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Abstract
In this paper, necessary and sufficient conditions of the complete convergence are
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1 Introduction
The concept of complete convergence for a sequence of random variables was introduced
by Hsu and Robbins [] as follows. A sequence {Un,n ≥ } of random variables converges
completely to the constant θ if

∞∑
n=

P
(|Un – θ | > ε

)
<∞ for all ε > .

Moreover, they proved that the sequence of arithmetic means of independent identically
distribution (i.i.d.) random variables converges completely to the expected value if the
variance of the summands is finite. This result has been generalized and extended in sev-
eral directions by many authors. One can refer to [–], and so forth. Kuczmaszewska
[] proved the following result.

TheoremA Let {Xn,n ≥ } be a sequence of negatively associated (NA) random variables
and X be a random variables possibly defined on a different space satisfying the condition


n

n∑
i=

P
(|Xi| > x

)
=DP

(|X| > x
)

for all x > , all n ≥  and some positive constant D. Let αp >  and α > /. Moreover,
additionally assume that EXn =  for all n ≥  if p ≥ . Then the following statements are
equivalent:

(i) E|X|p < ∞,
(ii)

∑∞
n= nαp–P(max≤j≤n |∑j

i=Xi| ≥ εnα) < ∞, ∀ε > .

The aim of this paper is to extend and improve Theorem A to negatively orthant de-
pendent (NOD) random variables. The tool in the proof of Theorem A is the Rosenthal
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maximal inequality for NA sequence (cf. []), but no one established the kind of maximal
inequality for NOD sequence. So the truncated method is different and the proofs of our
main results are more complicated and difficult.
The concept of negatively associated (NA) and negatively orthant dependent (NOD)

was introduced by Joag-Dev and Proschan [] in the following way.

Definition . A finite family of random variables {Xi,  ≤ i ≤ n} is said to be negatively
associated (NA) if for every pair of disjoint nonempty subset A, A of {, , . . . ,n},

∣∣Cov(f(Xi, i ∈ A), f(Xj, j ∈ A)
)∣∣ ≤ ,

where f and f are coordinatewise nondecreasing such that the covariance exists. An in-
finite sequence of {Xn,n≥ } is NA if every finite subfamily is NA.

Definition . A finite family of random variables {Xi, ≤ i≤ n} is said to be
(a) negatively upper orthant dependent (NUOD) if

P(Xi > xi, i = , , . . . ,n)≤
n∏
i=

P(Xi > xi)

for ∀x,x, . . . ,xn ∈ R,
(b) negatively lower orthant dependent (NLOD) if

P(Xi ≤ xi, i = , , . . . ,n)≤
n∏
i=

P(Xi ≤ xi)

for ∀x,x, . . . ,xn ∈ R,
(c) negatively orthant dependent (NOD) if they are both NUOD and NLOD.
A sequence of random variables {Xn,n≥ } is said to be NOD if for each n, X,X, . . . ,Xn

are NOD.

Obviously, every sequence of independent random variables is NOD. Joag-Dev and
Proschan [] pointed out that NA implies NOD, neither being NUOD nor being NLOD
implies being NA. They gave an example that possesses NOD, but does not possess NA,
which shows that NOD is strictly wider than NA. For more details of NOD random vari-
ables, one can refer to [, , , , –], and so forth.
In order to prove our main results, we need the following lemmas.

Lemma . (Bozorgnia et al. []) Let X,X, . . . ,Xn be NOD random variables.
(i) If f, f, . . . , fn are Borel functions all of which are monotone increasing (or all

monotone decreasing), then f(X), f(X), . . . , fn(Xn) are NOD random variables.
(ii) E

∏n
i=X+

i ≤ ∏n
i= EX+

i , ∀n≥ .

Lemma . (Asadian et al. []) For any q ≥ , there is a positive constant C(q) depending
only on q such that if {Xn,n ≥ } is a sequence of NOD random variables with EXn =  for
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every n ≥ , then for all n ≥ ,

E

∣∣∣∣∣
n∑
i=

Xi

∣∣∣∣∣
q

≤ C(q)

{ n∑
i=

E|Xi|q +
( n∑

i=

EX
i

)q/}
.

Lemma . For any q ≥ , there is a positive constant C(q) depending only on q such that
if {Xn,n≥ } is a sequence of NOD random variables with EXn =  for every n≥ , then for
all n≥ ,

E max
≤j≤n

∣∣∣∣∣
j∑

i=

Xi

∣∣∣∣∣
q

≤ C(q)
(
log(n)

)q{ n∑
i=

E|Xi|q +
( n∑

i=

EX
i

)q/}
.

Proof By Lemma ., the proof is similar to that of Theorem .. in Stout [], so it is
omitted here. �

Lemma . (Kuczmaszewska []) Let β , γ be positive constants. Suppose that {Xn,n ≥ }
is a sequence of random variables and X is a random variable. There exists constant D > 
such that

n∑
i=

P
(|Xi| > x

) ≤DnP
(|X| > x

)
, ∀x > ,∀n≥ ; (.)

(i) if E|X|β <∞, then 
n
∑n

j= E|Xj|β ≤ CE|X|β ;
(ii) 

n
∑n

j= E|Xj|β I(|Xj| ≤ γ ) ≤ C{E|X|β I(|X| ≤ γ ) + γ βP(|X| > γ )};
(iii) 

n
∑n

j= E|Xj|β I(|Xj| > γ ) ≤ CE|X|βI(|X| > γ ).

Recall that a function h(x) is said to be slowly varying at infinity if it is real valued, posi-
tive, and measurable on [,∞), and if for each λ > 

lim
x→∞

h(λx)
h(x)

= .

We refer to Seneta [] for other equivalent definitions and for a detailed and comprehen-
sive study of properties of slowly varying functions.
We frequently use the following properties of slowly varying functions (cf. Seneta []).

Lemma . If h(x) is a function slowly varying at infinity, then for any s > 

Cn–sh(n)≤
∞∑
i=n

i––sh(i) ≤ Cn–sh(n)

and

Cnsh(n)≤
n∑
i=

i–+sh(i) ≤ Cnsh(n),

where C,C,C,C >  depend only on s.

Throughout this paper, C will represent positive constants of which the value may
change from one place to another.
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2 Main results and proofs
Theorem. Let α > /, p > , αp >  and h(x) be a slowly varying function at infinity. Let
{Xn,n≥ } be a sequence of NOD random variables and X be a random variables possibly
defined on a different space satisfying the condition (.). Moreover, additionally assume
that for α ≤ , EXn =  for all n ≥ . If

E|X|ph(|X|/α)
< ∞, (.)

then the following statements hold:

(i)
∞∑
n=

nαp–h(n)P
(
max
≤j≤n

|Sj| ≥ εnα
)
< ∞, ∀ε > ; (.)

(ii)
∞∑
n=

nαp–h(n)P
(
max
≤k≤n

∣∣S(k)n
∣∣ ≥ εnα

)
< ∞, ∀ε > ; (.)

(iii)
∞∑
n=

nαp–h(n)P
(
max
≤j≤n

|Xj| ≥ εnα
)
<∞, ∀ε > ; (.)

(iv)
∞∑
n=

nαp–h(n)P
(
sup
j≥n

j–α|Sj| ≥ ε
)
< ∞, ∀ε > ; (.)

(v)
∞∑
n=

nαp–h(n)P
(
sup
j≥n

j–α|Xj| ≥ ε
)
< ∞, ∀ε > . (.)

Here Sn =
∑n

i=Xi, S(k)n = Sn –Xk , k = , , . . . ,n.

Proof First, we prove (.). Choose q such that /αp < q < . Let X(n,)
i = –nαqI(Xi < –nαq) +

XiI(|Xi| ≤ nαq) + nαqI(Xi > nαq), X(n,)
i = (Xi – nαq)I(Xi > nαq), X(n,)

i = –(Xi + nαq)I(Xi <
–nαq), ∀n≥ , ≤ i≤ n. Note that

Xi = X(n,)
i +X(n,)

i –X(n,)
i

and

∞∑
n=

nαp–h(n)P
(
max
≤j≤n

|Sj| > εnα
)

≤
∞∑
n=

nαp–h(n)P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

X(n,)
i

∣∣∣∣∣ > εnα/

)

+
∞∑
n=

nαp–h(n)P

( n∑
i=

X(n,)
i > εnα/

)
+

∞∑
n=

nαp–h(n)P

( n∑
i=

X(n,)
i > εnα/

)

def= I + I + I. (.)

In order to prove (.), it suffices to show that Il < ∞ for l = , , . Obviously, for  < η < p,
the condition (.) implies E|X|p–η < ∞. Therefore, we choose  < η < p, α(p – η) > α(p –

http://www.journalofinequalitiesandapplications.com/content/2014/1/145
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η)q >  and p – η –  >  if p > . In order to prove I < ∞, we first prove that

lim
n→∞n–α max

≤j≤n

∣∣∣∣∣
j∑

i=

EX(n,)
i

∣∣∣∣∣ = . (.)

This holds when α ≤ . Since αp > , p > . By EXi = , i ≥ , and Lemma ., we have

n–α max
≤j≤n

∣∣∣∣∣
j∑

i=

EX(n,)
i

∣∣∣∣∣ ≤ n–α max
≤j≤n

j∑
i=

{
E|Xi|I

(|Xi| > nαq) + nαqP
(|Xi| > nαq)}

≤ n–α

n∑
i=

E|Xi|I
(|Xi| > nαq) ≤ Cn–αE|X|I(|X| > nαq)

≤ Cn–{α(p–η)q–}–α(–q)E|X|p–η

→ , n→ ∞.

When α > , p > ,

n–α max
≤j≤n

∣∣∣∣∣
j∑

i=

EX(n,)
i

∣∣∣∣∣ ≤ n–α max
≤j≤n

j∑
i=

{
E|Xi|I

(|Xi| ≤ nαq) + nαqP
(|Xi| > nαq)}

≤ n–α

n∑
i=

E|Xi| ≤ Cn–αE|X|

→ , n→ ∞.

When α > , p≤ ,

n–α max
≤j≤n

∣∣∣∣∣
j∑

i=

EX(n,)
i

∣∣∣∣∣ ≤ n–α max
≤j≤n

j∑
i=

{
E|Xi|I

(|Xi| ≤ nαq) + nαqP
(|Xi| > nαq)}

≤ n–α

n∑
i=

{
E|Xi|I

(|Xi| ≤ nαq) + nαqP
(|Xi| > nαq)}

≤ n–α

n∑
i=

(
nα(–p+η)qE|Xi|p–η

)
≤ Cn–{α(p–η)q–}–α(–q)E|X|p–η

→ , n→ ∞.

Therefore, (.) holds. So, in order to prove I < ∞, it is enough to prove that

I∗ :=
∞∑
n=

nαp–h(n)P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

(
X(n,)
i – EX(n,)

i
)∣∣∣∣∣ > εnα/

)
< ∞. (.)

By Lemma . for ∀n ≥ , {X(n,)
i – EX(n,)

i ,  ≤ i ≤ n} is a sequence of NOD random vari-
ables. When  < p ≤ , by α(p – η) >  and  < q < , we have α – 

 – α( – p–η

 )q >
α – 

 – α( – p–η

 ) > . Taking v such that v > max{,p, (αp – )/(α – /), (αp – )/(α –

http://www.journalofinequalitiesandapplications.com/content/2014/1/145
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 – α( – p–η

 )q), p–(p–η)q
–q }, we get by the Markov inequality, the Cr inequality, the Hölder

inequality, and Lemma .,

I∗ ≤ C
∞∑
n=

nαp–αv–h(n)
(
log(n)

)v n∑
i=

E
∣∣X(n,)

i
∣∣v

+C
∞∑
n=

nαp–αv–h(n)
(
log(n)

)v( n∑
i=

E
∣∣X(n,)

i
∣∣)v/

def= I∗ + I∗.

By the Cr inequality, Lemma ., and Lemma ., we have

I∗ ≤ C
∞∑
n=

nαp–αv–h(n)
(
log(n)

)v n∑
i=

E
{|Xi|vI

(|Xi| ≤ nαq) + nαqvP
(|Xi| > nαq)}

≤ C
∞∑
n=

nαp–αv–h(n)
(
log(n)

)vE{|X|vI(|X| ≤ nαq) + nαqvP
(|X| > nαq)}

≤ C
∞∑
n=

nα{–(–q)v+p–q(p–η)}–h(n)
(
log(n)

)vE|X|p–η <∞.

By the Cr inequality and Lemma .,

I∗ ≤ C
∞∑
n=

nαp–αv–h(n)
(
log(n)

)v{ n∑
i=

(
E|Xi|I

(|Xi| ≤ nαq) + nαqP
(|Xi| > nαq))}v/

≤ C
∞∑
n=

nαp––(α–/)vh(n)
(
log(n)

)v{E|X|I(|X| ≤ nαq) + nαqP
(|X| > nαq)}v/.

When p > ,

I∗ ≤ C
∞∑
n=

nαp––(α–/)vh(n)
(
log(n)

)v(EX)v/ <∞.

When  < p≤ ,

I∗ ≤ C
∞∑
n=

nαp––(α–/)vh(n)
(
log(n)

)v(E|X|p–η
)v/nαq{–(p–η)}v/

≤ C
∞∑
n=

nαp––{α– 
 –α(– p–η

 )q}vh(n)
(
log(n)

)v <∞.

Therefore, (.) holds for I. Define Y (n,)
i = (Xi – nαq)I(nαq < Xi ≤ nα + nαq) + nαI(Xi >

nα + nαq), ≤ i≤ n, n≥ , since X(n,)
i = Y (n,)

i + (Xi – nαq – nα)I(Xi > nα + nαq), we have

I ≤
∞∑
n=

nαp–h(n)P

( n∑
i=

Y (n,)
i > εnα/

)

+
∞∑
n=

nαp–h(n)P

( n∑
i=

(
Xi – nαq – nα

)
I
(
Xi > nα + nαq) > εnα/

)

def= I + I. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/145
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By Lemma ., (.), and a standard computation, we have

I ≤
∞∑
n=

nαp–h(n)
n∑
i=

P
(
Xi > nα + nαq) ≤

∞∑
n=

nαp–h(n)
n∑
i=

P
(|Xi| > nα

)

≤ C
∞∑
n=

nαp–h(n)P
(|X| > nα

) ≤ C +CE|X|ph(|X|/α)
<∞. (.)

Now we prove I < ∞. By (.) and Lemma ., we have

 ≤ n–α

n∑
i=

EY (n,)
i

≤
⎧⎨
⎩n–α

∑n
i= EXiI(Xi > nαq), if p > ,

n–α
∑n

i={E|Xi|I(|Xi| ≤ nα) + nαP(|Xi| > nαq)}, if  < p≤ 

≤
⎧⎨
⎩Cn–{α(p–η)q–}–α(–q)E|X|p–η, if p > ,

Cn–α(p–η)qE|X|p–η, if  < p ≤ 
→ , n → ∞.

Therefore, in order to prove I <∞, it is enough to prove that

I∗ ≤
∞∑
n=

nαp–h(n)P

( n∑
i=

(
Y (n,)
i – EY (n,)

i
)
> εnα/

)
< ∞. (.)

Taking v such that v >max{, αp–
α–/ ,

(αp–)
α(p–η)– }, we get by Lemma ., the Markov inequality,

the Cr inequality, the Hölder inequality, and Lemma .,

I∗ ≤ C
∞∑
n=

nαp–αv–h(n)E

∣∣∣∣∣
n∑
i=

(
Y (n,)
i – EY (n,)

i
)∣∣∣∣∣

v

≤ C
∞∑
n=

nαp–αv–h(n)
n∑
i=

E
∣∣Y (n,)

i
∣∣v +C

∞∑
n=

nαp–αv–h(n)

( n∑
i=

E
(
Y (n,)
i

))v/

def= I∗ + I∗.

By the Cr inequality, Lemma ., Lemma ., (.), and a standard computation, we have

I∗ = C
∞∑
n=

nαp–αv–h(n)
n∑
i=

E
∣∣Y (n,)

i
∣∣v

≤ C
∞∑
n=

nαp–αv–h(n)
n∑
i=

{
EXv

i I
(
nαq < Xi ≤ nαq + nα

)
+ nαvP

(
Xi > nαq + nα

)}

≤ C
∞∑
n=

nαp–αv–h(n)
n∑
i=

{
E|Xi|vI

(|Xi| ≤ nα
)
+ nαvP

(|Xi| > nα
)}

≤ C
∞∑
n=

nαp–αv–h(n)
{
E|X|vI(|X| ≤ nα

)
+ nαvP

(|X| > nα
)}

≤ C +CE|X|ph(|X|/α)
<∞

http://www.journalofinequalitiesandapplications.com/content/2014/1/145
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and

I∗ ≤ C
∞∑
n=

nαp–αv–h(n)

{ n∑
i=

(
EX

i I
(
nαq < Xi ≤ nαq + nα

)
+ nαP

(
Xi > nαq + nα

))}v/

≤ C
∞∑
n=

nαp–αv+v/–h(n)
{
EXI

(|X| ≤ nα
)
+ nαP

(|X| > nα
)}v/

≤
⎧⎨
⎩C

∑∞
n= nαp–(α–/)v–h(n)(EX)v/, if p > ,

C
∑∞

n= nαp––{α(p–η)–}v/h(n)(E|X|p–η)v/, if p≤ 

≤
⎧⎨
⎩C

∑∞
n= nαp–(α–/)v–h(n), if p > ,

C
∑∞

n= nαp––{α(p–η)–}v/h(n), if p≤ 

< ∞.

Therefore, (.) holds. By (.)-(.) we get I < ∞. In a similar way of I < ∞ we can
obtain I < ∞. Thus, (.) holds.
(.) ⇒ (.). Note that |S(k)n | = |Sn – Xk| ≤ |Sn| + |Xk| = |Sn| + |Sk – Sk–| ≤ |Sn| + |Sk| +

|Sk–| ≤ max≤j≤n |Sj|, we have (max≤k≤n |S(k)n | ≥ εnα) ⊆ (max≤j≤n |Sj| ≥ εnα/), hence,
from (.), (.) holds.
(.) ⇒ (.). Since 

 |Sn| ≤ n–
n |Sn| = | n

∑n
k= S

(k)
n | ≤ max≤k≤n |S(k)n |, ∀n ≥ , and |Xk| =

|Sn–S(k)n | ≤ |Sn|+ |S(k)n |, we have (max≤k≤n |Xk| ≥ εnα) ⊆ (|Sn| ≥ εnα/)∪(max≤k≤n |S(k)n | ≥
εnα/) ⊆ (max≤k≤n |S(k)n | ≥ εnα/), ∀n≥ , hence, from (.), (.) holds.
(.) ⇒ (.). By Lemma . and (.), we have

∞∑
n=

nαp–h(n)P
(
sup
j≥n

j–α|Sj| ≥ ε
)

=
∞∑
i=

∑
i–≤n<i

nαp–h(n)P
(
sup
j≥n

j–α|Sj| ≥ ε
)

≤ C
∞∑
i=

i(αp–)h
(
i

)
P
(
sup
j≥i–

j–α|Sj| ≥ ε
)

≤ C
∞∑
i=

i(αp–)h
(
i

) ∞∑
k=i

P
(

max
k–≤j<k

|Sj| ≥ εα(k–)
)

≤ C
∞∑
k=

P
(

max
k–≤j<k

|Sj| ≥ εα(k–)
) k∑

i=

i(αp–)h
(
i

)

≤ C
∞∑
k=

k(αp–)h
(
k

)
P
(
max
≤j<k

|Sj| ≥ εα(k–)
)
< ∞.

(.) ⇒ (.). The proof of (.) ⇒ (.) is similar to that of (.) ⇒ (.), so it is omit-
ted. �

Theorem. Let α > /, p > , αp >  and h(x) be a slowly varying function at infinity. Let
{Xn,n≥ } be a sequence of NOD random variables and X be a random variables possibly

http://www.journalofinequalitiesandapplications.com/content/2014/1/145
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defined on a different space. Moreover, additionally assume that for α ≤ , EXn =  for all
n≥ . If there exist constant D >  and D >  such that

D

n

n–∑
i=n

P
(|Xi| > x

) ≤ P
(|X| > x

) ≤ D

n

n–∑
i=n

P
(|Xi| > x

)
, ∀x > ,n≥ ,

then (.)-(.) are equivalent.

Proof From the proof of Theorem ., in order to prove Theorem ., it is enough to
show that (.) ⇒ (.) and (.) ⇒ (.). The proof of (.) ⇒ (.) is similar to that
of (.) ⇒ (.). Now, we prove (.) ⇒ (.). Firstly we prove that

lim
n→∞P

(
sup
j≥n

j–α|Xj| ≥ ε
)
= , ∀ε > . (.)

Otherwise, there are ε > , δ > , and a sequence of positive integers {nk ,k ≥ }, nk ↑ ∞
such that P(supj≥nk j

–α|Xj| ≥ ε) ≥ δ, ∀k ≥ . Without loss of generality, we can assume
that nk+ ≥ nk , ∀k ≥ . Therefore, we have

P
(
sup
j≥nk

j–α|Xj| ≥ ε

)
≥ δ, ∀k ≥ .

By αp >  we have

∞∑
n=

nαp–h(n)P
(
sup
j≥n

j–α|Xj| ≥ ε

)

≥
∞∑
k=

nk∑
n=nk+

nαp–h(n)P
(
sup
j≥n

j–α|Xj| ≥ ε

)

≥ C
∞∑
k=

nαp–
k h(nk)P

(
sup
j≥nk

j–α|Xj| ≥ ε

)
=∞,

which is in contradiction with (.), thus, (.) holds. By Lemma ., we get

P
(
sup
j≥n

j–α|Xj| ≥ ε
)

≥ P
(
max
n≤j<n

j–α|Xj| ≥ ε
)

≥ P
(
max
n≤j<n

|Xj| ≥ (n)αε
)

≥  – P
(
max
n≤j<n

Xj < (n)αε
)
=  – E

(n–∏
j=n

I
(
Xj < (n)αε

))

≥  –
n–∏
j=n

P
(
Xj < (n)αε

)
=  –

n–∏
j=n

(
 – P

(
Xj ≥ (n)αε

))

≥  – exp

(
–

n–∑
j=n

P
(
Xj ≥ (n)αε

))
.
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By (.), we have limn→∞
∑n–

j=n P(Xj ≥ (n)αε) = , ∀ε > . Therefore, when n is large
enough, we have

P
(
max
n≤j<n

j–α|Xj| ≥ ε
)

≥  –

{
 –

n–∑
j=n

P
(
Xj ≥ (n)αε

)
+



(n–∑
j=n

P
(
Xj ≥ (n)αε

))}

≥ C
n–∑
j=n

P
(
Xj ≥ (n)αε

)
, ∀ε > .

In a similar way, when n is large enough,

P
(
max
n≤j<n

j–α|Xj| ≥ ε
)

≥ C
n–∑
j=n

P
(
–Xj ≥ (n)αε

)
, ∀ε > .

Thus, when n is large enough, we have

P
(
max
n≤j<n

j–α|Xj| ≥ ε
)

≥ C
n–∑
j=n

P
(|Xj| ≥ (n)αε

) ≥ CnP
(|X| ≥ (n)αε

)
, ∀ε > . (.)

Taking ε = –α , by (.), (.), Lemma ., and a standard computation, we have

∞ >
∞∑
n=

nαp–h(n)P
(
sup
j≥n

j–α|Xj| ≥ –α
)

≥
∞∑
n=

nαp–h(n)P
(
max
n≤j<n

j–α|Xj| ≥ –α
)

≥ C
∞∑
n=

nαp–h(n)P
(|X| ≥ nα

)
≥ CE|X|ph(|X|α)

.

Thus, (.) holds. �

In the following, let {τn,n ≥ } be a sequence of non-negative, integer valued random
variables and τ a positive random variable. All random variables are defined on the same
probability space.

Theorem . Let α > /, p > , αp >  and h(x) >  be a slowly varying function as
x → +∞. Let {Xn,n ≥ } be a sequence of NOD random variables and X be a random
variables possibly defined on a different space satisfying the condition (.) and (.).More-
over, additionally assume that for α ≤ , EXn =  for all n ≥ . If there exists λ >  such that∑∞

n= nαp–h(n)P( τn
n < λ) < ∞, then

∞∑
n=

nαp–h(n)P
(|Sτn | ≥ ετα

n
)
<∞, ∀ε > . (.)

Proof Note that

(|Sτn | ≥ ετα
n
) ⊆ (τn/n < λ)∪ (|Sτn | ≥ ετα

n , τn ≥ λn
) ⊆ (τn/n < λ)∪

(
sup
j≥λn

j–α|Sj| ≥ ε
)
.

Thus, by (.) of Theorem ., we have (.). �
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Theorem . Let α > /, p > , αp >  and h(x) be a slowly varying function at infin-
ity. Let {Xn,n ≥ } be a sequence of NOD random variables and X be a random vari-
ables possibly defined on a different space satisfying the condition (.) and (.).Moreover,
additionally assume that for α ≤ , EXn =  for all n ≥ . If there exists θ >  such that∑∞

n= nαp–h(n)P(| τn
n – τ | > θ ) <∞ with P(τ ≤ B) =  for some B > , then

∞∑
n=

nαp–h(n)P
(|Sτn | ≥ εnα

)
< ∞, ∀ε > . (.)

Proof Note that

(|Sτn | ≥ εnα
) ⊆

(∣∣∣∣τnn – τ

∣∣∣∣ > θ

)
∪

(
|Sτn | ≥ εnα ,

∣∣∣∣τnn – τ

∣∣∣∣ ≤ θ

)

⊆
(∣∣∣∣τnn – τ

∣∣∣∣ > θ

)
∪ (|Sτn | ≥ εnα , τn ≤ (τ + θ )n

)

⊆
(∣∣∣∣τnn – τ

∣∣∣∣ > θ

)
∪ (|Sτn | ≥ εnα , τn ≤ (B + θ )n

)

⊆
(∣∣∣∣τnn – τ

∣∣∣∣ > θ

)
∪

(
max

≤j≤(B+θ )n
|Sj| ≥ εnα

)
.

Thus, by (.) of Theorem ., we have (.). �
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