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Abstract
We consider the problem of identifying the pollution source of a 1D parabolic
equation from the initial and the final data. The problem is ill posed and regularization
is in order. Using the quasi-boundary method and the truncation Fourier method, we
present two regularization methods. Error estimates are given and the methods are
illustrated by numerical experiments.

1 Introduction
In this paper, we consider an inverse problem of identifying a pollution source from data
measured at some points in awatershed. The pollution source causeswater contamination
in some region. In all industrial countries, groundwater pollution is a serious environmen-
tal problem that puts thewhole ecosystem, including humans, in jeopardy. The quality and
quantity of groundwater have much effect on human life and may lead to natural environ-
mental changes (see, e.g., []). As we know, most efforts to find pollutant transport are
based on the methodology of mathematics. Solute transport in a uniform groundwater
flow can be described by the one-dimensional (D) linear parabolic equation

∂ũ
∂t

–D
∂ũ
∂x

+V
∂ũ
∂x

+ Rũ = F(x, t), x ∈ �,  < t < T , ()

where � is a spatial domain, ũ is the solute concentration, V represents the velocity of
watershed movement, R denotes the self-purifying function of the watershed, and F(x, t)
is a source term causing the pollution function ũ(x, t). Putting

ũ(x, t) = u(x, t)e
V
D x–(V


D +R)t ,

we can transform the latter equation into

∂u
∂t

–D
∂u
∂x

= F(x, t), ()

where F(x, t) = F(x, t)e–
V
D x+( V


D +R)t ; we still call it the source function. Coming from this

relationship between the two equations () and (), in the present paper, we will find a pair
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of functions (u,F) satisfying () subject to the initial and the final conditions

u(x, ) = , u(x,T) = g(x), x ∈ (,π ), ()

and the boundary condition u(, t) = u(π , t) = . To consider a more general case, we will
replace D in () by a given function a(t) which is defined later.
This inverse source problem is ill posed. Indeed, a solution corresponding to the given

data does possibly not exist, and even if the solution exists (uniquely) then it may not
depend continuously on the data. Because the problem is severely ill posed and difficult,
many preassumptions on the form of the heat source are in order. In fact, let {ϕn(t)} be a
basis in L(,T). Then the function F can be written as

F(ξ , t) =
∞∑
n=

ϕn(t)fn(ξ ). ()

In the simplest case, one reduces this approximation to its first term F(x, t) = ϕ(t)f (x),
where the function ϕ is given. Source terms of this form frequently appear, for example,
as a control term for the parabolic equation.
In another context, this problem is called the identification of heat source; it has received

considerable attention frommany researchers in a variety of fields using differentmethods
since . If the pollute source has the form of f = f (u), the inverse source problem was
studied in []. In [], the authors considered the heat source as a function of both space and
time variables, in the additive or separable forms.Many researchers viewed the source as a
function of space or time only. In [, ], the authors determined the heat source dependent
on one variable in a bounded domain by the boundary-element method and the iterative
algorithm. In [], the authors investigated the heat source which is time-dependent only
by the method of a fundamental solution.
Many authors considered the uniqueness and stability conditions of the determination

of the heat source under this separate form. In spite of the uniqueness and stability results,
the regularization problem for unstable cases is still difficult. For a long time, it has been
investigated for a heat source which is time-depending only [, , ] or space-depending
only [, , –]. As regards the regularization method, there are few papers with a strict
theoretical analysis of identifying the heat source F(x, t) = ϕ(t)f (x), where ϕ is a given func-
tion. Trong et al. [, ] considered this problem by the Fourier transformation method.
Recently, when a(t) =  and ϕ(t) = e–λt (λ > ), the problem () describes a heat process of
radio isotope decay whose decay rate is λ, which has been considered by Qian and Li [].
In [], Hasanov identified the heat source which has the form of F(x, t) = F(x)H(t) of the
variable coefficient heat conduction equation ut = (k(x)ux)x + F(x)H(t) using the varia-
tional method. However, the generalized case with the time-dependent coefficient of �u
in the main equation is still limited and open. In this paper, we consider the following
generalized equation:

ut – a(t)uxx = F(x, t) ()

and u satisfies the condition (). This kind of equation () hasmany applications in ground-
water pollution. It is a simple formof advection-convection,which appears in groundwater
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pollution source identification problems (see []). Such a model is related to the detection
of the pollution source causing water contamination in some region.
The remainder of the paper is divided into three sections. In Section , we apply the

quasi-boundary value method and truncation method to solve the problem ()-(). Then
we also estimate the error between an exact solution and the regularization solution with
the logarithmic order andHölder order. Finally, some numerical experiments will be given
in Section .

2 Identification and regularization for inhomogeneous source depending on
time variable

Let ‖ · ‖, 〈·, ·〉 be the norm and the inner product in L(,π ). Let a : [,T] → R be a con-
tinuous function on [,T]. We set A(t) =

∫ t
 a(s)ds. The problem () can be transformed

into

⎧⎪⎨
⎪⎩

d
dt 〈u(x, t), sinnx〉 + na(t)〈u(x, t), sinnx〉 = ϕ(t)〈f (x), sinnx〉,  < t < T ,
〈u(x, t), sinnx〉 = ,
〈u(x,T), sinnx〉 = 〈g(x), sinnx〉.

()

By an elementary calculation, we can solve the ordinary differential equation () to get

〈
f (x), sinnx

〉
= en

A(T)
[∫ T


en

A(t)ϕ(t)dt
]–〈

g(x), sinnx
〉

or

f (x) =
∞∑
n=

en
A(T)

[∫ T


en

A(t)ϕ(t)dt
]–

gn sinnx, ()

where gn = 
π
〈g(x), sinnx〉. Note that enA(T) increases rather quickly when n becomes

large. Thus the exact data function g(x) must satisfy the property that 〈g(x), sinnx〉 de-
cays rapidly. But in applications, the input data g(x) can only be measured and never be
exact. We assume the data functions gε(x) ∈ L(,π ), ϕ,ϕε ∈ L(,T) to satisfy

∥∥gε – g
∥∥ ≤ ε, ‖ϕε – ϕ‖ ≤ ε ()

and ϕ(t) > C, ϕε(t) > C, t ∈ (,T), where the constant ε represents a noise level and
C > .

Lemma  Let s > , X ≥ . Then for all  ≤ t ≤ T and  < ε < , we have

ε

( +X)s(ε + e–TX)
≤ sse–s

(
 + T–s)( T

ln(/ε)

)s

. ()

Proof Case . X ∈ [, 
T ]. It is clear to see that

ε

( +X)s(ε + e–TX)
≤ ε

( +X)se–TX
≤ εeTX ≤ eε. ()
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From the inequality ε ≤ ( se )
s( 

ln(/ε) )
s, we get

ε

( +X)k(ε + e–TX)
≤ sse–s

(


ln(/ε)

)s

≤ sse–s
(
 + T–s)( T

ln(/ε)

)s

.

Case . X > 
T . Set e

–TX = εY . Then we obtain

ε

( +X)s(ε + e–TX)
=

ε

ε + εY

(
T

T – ln(εY )

)s

=


 + Y

(
T

T – ln(εY )

)s

=


 + Y

(
T

ln(/ε)

)s( – ln(ε)
T – ln(εY )

)s

=
(

T
ln(/ε)

)s 
 + Y

(
– ln(ε)

T – ln(εY )

)s

.

We continue to estimate the term 
+Y (

– ln(ε)
T–ln(εY ) )

s.
If  < Y ≤  then  < – ln(ε) < – ln(εY ), thus


 + Y

(
– ln(ε)

T – ln(εY )

)s

< ,

else if Y >  then lnY >  and ln(εY ) = –TX < – due to the assumptionX ∈ ( T ,∞). There-
fore, lnY ( + ln(εY ))≤ . This implies that

 <
– ln ε

T – ln(εY )
<

– ln ε

– ln(εY )
<  + lnY . ()

Hence, in this case, we get


 + Y

(
– ln(ε)

T – ln(εY )

)s

<
( + lnY )s

Y
= ( + lnY )sY–. ()

Set g(Y ) = ( + lnY )sY– for Y > e–. Taking the derivative of this function, we get

g ′(Y ) = ( + lnY )s–Y–(s –  – lnY ). ()

The function g has a maximum at the point Y, so that g ′(Y) = . This implies that Y =
es–. Therefore

sup
Y≥

( + lnY )sY– ≤ g(Y) = sse–s. ()

Since (), (), we have


 + Y

(
– ln(ε)

T – ln(εY )

)s

≤ sse–s.
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From (), we get

ε

( +X)s(ε + e–TX)
≤ sse–s

(
T

ln(/ε)

)s

≤ sse–s
(
 + T–s)( T

ln(/ε)

)s

. �

Lemma  Let a : [,T] → R be a continuous function on [,T]. Let p = inf≤t≤T a(t), q =
sup≤t≤T a(t). Then we have

(i)
[∫ T


exp

(
n

∫ t


a(s)ds

)
dt

]–

≤ 
T
, ()

(ii)


( + n)k(α(ε) + e–nA(T))
≤ B(q,k,T)

α(ε)

∣∣∣∣ qT
ln( 

α(ε) )

∣∣∣∣
k

, ()

where

B(q,k,T) = kke–k
(
 + (qT)–k

)
.

Proof (i) Since a(t)≥ p, we have

[∫ T


exp

(
n

∫ t


a(s)ds

)
dt

]–

=
∫ T

 exp(n
∫ t
 a(s)ds)dt

≤ ∫ T
 exp(n

∫ t
 pds)dt

=
∫ T

 epnt dt
=

pn

epnT – 
≤ 

T
. ()

(ii) Since a(t)≤ q, we get e–nA(T) ≥ e–nqT . Then using Lemma , we get


( + n)k(α(ε) + e–nA(T))

≤ 
( + n)k(α(ε) + e–nqT )

≤ B(q,k,T)
α(ε)

∣∣∣∣ qT
ln( 

α(ε) )

∣∣∣∣
k

. ()
�

2.1 Regularization by a quasi-boundary value method
Denote by ‖ · ‖k the norm in Sobolev space Hk(,π ) defined by

‖f ‖k =
( ∞∑

n=

(
 + n

)k|fn|
) 



,

where fn = 
π
〈f (x), sinnx〉.

We modify the problem ()-() by perturbing the Fourier expansion of final value g as
follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂uε

∂t – ∂
∂x (a(t)

∂uε

∂x ) = ϕε(t)fε(x), x ∈ (,π ),  < t < T ,
uε(x, ) = , x ∈ (,π ),
uε(, t) = uε(π , t) = , t ∈ (,T),

uε(x,T) =
∑∞

n=
e–A(T)n



α(ε)+e–A(T)n
gε
n sinnx, x ∈ (,π ),

()
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where gε
n =


π
〈gε(x), sinnx〉 and α(ε) is a regularization parameter such that limε→ α(ε) =

. This problem is based on the quasi-boundary regularization method which is given in
[]. This method has been studied for solving various types of inverse problem [, ].
The solution of this problem is given by

fε(x) =
∞∑
n=


α(ε) + e–nA(T)

(∫ T


en

A(t)ϕε(t)dt
)–

gε
n sinnx. ()

Now we will give an error estimate between the regularization solution and the exact so-
lution by the following theorem.

Theorem  Suppose that f , g ∈ L(,π ) such that ‖f ‖k < ∞ and ‖g‖k+ 

< ∞ for some

k ≥ . Let gε ∈ L(,π ) be measured data at t = T satisfying (). Let fε be the regularized
solution given by (). If we select α(ε) such that

lim
ε→

ε

α(ε)
= ,

then limε→ ‖fε – f ‖ =  and we have following estimate:

‖fε – f ‖ ≤ ε

CTα(ε)
+C(p,q,k,T)

ε

α(ε)

∣∣∣∣ 
ln( 

α(ε) )

∣∣∣∣
k

‖g‖ k+


+
∣∣B(q,k,T)∣∣∣∣∣∣ qT

ln( 
α(ε) )

∣∣∣∣
k

‖f ‖k . ()

Proof We define

hε(x) =
∞∑
n=


α(ε) + e–nA(T)

(∫ T


en

A(t)ϕε(t)dt
)–

gn sinnx ()

and

pε(x) =
∞∑
n=


α(ε) + e–nA(T)

(∫ T


en

A(t)ϕ(t)dt
)–

gn sinnx. ()

We divide the proof into three steps.
Step . Estimate ‖fε – hε‖. From () and (), we have

‖fε – hε‖ =
∞∑
n=


(α(ε) + e–nA(T))

(∫ T


en

A(t)ϕε(t)dt
)–(

gε
n – gn

)

≤
∞∑
n=


ε ln( qT

ε
)


(
∫ T
 C dt)

(
gε
n – gn

)

≤ 
|α(ε)|


(
∫ T
 C dt)

∥∥gε – g
∥∥

≤ ε

C
T|α(ε)| . ()
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Step . Estimate ‖hε – pε‖. From (), (), and (), we have

‖hε – pε‖

=
∞∑
n=


(α(ε) + e–nA(T))

[(∫ T


en

A(t)ϕε(t)dt
)–

–
(∫ T


en

A(t)ϕ(t)dt
)–]

gn

=
∞∑
n=


( + n)k(α(ε) + e–nA(T))

(
∫ T
 enA(t)(ϕ(t) – ϕε(t))dt)

(
∫ T
 enA(t)ϕε(t)dt)(

∫ T
 enA(t)ϕ(t)dt)

(
 + n

)kgn
≤

∣∣∣∣B(q,k,T)α(ε)

∣∣∣∣
∣∣∣∣ qT
ln( 

α(ε) )

∣∣∣∣
k ∞∑

n=

[
∫ T
 enA(t) dt][

∫ T
 |ϕε(t) – ϕ(t)| dt]

(
∫ T
 enA(t)ϕ(t)dt)(

∫ T
 enA(t)ϕε(t)dt)

(
 + n

)kgn
≤

∣∣∣∣B(q,k,T)α(ε)

∣∣∣∣
∣∣∣∣ qT
ln( 

α(ε) )

∣∣∣∣
k

×
∞∑
n=

[
∫ T
 enA(t) dt][

∫ T
 |ϕε(t) – ϕ(t)| dt]

C
T(

∫ T
 enA(t) dt)

(
 + n

)kgn . ()

On other hand, we have

en
A(T) – en

A() = en
A(T) –  =

∫ T



(
en

A(t))′(t)dt

=
∫ T


nA′(t)enA(t) dt =

∫ T


na(t)enA(t) dt.

Since p≤ a(t)≤ q, we get

p
∫ T


en

A(t) dt ≤
∫ T


a(t)en

A(t) dt ≤ q
∫ T


en

A(t) dt.

Hence

enA(T) – 
qn

≤
∫ T


en

A(t) dt ≤ enA(T) – 
pn

. ()

It follows from () and () that

‖hε – pε‖

≤
∣∣∣∣B(q,k,T)α(ε)

∣∣∣∣
∣∣∣∣ qT
ln( 

α(ε) )

∣∣∣∣
k ∞∑

n=

q(enA(T) – )‖ϕε(t) – ϕ(t)‖
pC

T(enA(T) – )
(
 + n

)k+gn . ()

Since

enA(T) – 
(enA(T) – )

=
 – e–nA(T)

( – e–nA(T))
≤

(


 – e–nA(T)

)

≤
(


 – e–A(T)

)

≤
(


 – e–pT

)
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and ‖ϕε(t) – ϕ(t)‖ ≤ ε, we obtain

‖hε – pε‖ ≤ q

pC
T( – e–pT )

∣∣∣∣εB(q,k,T)α(ε)

∣∣∣∣
∣∣∣∣ qT
ln( 

α(ε) )

∣∣∣∣
k ∞∑

n=

(
 + n

)k+gn
=

∣∣C(p,q,k,T)∣∣∣∣∣∣ ε

α(ε)

∣∣∣∣
∣∣∣∣ 
ln( 

α(ε) )

∣∣∣∣
k

‖g‖k+

.

Here

C(p,q,k,T) =
q

√pC
T( – e–pT )

B(q,k,T)(qT)k .

Hence

‖hε – pε‖ ≤ C(p,q,k,T)
ε

α(ε)

∣∣∣∣ 
ln( 

α(ε) )

∣∣∣∣
k

‖g‖ k+

. ()

Step . Estimate ‖pε – f ‖. In fact, using the Fourier expansion of f , we have

‖pε – f ‖ =
∞∑
n=

(


α(ε) + e–nA(T)
– en

A(T)
)(∫ T


en

A(t)ϕ(t)dt
)–

gn

=
∞∑
n=

(
α(ε)

α(ε) + e–nA(T)

)( enA(T)∫ T
 enA(t)ϕ(t)dt

)

gn

=
∞∑
n=

(
α(ε)

α(ε) + e–nA(T)

)

f n .

Using Lemma , we obtain

‖pε – f ‖ =
∞∑
n=

|α(ε)|
( + n)k(α(ε) + e–nA(T))

(
 + n

)kf n
≤ ∣∣B(q,k,T)∣∣∣∣∣∣ qT

ln( 
α(ε) )

∣∣∣∣
k

‖f ‖k .

This implies that

‖pε – f ‖ ≤ ∣∣B(q,k,T)∣∣∣∣∣∣ qT
ln( 

α(ε) )

∣∣∣∣
k

‖f ‖k . ()

Combining Steps , , and  and using the triangle inequality, we get

‖fε – f ‖ ≤ ‖fε – hε‖ + ‖hε – pε‖ + ‖pε – f ‖

≤ ε

CTα(ε)
+C(p,q,k,T)

ε

α(ε)

∣∣∣∣ 
ln( 

α(ε) )

∣∣∣∣
k

‖g‖ k+


+
∣∣B(q,k,T)∣∣∣∣∣∣ qT

ln( 
α(ε) )

∣∣∣∣
k

‖f ‖k . ()
�
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Remark  If we choose α(ε) = εm,  <m < , then () holds.

Remark  In this theorem, with the assumption f ∈Hk(,π ), we have an error ‖fε – f ‖ of
logarithmic order. In the next section, we introduce a truncation method which improves
the order of the error. We present the error of Hölder estimates (the order is εα ,  < α < )
with a weaker assumption of f , i.e., f ∈H(,π ).

2.2 Regularization by a truncation method
Theorem  Suppose that f ∈ H(,π ). Let gε ∈ L(,π ) be measured data at t = T satis-
fying (). Put

fε(x) =
N∑
n=

en
A(T)

[∫ T


en

A(t)ϕε(t)dt
]–

gε
n sinnx, ()

where N = [ε k–
 ] + , k ∈ (, ). Then the following estimate holds:

∥∥f ε – f
∥∥ ≤Qε

–k
 + Pεk , ()

where

P =

√

C

+

q‖g‖
pC

( – e–pT )
,

Q =
(

√

π +
√

π



)
‖f ‖H(,π ).

Proof From () and (), we have

f (x) – fε(x)

=
∞∑
n=

enA(T)∫ T
 enA(t)ϕ(t)dt

gn sinnx –
N∑
n=

enA(T)∫ T
 enA(t)ϕε(t)dt

gε
n sinnx

=
∞∑

n=N+

enA(T)∫ T
 enA(t)ϕ(t)dt

gn sinnx +
N∑
n=

enA(T)∫ T
 enA(t)ϕ(t)dt

gn sinnx

–
N∑
n=

enA(T)∫ T
 enA(t)ϕε(t)dt

gε
n sinnx

= I + I, ()

where

I =
∞∑

n=N+

enA(T)∫ T
 enA(t)ϕ(t)dt

gn sinnx ()

and

I =
N∑
n=

enA(T)∫ T
 enA(t)ϕ(t)dt

gn sinnx –
N∑
n=

enA(T)∫ T
 enA(t)ϕε(t)dt

gε
n sinnx. ()
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Step . We estimate I. In fact, since (), we get

‖I‖ =
∞∑

n=N+

enA(T)

(
∫ T
 enA(t)ϕ(t)dt)

gn =
∞∑

n=N+

f n . ()

Using integration by parts, we have

fn =
∫ π


f (x) sinnxdx = –

cosnx
n

f (x)
∣∣∣∣
x=π

x=
+

n

∫ π


f (x) cosnxdx

=

n
f () –

(–)n

n
f (π ) +


n

∫ π


f ′(x) cosnxdx. ()

Hence

|fn| ≤ |f ()| + |f (π )|
n

+
√

π



n

∥∥f ′(x)
∥∥. ()

On the other hand, since H(,π ) is embedded continuously in C[,π ] we can assume
that u ∈ C[,π ]. So, there exists anm ∈ [,π ] such that f (m) = 

π

∫ π

 f (x)dx. We have

f (π ) = f (m) +
∫ π

m
f ′(x)dx,

f () = f (m) –
∫ m


f ′(x)dx.

()

It follows that

∣∣f (π )∣∣ ≤ ∣∣f (m)
∣∣ + ∫ π

m

∣∣f ′(x)
∣∣dx≤ 

π

∫ π



∣∣f (x)∣∣dx + ∫ π



∣∣f ′(x)
∣∣dx

≤
√

π

∫ π



(∣∣f (x)∣∣ + ∣∣f ′(x)
∣∣)dx =√

π‖f ‖H(,π ). ()

In a similar way, we also obtain |f ()| ≤ √
π‖f ‖H(,π ). Hence |fn| ≤ 

√
π+

√
π


n ‖f ‖H(,π ).
This implies that

‖I‖ ≤
∞∑

n=N+

(
√

π +
√

π
 )



n
‖f ‖H(,π )

≤
(

√

π +
√

π



)

‖f ‖H(,π )

∞∑
n=N+


n – n

≤
(

√

π +
√

π



)

‖f ‖H(,π )

N
. ()

Step . We estimate I. The term () can be rewritten as follows:

I =
N∑
n=

enA(T)[gn
∫ T
 enA(t)ϕε(t)dt – gε

n
∫ T
 enA(t)ϕ(t)dt]

(
∫ T
 enA(t)ϕ(t)dt)(

∫ T
 enA(t)ϕε(t)dt)

sinnx

=
N∑
n=

enA(T)[(gn – gε
n)

∫ T
 enA(t)ϕε(t)dt + gn

∫ T
 enA(t)(ϕε(t) – ϕ(t))dt]

(
∫ T
 enA(t)ϕ(t)dt)(

∫ T
 enA(t)ϕε(t)dt)

sinnx.
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Then

‖I‖ ≤ 
N∑
n=

enA(T)(gn – gε
n)

(
∫ T
 enA(t)ϕ(t)dt)

+ 
N∑
n=

enA(T)gn[
∫ T
 enA(t)(ϕε(t) – ϕ(t))dt]

(
∫ T
 enA(t)ϕ(t)dt)(

∫ T
 enA(t)ϕε(t)dt)

. ()

Using en
A(T)–
qn ≤ ∫ T

 enA(t) dt, we have

N∑
n=

enA(T)(gn – gε
n)

(
∫ T
 enA(t)ϕ(t)dt)

≤
N∑
n=

enA(T)

C
(

∫ T
 enA(t) dt)

(
gn – gε

n
)

≤
N∑
n=

nqenA(T)

C
(en

A(T) – )
(
gn – gε

n
)

≤
N∑
n=

nq

C
( – e–nA(T))

(
gn – gε

n
)

≤ Nqε

C


. ()

In a similar way and using (), we also obtain

N∑
n=

enA(T)gn[
∫ T
 enA(t)(ϕε(t) – ϕ(t))dt]

(
∫ T
 enA(t)ϕ(t)dt)(

∫ T
 entϕε(t)dt)

≤
N∑
n=

enA(T)gn[
∫ T
 enA(t) dt][

∫ T
 |ϕε(t) – ϕ(t)| dt]

(
∫ T
 enA(t)ϕ(t)dt)(

∫ T
 enA(t)ϕε(t)dt)

≤
N∑
n=

enA(T)gnq[
∫ T
 enA(t) dt][

∫ T
 |ϕε(t) – ϕ(t)| dt]

C
(

∫ T
 enA(t) dt)

≤
N∑
n=

nqenA(T)(enA(T) – )gnε

pC
(en

A(T) – )

≤
N∑
n=

nq( – e–nA(T))gnε

pC
( – e–nA(T))

. ()

It is easy to see that 
–e–nA(T)

≤ 
–e–pT . It implies that

N∑
n=

enA(T)gn[
∫ T
 enA(t)(ϕε(t) – ϕ(t))dt]

(
∫ T
 enA(t)ϕ(t)dt)(

∫ T
 enA(t)ϕε(t)dt)

≤
N∑
n=

Ngnε

C
( – e–pT )

≤ Nqε

pC
( – e–pT )

∞∑
n=

gn

≤ Nqε‖g‖
pC

( – e–pT )
. ()
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Therefore

‖I‖ ≤ Nε

C


+
Nqε‖g‖

pC
( – e–pT )

≤NεP,

where P =
√


C

+ q‖g‖

pC
 (–e

–pT ) . Hence

‖I‖ ≤NεP. ()

Combining (), (), and (), we obtain

‖f – fε‖ = ‖I + I‖ ≤ ‖I‖ + ‖I‖

≤
(

√

π +
√

π



)
‖f ‖H(,π )

√

N

+ PNε. ()

Since N = [ε k–
 ] + , we obtain

‖f – fε‖ ≤Qε
–k
 + Pεk , ()

where Q = (
√

π +
√

π
 )‖f ‖H(,π ). �

3 Numerical results
In this section, we consider some examples simulation for the theory in Section . In nu-
merical experiments, we are interested in the error between exact source and source with
approximation as RMSE:

RMSE(f , fε) :=

N

√√√√ N∑
n=

(
f (xn) – fε(xn)

)

with f (xn), fε(xn) a discretization of function f , fε .
Now, we consider

⎧⎪⎨
⎪⎩
ut – a(t)uxx = ϕ(t)f (x), x ∈ (,π ), t ∈ (, ),
u(, t) = u(π , t) = , t ∈ (, ),
u(x,T) = g(x), x ∈ (,π ),

where

a(t) = t + ,

ϕ(t) = t + t + ,

g(x) = sinx.

We can see the exact source

f (x) = sin(x).

http://www.journalofinequalitiesandapplications.com/content/2014/1/161
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Using FORTRAN , we have a generator for noise data from routine rand() which is a
random variable with the uniform distribution on [, ]. Therefore, we have measurement
data with noise

gε(x) = sinx + ε ∗ rand(),

ϕε(t) = t + t +  + ε ∗ rand(),

where ε = –r , with r = , , , , works as the amplitude of noise.
We can easily see

‖g – gε‖ < ε
√

π ,

‖φ – φε‖ < ε
√

π

and we have convergence to zero.
From Figure , we can compare between exact data and measured data.
We consider the source approximation with the quasi-reversibility regularization

fε(x) =
∞∑
n=

(∫ 


en

A(t)ϕε(t)dt
)– gε

n sinnx
ε + e–nA()

.

We have the table of errors with ε = –, –, – and – (see Table ) and Figure .
On the other hand, we have the source approximation with the truncation Fourier reg-

ularization

fε(x) =
N∑
n=

(∫ 


en

A(t)ϕε(t)dt
)–

en
A()gε

n sinnx.

We have the table of errors ε = –, –, – and – (see Table ) and Figure  is as in
Table .

Figure 1 Data for the problem.

Table 1 The error estimation between exact solution and regularized solution by
quasi-reversibility method

ε 10–1 10–2 10–3 10–4

RMSE(f , fε ) 3.33236× 10–1 4.82402× 10–2 9.20728× 10–4 1.11864× 10–5

http://www.journalofinequalitiesandapplications.com/content/2014/1/161


Tuan et al. Journal of Inequalities and Applications 2014, 2014:161 Page 14 of 15
http://www.journalofinequalitiesandapplications.com/content/2014/1/161

Figure 2 The approximation source. Red is for the exact solution and green is for the approximation from
the quasi-reversibility regularization.

Table 2 The error estimation between exact solution and regularized solution by truncation
method

ε 10–1 10–2 10–3 10–4

RMSE(f , fε ) 1.74326× 10–2 4.3520810–4 1.38719–5 5.67552–6

Figure 3 The approximation source. Red is for the exact solution and green is for the approximation from
the truncation Fourier regularization.
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