (s), g(s), u(x) are smooth non-negative functions, t∗

is the blow-up time if blow-up occurs, and the time dependent coefficients Ki(t), i = , ,
are positive and regular functions. Moreover, u(x) satisfies the compatibility condition
on the boundary. Note that u ≥  for the maximum principle. The results are based on
some Sobolev type inequalities [] and differential inequality techniques.
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IfK = , () becomes the usual Neumann boundary condition andwe obtain the Payne-
Philippin’s result contained in [], Theorem .
Now we state the main theorems of this paper.

Theorem . Let u(x, t) be a (non-negative) classical solution of problem ()-() with � a
bounded convex domain in R

 with the origin inside.
Assume that the functions f and g satisfy

 ≤ f (s)≤ sp, s > ,  ≤ g(η) ≤ ηq, η > ,p > q ≥ , ()

where

n >max

(


p – 
,

q
(p – )

)
()

and

K ′
(t)

K(t)
≤ β , β ≥ . ()

Define

�(t) := Kn
 (t)

∫
�

un(p–) dx. ()

If the solution u(x, t) becomes unbounded in �-measure at time t∗, then

t∗ ≥ T , ()

where T is implicitly given as∫ T


B̃(τ )eA(τ ) dτ =



(
�()

)–, ()

where A(t) and B̃(t) are two suitable positive functions.

Theorem . Let u(x, t) be a (non-negative) classical solution of ()-() with � a bounded
domain in R

N . Assume that the functions f and g satisfy

f (s)≥ sp, s > , g(η) ≥ ηq, η > ,p > q > . ()

Moreover, assume

lim
t→∞

∫ t


K (τ )dτ =∞, K (t) = |∂�||�|–qK(t) + |�|–p(
()

)p–qK(t), ()

with


(t) =
∫

�

u(x, t)dx. ()

Then no solution u(x, t) can exist for all time, but it blows up in L and hence in Lr norm,
r > , at time t∗, with t∗ ≤ T and T implicitly defined by∫ T


K (τ )dτ =

(
())–q

q – 
. ()
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The paper is organized as follows. In Section  we obtain a lower bound for t∗ under the
hypothesis of convexity of � and suitable conditions on data and time dependent coeffi-
cients.
In Section , we consider the problem ()-() under conditions on the data which ensure

that no solution can exist for all time. In fact the solution blows up at some finite time t∗ in
L and hence in Lr norm (r > ) and upper bounds for t∗ are derived.Wenote thatwe obtain
blow-up, even if the coefficients are constants and also for Ki(t) functions decreasing not
too fast at infinity.
For physical motivation of such problems we refer the reader to [–] and the refer-

ences therein.

2 Lower bounds
First we state an inequality that plays a basic role in the proofs of our results.

Lemma . Let W be any non-negative C function and � a bounded convex domain in
R

N , N ≥ , with the origin inside. Then, for any m≥ , the following inequality holds:

∫
∂�

Wmds ≤ |�| 
m+

{
N
ρ

[∫
�

Wm+ dx
] m

m+

+
md
ρ

[∫
�

Wm+ dx
] m–

(m+)
[∫

�

Wm–|∇W | dx
] 


}
, ()

where

ρ := inf
∂�

( N∑


xiνi

)
>  and d :=max

�̄

( N∑


xixi

)
, i = , . . . ,N . ()

Proof We start from the following Sobolev type inequality derived in [] and []:

∫
∂�

Wmds≤ N
ρ

∫
�

Wmdx +
md
ρ

∫
�

Wm–|∇W |dx. ()

By applying the Hölder inequality, the first term on the right of () becomes

∫
�

Wmdx ≤ |�| 
m+

(∫
�

Wm+ dx
) m

m+
. ()

Moreover, by applying the Schwarz and Hölder inequalities to the second term on the
right of () we get

∫
�

Wm–|∇W |dx ≤
(∫

�

Wm– dx
) 


(∫

�

Wm–|∇W | dx
) 



≤ |�| 
m+

(∫
�

Wm+ dx
) m–

(m+)
(∫

�

Wm–|∇W | dx
) 


. ()

By inserting () and () in (), we get ().
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Our aim is now to derive a lower bound for t∗.
We assume that u(x, t) becomes unbounded at some finite time t∗, and under the con-

ditions of Theorem ., we derive a lower bound for t∗, which works for values of u not
too small.
For brevity, we let z = n(p – ) and Ki := Ki(t), i = , . We recall that from () we have

z > . We compute

�′(t)≤ n
K ′


K
� + zKn



∫
�

uz–
[
�u +Kf (u)

]
dx. ()

By applying the divergence theorem, boundary conditions () and (), we have

∫
�

uz–�u =
∫

∂�

uz–uν ds – [z – ]
∫

�

uz–|∇u| dx

≤ K(t)
∫

�

uq dx
∫

∂�

uz– ds – [z – ]
∫

�

uz–|∇u| dx. ()

For convenience, set v = u z
 ; we get

|∇v| = z


uz–|∇u|. ()

We now replace (), () in () and use () to obtain

�′(t) ≤ nβ� + zKn+


∫
�

v+

n dx –

(z – )
z

Kn


∫
�

|∇v| dx

+ zKn
 K

∫
�

uq dx
∫

∂�

uz– ds. ()

To estimate the second term on the right-hand side of () we use the inequality (.) in
[], i.e.

Kn+


∫
�

v+

n dx ≤ n – 

nγ
Kn


∫
�

v dx +
γ n–

n
Kn


∫
�

v dx

=
n – 
nγ

� +
γ n–

n
Kn


∫
�

v dx, ()

where γ is an arbitrary positive constant to be chosen later.
Now we estimate the second term in () by using () and the inequalities (), () in

[], valid in a convex domain � ⊂R
. We obtain

Kn


∫
�

v dx ≤
[
λ� +μ

(
Kn
 �

∫
�

|∇v| dx
) 


] 



≤ √

[
λ


 �


 +μ


 �




(
Kn


∫
�

|∇v| dx
) 


]

≤ √

[
λ


 �


 +μ




(


σ  � +



σKn


∫
�

|∇v| dx
)]

, ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/167


Marras and Vernier Piro Journal of Inequalities and Applications 2014, 2014:167 Page 5 of 11
http://www.journalofinequalitiesandapplications.com/content/2014/1/167

with λ =
√


ρ
, μ = √

 ( +
d
ρ
), ρ and d in () with N = , and σ >  is an arbitrary con-

stant.
Note that deriving the second and third inequality in (), we make use of the inequality

(a + b)

 ≤ √


(
a


 + b



)
, a > ,b > , ()

and of the arithmetic inequality

arb–r ≤ ra + ( – r)b, a > ,b > , r ∈ (, ). ()

Inserting () and () in () we get

�′(t) ≤
(
nβ +

(n – )(p – )
γ

)
�

+ 

 γ n–(p – )λ


 �


 +

√



(p – )γ n–μ



σ  �

+
{

√



(p – )γ n–μ


 σ –

[z – ]
z

}
J + zKn

 K

∫
�

uq dx
∫

∂�

uz– ds, ()

where J := Kn


∫
�

|∇v| dx.
We now estimate separately the two factors in the last term in (). For the first, making

use of Lemma . withm = z –  andW = u, N =  we have

Kn


∫
∂�

uz– ds

≤ Kn
 |�| z

{

ρ

(∫
�

uz dx
) z–

z
+ (z – )

d
ρ

(∫
�

uz dx
) z–

z
(∫

�

uz–|∇u| dx
) 


}

≤ |�| z
{
K


p–



ρ

�
z–
z + 

(z – )
z

d
ρ

K


p–
 �

z–
z J




}
. ()

In the second, by using the Hölder inequality and hypothesis (), we obtain

∫
�

uq dx ≤
(∫

�

uz dx
) q

z
|�| z–qz =�

q
z |�|– q

z K
– q
p–

 . ()

By using () and (), we get

Kn


∫
∂�

uz– ds
∫

�

uq dx

≤ |�| z
[

ρ

K


(p–)
 �– 

z +
(z – )

z
d
ρ

K


(p–)
 �

z–
z J




][
�

q
z |�| z–qz K

– q
p–


]

= |�|+ –q
z K

–q
p–


[

ρ

�+ q–
z +

(z – )
z

d
ρ

�

 +

q–
z J




]

≤ |�|+ –q
z K

–q
p–


[

ρ

�+ q–
z +

(z – )
z

d
ρ

(

ε

�+ q–
z +

ε


J
)]

, ()

where in the last inequality we use () with ε >  arbitrary.
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We now replace () in () to have

�′(t)≤ A� + B�

 +C� +D�+ q–

z + E�+ q–
z + FJ , ()

with
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A := nβ + (n–)(p–)
γ

,
B := (λ)  (p – )γ n–,
C :=

√



(p–)
σ γ n–μ


 ,

D(t) := 
ρ
zKK

–q
p–
 |�|+ –q

z ,

E(t) := d
ρ

z–
ε
KK

–q
p–
 |�|+ –q

z ,
F(t) := √

 (p – )γ n–μ

 σ – ( z–z )

+ (z – ) d
ρ

εKK
–q
p–
 |�|+ –q

z .

()

We now choose γ , σ , ε positive constants such that F ≡ .
A possible choice of γ , σ , ε, is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γ := ,
σ := 

√



z–

z(p–)μ


,

ε := ρ
zd K–

 K
q–
p–
 |�| q–z –.

()

Then

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

A := nβ + (n – )(p – ),
B := (λ)  (p – ),
C := (p–)

 ( z
z–μ

),

D := 
ρ
zKK

–q
p–
 |�|+ –q

z ,

E := z
 (z – )( d

ρ
KK

–q
p–
 |�|+ –q

z ).

()

Note that A, B, C are positive constants, whereas D and E may depend on the time
through the coefficients K and K.
In order to simplify (), set

Q :=
q – 

(p – )
,

and we obtain �+ (q–)
z = �+Q

n and �+ (q–)
z = �+ Q

n . Now () can be rewritten (with
F = ) as

�′(t)≤ A� + B�

 +C� +D(t)�+Q

n + E(t)�+ Q
n . ()

In the second term in () we now use the Schwarz inequality to obtain

�

 =�



(
�) 

 =
(
C– 


 �

) 

(
C�

) 
 ≤ 


C– 


 � +

C


�. ()
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Moreover, since n >Q, we write

�+Q
n = �– Q

n
(
�) Q

n =
(
CM
 �

)– Q
n

(
C�

) Q
n

≤
(
 –

Q
n

)
CM
 � +

Q
n

C�
, ()

withM := ( – n
Q )–, and C an arbitrary positive constant.

Analogously

�+ Q
n = �–Q

n
(
�)Q

n

=
(
CM
 �

)–Q
n
(
C�

)Q
n ≤

(
 –

Q
n

)
CM
 � +

Q
n
C�

, ()

where we again use () withM := ( – n
Q )

–, and C >  an arbitrary positive constant.
Moreover, we insert (), (), and () in () so that the differential inequality () can

be rewritten as

�′(t)≤ Ã� + B̃�, ()

with

⎧⎨
⎩
Ã(t) := A + E( – Q

n )C
M
 +D( – Q

n )C
M
 + B 

C




,

B̃(t) := C + Q
n EC + Q

nDC + C
 B.

()

From () we can write

–


(
�–)′ =�′�– ≤ Ã�– + B̃,

and we set φ(t) := �– to obtain

φ′ + Ãφ ≥ –B̃. ()

Then define A(t) :=
∫ t
 Ã(τ )dτ , and () may be rewritten as

(
φeA(t))′ ≥ –B̃(t)eA(t).

From this we obtain

φ(t)eA(t) – φ() ≥ –
∫ t


B̃(τ )eA(τ ) dτ ,

i.e.

�–(t) = φ(t) ≥
[
φ() – 

∫ t


B̃(τ )eA(τ ) dτ

]
e–A(t) := θ (t). ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/167
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Then if θ (T) = , we have

t∗ ≥ T .

Clearly T is implicitly given by (). �

Remark  Note that the bound () is a good estimate of t∗ because we consider our prob-
lem ()-() with initial data u(x) not too small. For instance we can choose u(x) such that∫
�
un(p–) (x)dx > ξ

Kn
 ()

.

Remark  If K and K are constants then Ã and B̃ are constants.
In this case we have

T =

Ã

log

(
 +

Ã
B̃

(
�()

)–).
3 Blow-up of u in finite time and upper bounds. Proof of Theorem 1.2
In this section we establish that under the hypotheses of Theorem ., no solution can
exist for all time, but it blows up in L and hence in Lr norm, r > , at time t∗. Then an
upper bound of t∗ is obtained.
To this end we compute


 ′(t) =
∫

�

�udx +K(t)
∫

�

f (u)dx

= K|∂�|
∫

�

g(u)dx +K

∫
�

f (u)dx ≥ K|∂�|
∫

�

uq dx +K

∫
�

up dx, ()

where in the last inequality we used ().
For any δ > , by the Hölder inequality

∫
�

udx ≤
(∫

�

uδ dx
) 

δ |�| δ–
δ ,

we have∫
�

uδ dx≥ 
δ|�|–δ . ()

By using () in () we get


 ′(t) ≥ K(t)|∂�||�|–q
q +K(t)|�|–p
p. ()

Now we observe that the function 
 is non-decreasing, then 
(t)≥ 
() > .
Since p > q > ,

(

(t)

()

)q

≤
(


(t)

()

)p

,

i.e.


p(t) ≥ 
q(t)
(

()

)p–q. ()
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By inserting () in (), we have


 ′(t) ≥ K (t)
q, ()

with K (t) defined in ().
Now we integrate () from  to t and we obtain the inequality

(

(t)

)–q – (

()

)p–q ≤ –(q – )
∫ t


K (τ )dτ , t ∈ (

, t∗
)
. ()

Using () we see that the inequality () cannot hold for all time, but u will blow up in
L norm (hence in Lr norm, r > ) at a finite time t∗ and

∫ t∗


K (τ )dτ ≤

∫ T


K (τ )dτ :=

(
())–q

q – 
. ()

Moreover, let k(t) =
∫ t
 K (τ )dτ . Since k is increasing, there exists the inverse function

k– and we can write

t∗ ≤ k–
(
(
())–q

q – 

)
,

which is the desired upper bound of t∗.
Another upper bound for t∗ can be obtained by means of a new auxiliary function χ (t)

so defined:

χ (t) = K


q–
 (t)

∫
�

udx, q > , ()

with K(t) satisfies

K ′
(t)

K(t)
≥ β̃ > . ()

Under this condition no (non-negative) solution u(x, t) of problem ()-() can exist for
all time, but it blows up in χ norm at time t∗, with t∗ ≤ T and T implicitly defined by

∫ T


K̃ (τ )eβ̃τ dτ =

(χ ())–q

q – 
. ()

In fact, following the proof of Theorem ., we obtain the differential inequality

χ ′(t) ≥ β̃

q – 
χ + K̃ (t)χq, ()

where K̃ (t) = |∂�||�|–q + (χ ())p–qKK
–p
q–
 |�|–p.

Integrating () over [, t], we obtain

eβ̃tχ (t)–q ≤ (
χ ()

)–q – (q – )
∫ t


K̃ (τ )eβ̃τ dτ . ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/167
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We see that the inequality () cannot hold for all time, but u will blow up in χ norm at a
finite time t∗. At the end we get the upper bound T , with T implicitly defined by ().

Remark The result can be extended to the case β̃ = . In fact, by () we get

χ ′(t) ≥ K̃ (t)χq.

By assuming that

lim
t→∞

∫ t


K̃ (τ )dτ =∞,

we conclude that the solution blows up in χ norm at time t∗, with t∗ ≤ T and T implicitly
defined by

∫ T


K̃ (τ )dτ =

(χ ())–q

q – 
.
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