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Abstract
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1 Introduction and preliminaries
Recently, Samet et al. [] introduced a very interesting notion of α-ψ-contractions via
α-admissible mappings. In this paper, the authors [] proved the existence and uniqueness
of a fixed point for such a class of mappings in the context of complete metric spaces.
Furthermore, the famous Banach [] fixed point result was observed as a consequence of
their main results. Following this initial paper, several authors have published new fixed
point results by modifying, improving and generalizing the notion of α-ψ-contractions
in various abstract spaces; see, e.g., [–]. Very recently, Shahi et al. [] gave the integral
version of α-ψ-contractive type mappings and proved some related fixed point theorems.
As a consequence of themain results of this paper [], the well-known integral contraction
theorem of Branciari [] and hence the celebrated Banach contraction principle were
obtained.
In the present work, we introduce two classes of generalized α-ψ-contractive typemap-

pings of integral type inspired by the report of Karapınar and Samet []. Also, we analyze
the existence and uniqueness of fixed points for suchmappings in completemetric spaces.
Our results generalize, improve and extend not only the results derived by Shahi et al. [],
Samet et al. [] and Branciari [] but also various other related results in the literature.
Moreover, from our fixed point theorems, we will derive several fixed point results on
metric spaces endowed with a partial order.
We recall some necessary definitions and basic results from the literature. Throughout

the paper, let N denote the set of all nonnegative integers.
Berzig and Rus [] introduced the following definition.
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Definition . (see []) Let N ∈N. We say that α is N-transitive (on X) if

x,x, . . . ,xN+ ∈ X: α(xi,xi+) ≥ 

for all i ∈ {, , . . . ,N} ⇒ α(x,xN+) ≥ .
In particular, we say that α is transitive if it is -transitive, i.e.,

x, y, z ∈ X: α(x, y)≥  and α(y, z) ≥  ⇒ α(x, z)≥ .

As consequences of Definition ., we obtain the following remarks.

Remark . (see [])
() Any function α : X ×X → [, +∞) is -transitive.
() If α is N transitive, then it is kN-transitive for all k ∈ N.
() If α is transitive, then it is N-transitive for all N ∈N.
() If α is N-transitive, then it is not necessarily transitive for all N ∈N.

Let � be a family of functions ψ : [,∞)→ [,∞) satisfying the following conditions:
() ψ is nondecreasing.
()

∑+∞
n= ψn(t) <∞ for all t > , where ψn is the nth iterate of ψ .

In the literature, suchmappings are called in two different ways: (c)-comparison functions
in some sources (see, e.g., []), and Bianchini-Grandolfi gauge functions in some others
(see, e.g., [–]).
It can be easily verified that if ψ is a (c)-comparison function, then ψ(t) < t for any t > .
Define� = {ϕ : ϕ :R+ →R} such that ϕ is nonnegative, Lebesgue integrable and satisfies

∫ ε


ϕ(t)dt >  for each ε > . ()

Shahi et al. in [] introduced the following new concept of α-ψ-contractive typemappings
of integral type.

Definition . Let (X,d) be ametric space andT : X → X be a givenmapping.We say that
T is an α-ψ-contractive mapping of integral type if there exist two functions α : X ×X →
[, +∞) and ψ ∈ � such that for each x, y ∈ X,

α(x, y)
∫ d(Tx,Ty)


ϕ(t)dt ≤ ψ

(∫ d(x,y)


ϕ(t)dt

)
, ()

where ϕ ∈ �.

In what follows, we recollect the main results of Shahi et al. [].

Theorem . [] Let (X,d) be a complete metric space and α : X × X → [, +∞) be a
transitive mapping. Suppose that T : X → X is an α-ψ-contractive mapping of integral
type and satisfies the following conditions:

(i) T is α-admissible;
(ii) there exists x ∈ X such that α(x,Tx) ≥ ;
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(iii) T is continuous.
Then T has a fixed point, that is, there exists z ∈ X such that Tz = z.

Theorem . [] Let (X,d) be a complete metric space and α : X × X → [, +∞) be a
transitive mapping. Suppose that T : X → X is an α-ψ-contractive mapping of integral
type and satisfies the following conditions:

(i) T is α-admissible;
(ii) there exists x ∈ X such that α(x,Tx) ≥ ;
(iii) if {xn} is a sequence in X such that α(xn,xn+) ≥  for all n and xn → x ∈ X as

n→ ∞, then there exists a subsequence {xn(k)} of {xn} such that α(xn(k),x) ≥  for
all k.

Then T has a fixed point, that is, there exists z ∈ X such that Tz = z.

Notice that in the theorems above, the authors proved only the existence of a fixed point.
To guarantee the uniqueness of the fixed point, they needed the following condition.
(U): For all x, y ∈ Fix(T), there exists z ∈ X such that α(x, z)≥  and α(y, z) ≥ , where

Fix(T) denotes the set of fixed points of T .

2 Main results
In this section, we present our main results. First, we introduce two classes of generalized
α-ψ-contractive type mappings of integral type in the following way.

Definition. Let (X,d) be ametric space andT : X → X be a givenmapping.We say that
T is a generalized α-ψ-contractive mapping of integral type I if there exist two functions
α : X ×X → [, +∞) and ψ ∈ � such that for each x, y ∈ X,

α(x, y)
∫ d(Tx,Ty)


ϕ(t)dt ≤ ψ

(∫ M(x,y)


ϕ(t)dt

)
, ()

where ϕ ∈ � andM(x, y) =max{d(x, y),d(x,Tx),d(y,Ty), [ d(x,Ty)+d(y,Tx) ]}.

Definition. Let (X,d) be ametric space andT : X → X be a givenmapping.We say that
T is a generalized α-ψ-contractive mapping of integral type II if there exist two functions
α : X ×X → [, +∞) and ψ ∈ � such that for each x, y ∈ X,

α(x, y)
∫ d(Tx,Ty)


ϕ(t)dt ≤ ψ

(∫ M(x,y)


ϕ(t)dt

)
, ()

where ϕ ∈ � andM(x, y) =max{d(x, y), [ d(x,Tx)+d(y,Ty) ], [ d(x,Ty)+d(y,Tx) ]}.

Remark . It is evident that if T : X → X is an α-ψ-contractivemapping of integral type,
then T is a generalized α-ψ-contractive mapping of integral types I and II.

The following is the first main result of this manuscript.

Theorem. Let (X,d) be a completemetric space and α : X×X → [, +∞) be a transitive
mapping. Suppose that T : X → X is a generalized α-ψ-contractive mapping of integral
type I and satisfies the following conditions:
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(i) T is α-admissible;
(ii) there exists x ∈ X such that α(x,Tx) ≥ ;
(iii) T is continuous.

Then T has a fixed point, that is, there exists z ∈ X such that Tz = z.

Proof Let x be an arbitrary point of X such that α(x,Tx) ≥ . We construct an iterative
sequence {xn} in X in the following way:

xn+ = Txn for all n≥ .

If xn = xn+ for some n, then, obviously, x∗ = xn is a fixed point of T and the proof is
completed. Hence, from now on, we suppose that xn 	= xn+ for all n. Due to the fact that
T is α-admissible, we find that

α(x,x) = α(x,Tx) ≥  ⇒ α(Tx,Tx) = α(x,x) ≥ .

Iteratively, we obtain that

α(xn,xn+) ≥  ()

for all n ≥ .
By applying inequality () with x = xn– and y = xn and using (), we deduce that

∫ d(xn ,xn+)


ϕ(t)dt =

∫ d(Txn–,Txn)


ϕ(t)dt ≤ α(xn–,xn)

∫ d(Txn–,Txn)


ϕ(t)dt

≤ ψ

(∫ M(xn–,xn)


ϕ(t)dt

)
, ()

where

M(xn–,xn) = max

{
d(xn–,xn),d(xn–,xn),d(xn,xn+),

d(xn–,xn+) + d(xn,xn)


}

≤ max
{
d(xn–,xn),d(xn,xn+)

}
. ()

By utilizing () and regarding the properties of the function ψ , we derive from () that

∫ d(xn ,xn+)


ϕ(t)dt =

∫ d(Txn–,Txn)


ϕ(t)dt ≤ α(xn–,xn)

∫ d(Txn–,Txn)


ϕ(t)dt

≤ ψ

(∫ max{d(xn–,xn),d(xn ,xn+)}


ϕ(t)dt

)

≤ ψ

(
max

{∫ d(xn–,xn)


ϕ(t)dt,

∫ d(xn ,xn+)


ϕ(t)dt

})

≤ ψ

(∫ d(xn–,xn)


ϕ(t)dt

)
. ()

Notice that the case
∫ d(xn ,xn+)


ϕ(t)dt ≤ ψ

(∫ d(xn ,xn+)


ϕ(t)dt

)
<

∫ d(xn ,xn+)


ϕ(t)dt
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is impossible due to the property ψ(t) < t for all t > . By using mathematical induction,
we get, for all n ∈N,

∫ d(xn ,xn+)


ϕ(t)dt ≤ ψn

(∫ d(x,x)


ϕ(t)dt

)
=ψn(d), ()

where d =
∫ d(x,x)
 ϕ(t)dt.

Letting n→ +∞ in () and taking the property of ψ on the account, we find that

∫ d(xn ,xn+)


ϕ(t)dt = , ()

which, from (), implies that

d(xn,xn+) →  as n→ ∞. ()

We shall prove that {xn} is a Cauchy sequence. Suppose, on the contrary, that there exist
an ε >  and subsequences {m(p)} and {n(p)} such thatm(p) < n(p) <m(p + ) with

d(xm(p),xn(p)) ≥ ε, d(xm(p),xn(p)–) < ε. ()

Due to the definition ofM(x, y), we have that

M(xm(p)–,xn(p)–) = max

{
d(xm(p)–,xn(p)–),d(xm(p)–,xm(p)),d(xn(p)–,xn(p)),

d(xm(p)–,xn(p)) + d(xn(p)–,xm(p))


}
. ()

By elementary evaluation, (), we find that

lim
p

∫ d(xm(p)–,xm(p))


ϕ(t)dt = lim

p

∫ d(xn(p)–,xn(p))


ϕ(t)dt = . ()

In view of (), () and the triangular inequality, we deduce that

d(xm(p)–,xn(p)–) ≤ d(xm(p)–,xm(p)) + d(xm(p),xn(p)–)

< ε + d(xm(p)–,xm(p)).

Letting n → ∞ in the inequality above, we conclude that

lim
p→∞

∫ d(xm(p)–,xn(p)–)


ϕ(t)dt ≤

∫ ε


ϕ(t)dt. ()

Owing to the transitivity of α, we infer from () that

α(xm(p)–,xn(p)–)≥ . ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/160
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Regarding inequality () and by using (), we obtain

∫ d(xm(p),xn(p))


ϕ(t)dt =

∫ d(Txm(p)–,Txn(p)–)


ϕ(t)dt

≤ α(xm(p)–,xn(p)–)
∫ d(Txm(p)–,Txn(p)–)


ϕ(t)dt

≤ ψ

(∫ M(xm(p)–,xn(p)–)


ϕ(t)dt

)
. ()

In view of () and using the triangular inequality, we get

t(m,n) =
d(xm(p)–,xn(p)) + d(xn(p)–,xm(p))



≤ d(xm(p)–,xm(p)) + d(xm(p),xn(p)–) + d(xn(p)–,xn(p))


<
d(xm(p)–,xm(p)) + d(xn(p)–,xn(p))


+ ε. ()

Therefore, using (), we infer that

lim
p

∫ t(m,n)


ϕ(t)dt ≤

∫ ε


ϕ(t)dt. ()

Now, from (), (), (), (), (), () and (), it then follows that

∫ ε


ϕ(t)dt ≤

∫ d(xm(p),xn(p))


ϕ(t)dt

≤ α(xm(p)–,xn(p)–)
∫ d(Txm(p)–,Txn(p)–)


ϕ(t)dt

≤ ψ

(∫ M(xm(p)–,xn(p)–)


ϕ(t)dt

)

≤ ψ

(∫ ε


ϕ(t)dt

)
, ()

which is a contradiction. This implies that {xn} is a Cauchy sequence in (X,d). Due to the
completeness of (X,d), there exists z ∈ X such that xn → z as n → +∞. The continuity of
T yields that Txn → Tz as n → +∞, that is, xn+ → Tz as n → +∞. By the uniqueness of
the limit, we obtain z = Tz. Therefore, z is a fixed point of T . �

Theorem. Let (X,d) be a completemetric space and α : X×X → [, +∞) be a transitive
mapping. Suppose that T : X → X is a generalized α-ψ-contractive mapping of integral
type I and satisfies the following conditions:

(i) T is α-admissible;
(ii) there exists x ∈ X such that α(x,Tx) ≥ ;
(iii) if {xn} is a sequence in X such that α(xn,xn+) ≥  for all n and xn → x ∈ X as

n→ ∞, then there exists a subsequence {xn(k)} of {xn} such that α(xn(k),x) ≥  for
all k;

http://www.journalofinequalitiesandapplications.com/content/2014/1/160
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(iv) ψ is continuous for all t > .
Then T has a fixed point, that is, there exists z ∈ X such that Tz = z.

Proof From the proof of Theorem., we infer that the sequence {xn} defined by xn+ = Txn
for all n ≥  converges to z ∈ X. We obtain, from hypothesis (iii) and (), that there exists
a subsequence {xn(k)} of xn such that α(xn(k), z) ≥  for all k. Now, applying inequality (),
we get, for all k,

∫ d(xn(k)+,Tz)


ϕ(t)dt =

∫ d(Txn(k),Tz)


ϕ(t)dt ≤ α(xn(k), z)

∫ d(Txn(k),Tz)


ϕ(t)dt

≤ ψ

(∫ M(xn(k),z)


ϕ(t)dt

)
. ()

On the other hand, we have

M(xn(k), z) =max

{
d(xn(k), z),d(xn(k),xn(k)+),d(z,Tz),

d(xn(k),Tz) + d(z,xn(k)+)


}
. ()

Recall from the proof of Theorem . that the sequence {xn} converges to z ∈ X. Conse-
quently, as k → ∞, the limit of the terms d(xn(k), z), d(xn(k),xn(k)+), d(z,xn(k)+) tends to .
Thus, by letting k → ∞ in (), we get that

lim
k→∞

M(xn(k), z) = d(z,Tz). ()

Assume that d(z,Tz) > . In view of () and for k large enough, we get M(xn(k), z) > ,
which implies from () that

∫ d(xn(k)+,Tz)


ϕ(t)dt ≤ ψ

(∫ M(xn(k),z)


ϕ(t)dt

)
. ()

Letting k → ∞ in () and by using (), assumption (iv), together with the property of
ψ(t) < t, we derive that

∫ d(z,Tz)


ϕ(t)dt ≤ ψ

(∫ d(z,Tz)


ϕ(t)dt

)
<

∫ d(z,Tz)


ϕ(t)dt, ()

which is a contradiction. Thus, we have d(z,Tz) = , that is, z = Tz. �

One can easily deduce the following result from Theorem ..

Theorem. Let (X,d) be a completemetric space and α : X×X → [, +∞) be a transitive
mapping. Suppose that T : X → X is a generalized α-ψ-contractive mapping of integral
type II and satisfies the following conditions:

(i) T is α-admissible;
(ii) there exists x ∈ X such that α(x,Tx) ≥ ;
(iii) T is continuous.

Then T has a fixed point, that is, there exists z ∈ X such that Tz = z.

In the next theorem, we exclude the continuity hypothesis of T in Theorem ..

http://www.journalofinequalitiesandapplications.com/content/2014/1/160
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Theorem. Let (X,d) be a completemetric space and α : X×X → [, +∞) be a transitive
mapping. Suppose that T : X → X is a generalized α-ψ-contractive mapping of integral
type II and satisfies the following conditions:

(i) T is α-admissible;
(ii) there exists x ∈ X such that α(x,Tx) ≥ ;
(iii) if {xn} is a sequence in X such that α(xn,xn+) ≥  for all n and xn → x ∈ X as

n→ ∞, then there exists a subsequence {xn(k)} of {xn} such that α(xn(k),x) ≥  for
all k.

Then T has a fixed point, that is, there exists z ∈ X such that Tz = z.

Proof From the proof of Theorem., we infer that the sequence {xn} defined by xn+ = Txn
for all n ≥  converges to z ∈ X. We obtain, from hypothesis (iii) and (), that there exists
a subsequence {xn(k)} of xn such that α(xn(k), z) ≥  for all k. Now, applying inequality (),
we get, for all k,

∫ d(xn(k)+,Tz)


ϕ(t)dt =

∫ d(Txn(k),Tz)


ϕ(t)dt ≤ α(xn(k), z)

∫ d(Txn(k),Tz)


ϕ(t)dt

≤ ψ

(∫ M(xn(k),z)


ϕ(t)dt

)
. ()

On the other hand, we have

M(xn(k), z) = max

{
d(xn(k), z),

d(xn(k),xn(k)+) + d(z,Tz)


,

d(xn(k),Tz) + d(z,xn(k)+)


}
. ()

Letting k → ∞ in the above equality, we get that

lim
k→∞

M(xn(k), z) =
d(z,Tz)


. ()

Assume that d(z,Tz) > . In view of () and for k large enough, we get M(xn(k), z) > ,
which implies from () that

∫ d(xn(k)+,Tz)


ϕ(t)dt ≤ ψ

(∫ M(xn(k),z)


ϕ(t)dt

)

<
∫ M(xn(k),z)


ϕ(t)dt. ()

Letting k → ∞ in () and using (), we obtain that

∫ d(z,Tz)


ϕ(t)dt ≤

∫ d(z,Tz)



ϕ(t)dt, ()

which is a contradiction. Thus, we have d(z,Tz) = , that is, z = Tz. �

Remark . Notice that in Theorem ., the continuity of ψ is assumed as an extra con-
dition. Despite Remark ., Theorem . can be derived from Theorem . due to the
additional assumption on ψ .

http://www.journalofinequalitiesandapplications.com/content/2014/1/160
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In order to ensure the uniqueness of a fixed point of a generalized α-ψ-contractivemap-
ping of integral type II, we need an additional condition (U) defined in the previous sec-
tion.

Theorem . If the condition (U) is added to the hypotheses of Theorem ., then the fixed
point u of T is unique.

Proof We shall show the uniqueness of a fixed point of T by reductio ad absurdum. Sup-
pose, on the contrary, that v is another fixed point of T with v 	= u. From the hypothesis
(U), we obtain that there exists z ∈ X such that

α(u, z) ≥ , α(v, z)≥ . ()

Using the α-admissible property of T , we get from () for all n ∈N

α
(
u,Tnz

) ≥ , α
(
v,Tnz

) ≥ . ()

Consider the sequence {zn} in X by zn+ = Tzn for all n≥  and z = z. From (), for all n,
we infer that

∫ d(u,zn+)


ϕ(t)dt =

∫ d(Tu,Tzn)


ϕ(t)dt ≤ α(u, zn)

∫ d(Tu,Tzn)


ϕ(t)dt

≤ ψ

(∫ M(u,zn)


ϕ(t)dt

)
. ()

On the other hand, we have

M(u, zn) = max

{
d(u, zn),

d(u,Tu) + d(zn,Tzn)


,
d(u,Tzn) + d(zn,Tu)



}

= max

{
d(u, zn),d(u,Tu),d(zn,Tzn),

d(u,Tzn) + d(zn,Tu)


}

= max

{
d(u, zn), ,d(zn, zn+),

d(u, zn+) + d(zn,u)


}

≤ max

{
d(u, zn),d(zn, zn+),

d(u, zn+) + d(zn,u)


}

≤ max
{
d(u, zn),d(zn, zn+),d(u, zn+)

}
. ()

Due to themonotone property ofψ and using the above inequality, we infer from () that

∫ d(u,zn+)


ϕ(t)dt

≤ ψ

(∫ M(u,zn)


ϕ(t)dt

)

≤ ψ

(∫ max{d(u,zn),d(zn ,zn+),d(u,zn+)}


ϕ(t)dt

)

≤ ψ

(
max

{∫ d(u,zn)


ϕ(t)dt,

∫ d(zn ,zn+)


ϕ(t)dt,

∫ d(u,zn+)


ϕ(t)dt

})
()

http://www.journalofinequalitiesandapplications.com/content/2014/1/160
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for all n. Let us examine the possibilities for the inequality above. For simplicity, let

P(u, zn) =max

{∫ d(u,zn)


ϕ(t)dt,

∫ d(zn ,zn+)


ϕ(t)dt,

∫ d(u,zn+)


ϕ(t)dt

}
.

If P(u, zn) =
∫ d(u,zn+)
 ϕ(t)dt, then due to the properties of the function ψ , we get

∫ d(u,zn+)


ϕ(t)dt ≤ ψ

(∫ d(u,zn+)


ϕ(t)dt

)
<

∫ d(u,zn+)


ϕ(t)dt,

which is a contradiction. If P(u, zn) =
∫ d(u,zn)
 ϕ(t)dt, then

∫ d(u,zn+)


ϕ(t)dt ≤ ψ

(∫ d(u,zn)


ϕ(t)dt

)
,

thereby implying that

∫ d(u,zn+)


ϕ(t)dt ≤ ψn

(∫ d(u,z)


ϕ(t)dt

)
()

for all n ≥ . Letting n→ ∞ in the above inequality, we obtain that

lim
n→∞

∫ d(u,zn+)


ϕ(t)dt = , ()

which from () implies that

lim
n→∞d(zn,u) = . ()

Let us analyze the last case: P(u, zn) =
∫ d(zn ,zn+)
 ϕ(t)dt. Regarding the properties of φ and

the triangle inequality, we have

d(zn, zn+) ≤ d(zn,u) + d(u, zn+) ≤ max
{
d(zn,u),d(u, zn+)

}
.

Notice that if d(zn,u) ≤ d(u, zn+), then, as in the analysis of the first case, we get a contra-
diction. Hence,

d(zn, zn+) ≤ d(zn,u) + d(u, zn+) ≤ max
{
d(zn,u),d(u, zn+)

} ≤ d(zn,u),

and hence we easily deduce that

∫ d(u,zn+)


ϕ(t)dt ≤ ψ

(∫ d(zn ,zn+)


ϕ(t)dt

)

≤ ψ

(∫ d(zn ,u)+d(u,zn+)


ϕ(t)dt

)

≤ ψ

(∫ max{d(zn ,u),d(u,zn+)}


ϕ(t)dt

)

≤ ψ

(∫ d(zn ,u)


ϕ(t)dt

)
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for each n. Consequently, we find that

∫ d(u,zn+)


ϕ(t)dt ≤ ψn

(∫ d(u,z)


ϕ(t)dt

)
()

for all n ≥ . Letting n→ ∞ in the above inequality, we obtain that

lim
n→∞

∫ d(u,zn+)


ϕ(t)dt = , ()

which from () implies that

lim
n→∞d(zn,u) = . ()

Similarly, we can show that

lim
n→∞d(zn, v) = . ()

From equations () and (), we obtain that u = v. Therefore, we have proved that u is
the unique fixed point of T . �

The following result can be easily deduced from Theorem . due to Remark ..

Theorem . Adding the condition (U) to the hypotheses of Theorem . (resp. Theo-
rem .), one obtains that u is the unique fixed point of T .

3 Consequences
In this section, we shall list some existing results in the literature that can be deduced
easily from our Theorem ..

3.1 Standard fixed point theorems
Theorem . and Theorem . are immediate consequences of our main results Theo-
rem . and Theorem . whereM(x, y) = d(x, y).

Corollary . (see Karapınar and Samet []) Let (X,d) be a complete metric space and
α : X × X → [, +∞) be a transitive mapping. Suppose that T : X → X is a generalized
α-ψ-contractive mapping and satisfies the following conditions:

(i) T is α-admissible;
(ii) there exists x ∈ X such that α(x,Tx) ≥ ;
(iii) T is continuous.

Then T has a fixed point, that is, there exists z ∈ X such that Tz = z.

Proof It is sufficient to take ϕ(t) =  for all t ≥  in Theorem .. �

If one replaces ϕ(t) =  for all t ≥  in Theorem ., the following fixed point theorem is
observed.

Corollary . (see Samet et al. []) Let (X,d) be a complete metric space and T : X → X
be an α-ψ-contractive mapping satisfying the following conditions:

http://www.journalofinequalitiesandapplications.com/content/2014/1/160
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(i) T is α-admissible;
(ii) there exists x ∈ X such that α(x,Tx) ≥ ;
(iii) T is continuous.

Then T has a fixed point, that is, there exists x∗ ∈ X such that Tx∗ = x∗.

If we take α(x, y) =  for all x, y ∈ X and ψ(t) = kt for k ∈ [, ) in Theorem ., we derive
the following result.

Corollary . (see Branciari []) Let (X,d) be a complete metric space, k ∈ [, ), and let
T : X → X be a mapping such that for each x, y ∈ X,

∫ d(Tx,Ty)


ϕ(t)dt ≤ k

∫ d(x,y)


ϕ(t)dt,

where ϕ ∈ �.ThenT has a unique fixed point a ∈ X such that for each x ∈ X, limn→+∞ Tn ×
x = a.

The following corollary is concluded from Corollary . by taking α(x, y) =  for all
x, y ∈ X.

Corollary . (see Karapınar and Samet []) Let (X,d) be a complete metric space and
T : X → X be a given mapping. Suppose that there exists a function ψ ∈ � such that

d(Tx,Ty) ≤ ψ
(
M(x, y)

)
for all x, y ∈ X. Then T has a unique fixed point.

By taking ψ(t) = λt for λ ∈ [, ) in Corollary ., we get the next result.

Corollary . (see Ćirić []) Let (X,d) be a complete metric space and T : X → X be a
given mapping. Suppose that there exists a constant λ ∈ (, ) such that

d(Tx,Ty) ≤ λmax

{
d(x, y),

d(x,Tx) + d(y,Ty)


,
d(x,Ty) + d(y,Tx)



}

for all x, y ∈ X. Then T has a unique fixed point.

Corollary . (see Hardy and Rogers []) Let (X,d) be a complete metric space and T :
X → X be a given mapping. Suppose that there exist constants A,B,C ≥  with (A + B +
C) ∈ (, ) such that

d(Tx,Ty) ≤ Ad(x, y) + B
[
d(x,Tx) + d(y,Ty)

]
+C

[
d(x,Ty) + d(y,Tx)

]
for all x, y ∈ X. Then T has a unique fixed point.

For the proof of the above corollary, it is sufficient to chose λ = max{A,B,C} in Corol-
lary ..
The next two results are obvious consequences of Corollary ..
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Corollary . (see Kannan []) Let (X,d) be a complete metric space and T : X → X be
a given mapping. Suppose that there exists a constant λ ∈ (, /) such that

d(Tx,Ty) ≤ λ
[
d(x,Tx) + d(y,Ty)

]
for all x, y ∈ X. Then T has a unique fixed point.

Corollary . (see Chatterjea []) Let (X,d) be a complete metric space and T : X → X
be a given mapping. Suppose that there exists a constant λ ∈ (, /) such that

d(Tx,Ty) ≤ λ
[
d(x,Ty) + d(y,Tx)

]
for all x, y ∈ X. Then T has a unique fixed point.

By taking y = Tx in Corollary ., we obtain the following corollary.

Corollary . (Rhoades and Abbas []) Let T be a self-map of a complete metric space
(X,d) satisfying

∫ d(Tx,Tx)


ϕ(t)dt ≤ k

∫ d(x,Tx)


ϕ(t)dt

for all x ∈ X and k ∈ [, ), where ϕ ∈ �. Then T has a unique fixed point a ∈ X.

Corollary . (Berinde []) Let (X,d) be a complete metric space and T : X → X be a
given mapping. Suppose that there exists a function ψ ∈ � such that

d(Tx,Ty) ≤ ψ
(
d(x, y)

)
for all x, y ∈ X. Then T has a unique fixed point.

Proof Let α(x, y) =  for all x, y ∈ X and ϕ(t) =  for all t ≥  in Theorem .. Then all the
conditions of Theorem . are satisfied and the proof is completed. �

It is evident that we have the celebrated result of Banach.

Corollary . (Banach []) Let (X,d) be a complete metric space and T : X → X be a
given mapping satisfying

d(Tx,Ty) ≤ kd(x, y) for all x, y ∈ X,

where k ∈ [, ). Then T has a unique fixed point.

3.2 Fixed point theorems on orderedmetric spaces
Recently, there have been so many interesting developments in the field of existence of
a fixed point in partially ordered sets. This idea was initiated by Ran and Reurings []
where they extended the Banach contraction principle in partially ordered sets with some
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application to a matrix equation. Later, many remarkable results have been obtained in
this direction (see, for example, [–] and the references cited therein). In this section,
wewill establish various fixed point results on ametric space endowedwith a partial order.
For this, we require the following concepts.

Definition . Let (X,
) be a partially ordered set and T : X → X be a given mapping.
We say that T is nondecreasing with respect to 
 if

x, y ∈ X, x 
 y ⇒ Tx 
 Ty.

Definition . Let (X,
) be a partially ordered set. A sequence {xn} ⊂ X is said to be
nondecreasing with respect to 
 if xn 
 xn+ for all n.

Definition . [] Let (X,
) be a partially ordered set and d be ametric onX.We say that
(X,
,d) is regular if for every nondecreasing sequence {xn} ⊂ X such that xn → x ∈ X as
n→ ∞, there exists a subsequence {xn(k)} of {xn} such that xn(k) 
 x for all k.

Now, we have the following result.

Corollary . Let (X,
) be a partially ordered set and d be a metric on X such that
(X,d) is complete. Let T : X → X be a nondecreasing mapping with respect to 
. Suppose
that there exist functions ψ ∈ � and ϕ ∈ � such that for all x, y ∈ X with x 
 y, we have

∫ d(Tx,Ty)


ϕ(t)dt ≤ ψ

(∫ M(x,y)


ϕ(t)dt

)
, ()

where M(x, y) = max{d(x, y), [ d(x,Tx)+d(y,Ty) ], [ d(x,Ty)+d(y,Tx) ]}. Suppose also that the following
conditions hold:

(i) there exists x ∈ X such that x 
 Tx;
(ii) T is continuous or (X,
,d) is regular.

Then T has a fixed point.Moreover, if for all x, y ∈ X there exists z ∈ X such that x
 z and
y
 z, we have uniqueness of the fixed point.

Proof Consider the mapping α : X ×X → [,∞) by

α(x, y) =

{
 if x
 y,
 otherwise.

Clearly, α is transitive. In view of the definition of α, we infer that T is an α-ψ-contractive
mapping of integral type, that is,

α(x, y)
∫ d(Tx,Ty)


ϕ(t)dt ≤ ψ

(∫ M(x,y)


ϕ(t)dt

)
()

for all x, y ∈ X. From condition (i), we have α(x,Tx) ≥ . Now, we proceed to show that T
is α-admissible. For this, let α(x, y) ≥  for all x, y ∈ X. Moreover, owing to the monotone
property of T , we have, for all x, y ∈ X,

α(x, y)≥  ⇒ x
 y ⇒ Tx 
 Ty ⇒ α(Tx,Ty)≥ .
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Karapınar et al. Journal of Inequalities and Applications 2014, 2014:160 Page 15 of 18
http://www.journalofinequalitiesandapplications.com/content/2014/1/160

Thus, T is α-admissible. Now, if T is continuous, we obtain the existence of a fixed point
from Theorem .. Now, assume that (X,
,d) is regular. Suppose that {xn} is a sequence
in X such that α(xn,xn+) ≥  for all n and xn → x ∈ X as n → ∞. Due to the fact that the
space (X,
,d) is regular, there exists a subsequence {xn(k)} of {xn} such that xn(k) 
 x for
all k. Owing to the definition of α, we get that α(xn(k),x) ≥  for all k. In this case, we get
the existence of a fixed point from Theorem .. Now, we have to show the uniqueness of
the fixed point. For this, let x, y ∈ X. By hypothesis, there exists z ∈ X such that x 
 z and
y
 z, which implies from the definition of α that α(x, z)≥  and α(y, z) ≥ . Therefore, we
obtain the uniqueness of the fixed point from Theorem .. �

We can now easily derive the following results from Corollary ..

Corollary . (Shahi et al. []) Let (X,
) be a partially ordered set and d be a metric
on X such that (X,d) is complete. Let T : X → X be a nondecreasing mapping with respect
to 
. Suppose that there exists a function ψ ∈ � such that for all x, y ∈ X with x 
 y, we
have

∫ d(Tx,Ty)


ϕ(t)dt ≤ ψ

(∫ d(x,y)


ϕ(t)dt

)
,

where ϕ ∈ �. Suppose also that the following conditions hold:
(i) there exists x ∈ X such that x 
 Tx;
(ii) T is continuous or (X,
,d) is regular.

Then T has a fixed point.Moreover, if for all x, y ∈ X there exists z ∈ X such that x
 z and
y
 z, we have uniqueness of the fixed point.

Corollary . (Karapınar and Samet []) Let (X,
) be a partially ordered set and d be a
metric on X such that (X,d) is complete. Let T : X → X be a nondecreasing mapping with
respect to 
. Suppose that there exists a function ψ ∈ � such that

d(Tx,Ty) ≤ ψ
(
M(x, y)

)
for all x, y ∈ X with x
 y. Suppose also that the following conditions hold:

(i) there exists x ∈ X such that x 
 Tx;
(ii) T is continuous or (X,
,d) is regular.

Then T has a fixed point.Moreover, if for all x, y ∈ X there exists z ∈ X such that x
 z and
y
 z, we have uniqueness of the fixed point.

Proof By taking ϕ(t) =  for all t ≥  in Corollary ., we get the proof of this corollary.
�

Corollary . (Karapınar and Samet []) Let (X,
) be a partially ordered set and d be a
metric on X such that (X,d) is complete. Let T : X → X be a nondecreasing mapping with
respect to 
. Suppose that there exists a function ψ ∈ � such that

d(Tx,Ty) ≤ ψ
(
d(x, y)

)
for all x, y ∈ X with x
 y. Suppose also that the following conditions hold:
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(i) there exists x ∈ X such that x 
 Tx;
(ii) T is continuous or (X,
,d) is regular.

Then T has a fixed point.Moreover, if for all x, y ∈ X there exists z ∈ X such that x
 z and
y
 z, we have uniqueness of the fixed point.

Proof By taking ϕ(t) =  for all t ≥  in Corollary ., we get the proof of this corollary.
�

Corollary . (Shahi et al. []) Let (X,
) be a partially ordered set and d be a metric
on X such that (X,d) is complete. Let T : X → X be a nondecreasing mapping with respect
to 
. Suppose that there exists a function ψ ∈ � such that for all x, y ∈ X with x 
 y, we
have

∫ d(Tx,Ty)


ϕ(t)dt ≤ k

∫ d(x,y)


ϕ(t)dt,

where ϕ ∈ �. Suppose also that the following conditions hold:
(i) there exists x ∈ X such that x 
 Tx;
(ii) T is continuous or (X,
,d) is regular.

Then T has a fixed point.Moreover, if for all x, y ∈ X there exists z ∈ X such that x
 z and
y
 z, we have uniqueness of the fixed point.

Proof By taking ψ(t) = kt for all t ≥  and some k ∈ [, ) in Corollary ., we get the
proof of this corollary. �

Corollary . (Ran and Reurings [], Nieto and Rodriguez-Lopez []) Let (X,
) be a
partially ordered set and d be a metric on X such that (X,d) is complete. Let T : X → X be
a nondecreasing mapping with respect to 
. Suppose that there exists a constant k ∈ (, )
such that

d(Tx,Ty) ≤ kd(x, y)

for all x, y ∈ X with x
 y. Suppose also that the following conditions hold:
(i) there exists x ∈ X such that x 
 Tx;
(ii) T is continuous or (X,
,d) is regular.

Then T has a fixed point.Moreover, if for all x, y ∈ X there exists z ∈ X such that x
 z and
y
 z, we have uniqueness of the fixed point.

Proof Taking ϕ(t) =  for all t ≥  in Corollary ., we get the proof of this corollary. �

Corollary . (see Karapınar and Samet []) Let (X,
) be a partially ordered set and d
be a metric on X such that (X,d) is complete. Let T : X → X be a nondecreasing mapping
with respect to 
. Suppose that there exists a constant λ ∈ (, ) such that

d(Tx,Ty) ≤ λmax

{
d(x, y),

d(x,Tx) + d(y,Ty)


,
d(x,Ty) + d(y,Tx)



}

for all x, y ∈ X with x
 y. Suppose also that the following conditions hold:
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(i) there exists x ∈ X such that x 
 Tx;
(ii) T is continuous or (X,
,d) is regular.

Then T has a fixed point.Moreover, if for all x, y ∈ X there exists z ∈ X such that x
 z and
y
 z, we have uniqueness of the fixed point.

Corollary . (see Karapınar and Samet []) Let (X,
) be a partially ordered set and d
be a metric on X such that (X,d) is complete. Let T : X → X be a nondecreasing mapping
with respect to 
. Suppose that there exist constants A,B,C ≥  with (A+ B+ C) ∈ (, )
such that

d(Tx,Ty) ≤ Ad(x, y) + B
[
d(x,Tx) + d(y,Ty)

]
+C

[
d(x,Ty) + d(y,Tx)

]
for all x, y ∈ X with x
 y. Suppose also that the following conditions hold:

(i) there exists x ∈ X such that x 
 Tx;
(ii) T is continuous or (X,
,d) is regular.

Then T has a fixed point.Moreover, if for all x, y ∈ X there exists z ∈ X such that x
 z and
y
 z, we have uniqueness of the fixed point.

Corollary . (see Karapınar and Samet []) Let (X,
) be a partially ordered set and d
be a metric on X such that (X,d) is complete. Let T : X → X be a nondecreasing mapping
with respect to 
. Suppose that there exists a constant λ ∈ (, /) such that

d(Tx,Ty) ≤ λ
[
d(x,Tx) + d(y,Ty)

]
for all x, y ∈ X with x
 y. Suppose also that the following conditions hold:

(i) there exists x ∈ X such that x 
 Tx;
(ii) T is continuous or (X,
,d) is regular.

Then T has a fixed point.Moreover, if for all x, y ∈ X there exists z ∈ X such that x
 z and
y
 z, we have uniqueness of the fixed point.

Corollary . (see Karapınar and Samet []) Let (X,
) be a partially ordered set and d
be a metric on X such that (X,d) is complete. Let T : X → X be a nondecreasing mapping
with respect to 
. Suppose that there exists a constant λ ∈ (, /) such that

d(Tx,Ty) ≤ λ
[
d(x,Ty) + d(y,Tx)

]
for all x, y ∈ X with x
 y. Suppose also that the following conditions hold:

(i) there exists x ∈ X such that x 
 Tx;
(ii) T is continuous or (X,
,d) is regular.

Then T has a fixed point.Moreover, if for all x, y ∈ X there exists z ∈ X such that x
 z and
y
 z, we have uniqueness of the fixed point.
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