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Abstract
In this article, we introduce a new class of functions called r-invexity and geodesic
r-preinvexity functions on a Riemannian manifolds. Further, we establish the
relationships between r-invexity and geodesic r-preinvexity on Riemannian
manifolds. It is observed that a local minimum point for a scalar optimization problem
is also a global minimum point under geodesic r-preinvexity on Riemannian
manifolds. In the end, a mean value inequality is extended to a Cartan-Hadamard
manifold. The results presented in this paper extend and generalize the results that
have appeared in the literature.
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1 Introduction
Convexity is one of the most frequently used hypotheses in optimization theory. It is well
known that a local minimum is also a global minimum for a convex function. A significant
generalization of convex functions is that of an invex function introduced by Hanson [].
Hanson’s initial results inspired a great deal of subsequent work, which has greatly ex-
panded the role and applications of invexity in non-linear optimization and other branches
of pure and applied sciences.
Ben-Israel and Mond [] introduced a new generalization of convex sets and con-

vex functions, Craven [] called them invex sets and preinvex functions, respectively.
Jeyakumar [] studied the properties of preinvex functions and their role in optimiza-
tion and mathematical programming. Jeyakumar and Mond [] introduced a new class
of functions, namely V -invex functions, and established sufficient optimality criteria and
duality results in the multiobjective programming problems. Antczak [] introduced the
concept of r-invexity and r-preinvexity in mathematical programming. Making a step for-
wardAntczak [] introduced the concept ofV –r-invexity for differentiablemultiobjective
programming problems, which is a generalization of V -invex functions [] and r-invex
functions [].
On the other hand, in the last few years, several important concepts of non-linear anal-

ysis and optimization problems have been extended from Euclidean space to a Rieman-
nian manifolds. In general, a manifold is not a linear space, but naturally concepts and
techniques from linear spaces to Riemannian manifold can be extended. Rapcsak [] and
Udriste [] considered a generalization of convexity, called geodesic convexity, and ex-
tendedmany results of convex analysis and optimization theory to Riemannianmanifolds.
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The notion of invex functions on Riemannian manifolds was introduced by Pini [] and
Mititelu [], and they investigated its generalization. Barani and Pouryayevali [] intro-
duced the geodesic invex set, geodesic η-invex function, and geodesic η-preinvex func-
tions on a Riemannian manifold and found some interesting results. Further, Agarwal et
al. [] generalized the notion of geodesic η-preinvex functions to geodesic α-preinvex
functions. Recently, Zhou and Huang [] introduced the concept of roughly B-invex set
and functions on Riemannian manifolds.
Motivated by work of Barani and Pouryayevali [] and Antczak [, ], we introduce

the concept of geodesic r-preinvex functions and r-invex functions on Riemannian mani-
folds, which is a generalization of preinvexity as defined in [, ]. Some relations between
r-invex and geodesic r-preinvex functions are investigated. The existence conditions for
global minima of these functions under proximal subdifferential of lower semicontinuity
are also explored. In the end, a mean value inequality is also derived.

2 Preliminaries
In this sectionwe recall some basic definitions and some basic results of Riemannianman-
ifolds, for further study these materials are available in (cf. []).
Let M be a C∞-manifold modeled on a Hilbert space H , either finite or infinite dimen-

sional, endowed with a Riemannianmetric gp on a tangent space TpM. The corresponding
norm is denoted by ‖ ‖p and the length of a piecewise C curve γ : [a,b] → M is defined
by

L(γ ) =
∫ b

a

∥∥γ ′(t)
∥∥

γ (t) dt.

For any point p,q ∈M, we define

d(p,q) = inf
{
L(γ )|γ is a piecewise C curve joining p and q

}
,

then d is a distance which induces the original topology onM.We know that on every Rie-
mannian manifold there exists exactly one covariant derivative called a Levi-Civita con-
nection, denoted by ∇XY , for any vector fields X,Y ∈ TM; we also recall that a geodesic
is a C∞-smooth path γ whose tangent is parallel along the path γ , that is, γ satisfies the
equation∇dγ (t)/dt dγ (t)/dt = . Any path γ joining p and q inM such that L(γ ) = d(p,q) is a
geodesic and is called a minimal geodesic. The existence theorem for ordinary differential
equation implies that for every v ∈ TM, there exist an open interval J(v) containing  and
exactly one geodesic γv : J(v) → M with dγv()/dt = v. This implies that there is an open
neighborhood T̄M of the submanifoldM ofTM such that for every exp : T̄M →M is there
is defined exp(v) = Jv() and the restriction of exp to a fiber TpM in T̄M is denoted by expp
for every p ∈ M. We use parallel transport of vectors along the geodesic. Recall that for a
given curve γ : I →M, a number t ∈ I , and a vector v ∈ Tγ (t)M, there exists exactly one
parallel vector field V (t) along γ (t) such that V (t) = v. Moreover, the mapping defined
by v �→ V (t) is a linear isometry between the tangent spaces Tγ (t)M and Tγ (t)M, for each
t ∈ I . We denote this mapping by Pt

t,γ and we call it the parallel translation from Tγ (t)M
to Tγ (t)M along the curve γ .
If f is a differentiable map from the manifold M to manifold N , then dfx, denotes the

differential of f at x.We also recall that a simply connected complete Riemannianmanifold
of non-positive sectional curvature is called a Cartan-Hadamard manifold.
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3 Geodesic r-invex functions
In this section, we define geodesic r-invex functions and r-preinvex functions. Barani and
Pouryayevali [] define the invex sets as follows.

Definition . LetM be a Riemannianmanifold and η :M×M → TM such that for every
x, y ∈ M, η(x, y) ∈ TyM. A non-empty subset S ofM is said to be a geodesic invex set with
respect to η if for every x, y ∈ S, there exists a unique geodesic γx,y : [, ] →M such that

γx,y() = y, γ ′
x,y() = η(x, y), γx,y(t) ∈ S

for all t ∈ [, ].

Remark . [] If we consider M to be a Cartan-Hadamard manifold (either infinite or
finite dimensional), then on M there exists a natural map η playing the role of x – y in
the Rn. Indeed we define the function η as

η(x, y) = γ ′
x,y()

for all x, y ∈ M. Here γx,y is the unique minimal geodesic joining y to x (see [, p.]) as
follows:

γx,y(t) = expy
(
t exp–y x

)
for all t ∈ [, ]. Therefore, every geodesic convex set S ⊆M is a geodesic convex set with
respect to η defined in above equation. The converse is not true in general.

Example . [] Let M be a Cartan-Hadamard manifold and x, y ∈ M, x 
= y. Let
B(x, r)∪ B(y, r) = φ for some  < r, r < 

d(x, y), where B(x, r) = {y ∈ M|d(x, y) < r} is
an open ball with center x and radius r. We define

S = B(x, r)∪ B(y, r),

then S is not a geodesic convex set because every geodesic curve passing through x and
y does not completely lie in S. Now we define the function η :M ×M → TM such that

η(x, y) =

{
exp–y x if x, y ∈ B(x, r) or x, y ∈ B(x, r),
y otherwise.

For every x, y ∈M, consider γ : [, ]→M defined by

γx,y(t) = exp
(
tη(x, y)

)
for all t ∈ [, ].
Hence γx,y() = y, γ ′

x,y() = η(x, y). Barani and Pouryayevali [] showed that S is a
geodesic invex set with respect to η.

Let S be a geodesic convex subset of a finite dimensional Cartan-HadamardmanifoldM
and x ∈M, then there exists a unique point ps(x) ∈ S such that for each y ∈ S, d(x,ps(x))≤
d(x, y). The point ps(x) is called the projection of x onto S (see [, p.]).
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Definition . [] Let M be an n-dimensional Riemannian manifold and S be an open
subset of M which is geodesic invex set with respect to η :M ×M → TM. Let f be a real
valued function such that f : S → R. Then f is said to be an η-invex function with respect
to η if

f (x) – f (y) ≥ dfy
(
η(x, y)

)

for all x, y ∈ S.

Definition . [] LetM be a Riemannianmanifold and S ⊆M be a geodesic η-invex set
with respect to η :M×M → TM. The function f : S → R is said to be geodesic η-preinvex
if for any x, y ∈ S

f
(
γx,y(t)

) ≤ tf (x) + ( – t)f (y)

for all t ∈ [, ], where γx,y is the unique geodesic defined in Definition .. If the above
inequality is strict, then f is called a strictly geodesic preinvex function.

Now we define an r-invex function and a geodesic r-preinvex function onM.

Definition . LetM be a Riemannian manifold and S ⊆M be a geodesic invex set with
respect to η :M ×M → TM. Let f be a real differentiable function S. Then f is said to be
r-invex with respect to η if


r
erf (x) –


r
erf (y) ≥ erf (y)dfy

(
η(x, y)

)
if r 
= ,

f (x) – f (y) ≥ dfy
(
η(x, y)

)
if r = .

Definition . Let M be a Riemannian manifold and S ⊆ M be a geodesic invex set with
respect to η :M × M → TM. The function f : S → R is said to be geodesic r-preinvex if
for any x, y ∈ S, we have

f
(
γx,y(t)

) ≤
{
log(terf (x) + ( – t)erf (y)) r if r 
= ,
tf (x) + ( – t)f (y) if r = .

If the above inequality is strict, then f is called a strictly geodesic r-preinvex function.
We give the following non-trivial example for a geodesic r-preinvex function that is yet

not geodesic η-preinvex.

Example . LetM = {eiθ :  < θ < } and f :M → R defined by f (eiθ ) = cos θ with x, y ∈M,
x = eiα and y = eiβ . If γx,y(t) = ei((–t)β+tα) then f is a geodesic r-preinvex function but not a
geodesic η-preinvex function at α = π

 , β = π
 , since cos[

π
 + π

 t] >
t√
 at t = .

Proposition . If f : S → R is a geodesic r-preinvex function with respect to η : S × S →
TM and y ∈ S, then for any real number λ ∈ R, the level set Sλ = {x|x ∈ S, f (x) ≤ λ} is a
geodesic invex set.

http://www.journalofinequalitiesandapplications.com/content/2014/1/144
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Proof For any x, y ∈ Sλ and  ≤ t ≤ , we have f (x) ≤ λ, f (y) ≤ λ. Since f is geodesic
r-preinvex function, then we have

f
(
γx,y(t)

) ≤ log
(
terf (x) + ( – t)erf (y)

) 
r

or

erf (γx,y(t)) ≤ terf (x) + ( – t)erf (y)

≤ terλ + ( – t)erλ.

Equivalently,

erf (γx,y(t)) ≤ erλ

or

f
(
γx,y(t)

) ≤ λ.

Therefore, γx,y(t) ∈ Sλ for all t ∈ [, ], and the result is proved. �

4 Geodesic r-preinvexity and differentiability
In this section, we discuss property and condition (say condition (C)) introduced by Barani
and Pouryayevali [] on the function η :M ×M → TM, which will be used in the subse-
quent analysis.
Pini [] define the following property.

Definition . LetM be a Riemannian manifold and γ : [, ]→M be a curve onM such
that γx,y() = y and γx,y() = x. Then γx,y is said to possess the property (P) with respect to
y,x ∈M if

γ ′
x,y(s)(t – s) = η

(
γx,y(t),γx,y(s)

)
for all s, t ∈ [, ].

Pini [] also proved the following conditions as follows:

(C) P
s,γx,y

[
η(y,γx,y(s))

]
= –sη(x, y),

(C) P
s,γx,y

[
η(x,γx,y(s))

]
= ( – s)η(x, y)

for all s ∈ [, ], which taken together are called condition (C).

Theorem . Let M be a Riemannian manifold and S be an open subset of M which is a
geodesic invex set with respect to η :M × M → TM. Let f : S → R be a differentiable and
geodesic r-preinvex function on S. Then f is an r-invex function on S.

Proof Since S is a geodesic invex set with respect to η, then for all x, y ∈ S, there exists a
unique geodesic γx,y() = y, γ ′

x,y() = η(x, y), γx,y(t) ∈ S for all t ∈ [, ]. By the differentia-
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bility of f at y ∈M, we have

dfy
(
η(x, y)

)
= lim

t→


t
[
f
(
γx,y(t)

)
– f (y)

]
,

and so

f (y) + dfy
(
η(x, y)

)
t +O(t) = f

(
γx,y(t)

)
.

But f is geodesic r-preinvex for t ∈ (, ], and we have

f (y) + dfy
(
η(x, y)

)
t +O(t) ≤ log

(
terf (x) + ( – t)erf (y)

) 
r

or

erf (y)+rdfy(η(x,y))t+ro
(t) – erf (y) ≤ t

(
erf (x) – erf (y)

)
.

Dividing by t and taking the limit t → , we get

erf (y)dfy
(
η(x, y)

) ≤ 
r
(
erf (x) – erf (y)

)
.

Hence, f is an r-invex function on S. �

Theorem . Let M be a Riemannian manifold and S be an open subset of M, which is
a geodesic invex set with respect to η : M × M → TM. Let f : S → R be a differentiable
function, η satisfies the condition (C), then f is geodesic r-preinvex on S if f is r-invex on S.

Proof Weknow that for a geodesic invex set with respect to η for every x, y ∈ S, there exists
a unique geodesic γx,y : [, ] → M such that γx,y() = y, γ ′

x,y() = η(x, y), γx,y(t) ∈ S, for all
t ∈ [, ].
Fix t ∈ [, ] and set x̄ = γx,y(t), then by geodesic r-invexity of f on S, we have


r
erf (x) –


r
erf (x̄) ≥ erf (x̄)dfx̄

(
η(x, x̄)

)
, ()


r
erf (y) –


r
erf (x̄) ≥ erf (x̄)dfx̄

(
η(y, x̄)

)
. ()

On multiplying () by t and () by ( – t), respectively, and then adding we get

t

r
erf (x) + ( – t)


r
erf (y) –


r
erf (x̄) ≥ erf (x̄)dfx̄

[
tη(x, x̄) + ( – t)η(y, x̄)

]
. ()

By the condition (C), we have

tη(x, x̄) + ( – t)η(y, x̄) = t( – t)Pt
,γ

[
η(x, y)

]
– ( – t)tPt

,γ
[
η(x, y)

]
= . ()

This together with () implies

terf (x) + ( – t)erf (y) ≥ erf (x̄)

http://www.journalofinequalitiesandapplications.com/content/2014/1/144
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or

f (x̄) ≥ log
(
terf (x) + ( – t)erf (y)

) 
r ,

Hence, f is geodesic r-preinvex on S. �

5 Geodesic r-preinvexity and semi-continuity
In this section, we discuss geodesic r-preinvexity on Riemannianmanifold under proximal
subdifferential of a lower semi-continuous function. First, we recall the definition of a
proximal subdifferentiable of a function defined on a Riemannian manifold in [].

Definition . Let M be a Riemannian manifold and f :M → (–∞,∞] be a lower semi-
continuous function. A point ξ ∈ TyM is said to be proximal subgradient of f at y ∈ dom(f ),
if there exist a positive number δ and σ such that

f (x)≥ f (y) +
〈
ξ , exp–y x

〉
y – σd(x, y)

for all x ∈ B(y, δ), where dom f = {x ∈ M : f (x) < ∞}. The set of all proximal subgradient of
y ∈ M is denoted by ∂pf (y).

Theorem . Let M be a Riemannian manifold and S be an open subset of M, which is
geodesic invex with respect to η : M × M → TM. Let f : S → R be geodesic r-preinvex, if
x̄ ∈ S is a local minimum of the problem

(P) Minimize f (x)

subject to x ∈ S,

then x̄ is a global minimum of (P).

Proof Let x̄ ∈ S be a local minimum; then there exists a neighborhood Nε(x̄) such that

f (x̄) ≤ f (x) ()

for all x ∈ S ∩Nε(x̄).
If x̄ is not a global minimum of f , then there exists a point x∗ ∈ S such that

f
(
x∗) < f (x̄)

or

erf (x
∗) < erf (x̄).

As S is a geodesic invex set with respect to η, there exists a unique geodesic γ such that
γ () = x̄, γ ′() = η(x∗, x̄), γ (t) ∈ S, for all t ∈ [, ].
If we choose ε >  such that d(r(t), x̄) < ε, then γ (t) ∈ Nε(x̄). From the geodesic r-pre-

invexity of f , we have

f
(
γ (t)

) ≤ log
(
ter(x

∗) + ( – t)er(x̄)
) 
r .
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Equivalently, we have

erf (γ (t)) ≤ ter(x
∗) + ( – t)er(x̄) < ter(x̄) + ( – t)er(x̄)

or

erf (γ (t)) < erf (x̄),

or

f
(
γ (t)

)
< f (x̄)

for all t ∈ (, ]. Therefore, for each γ (t) ∈ S∩Nε(x̄), f (γ (t)) < f (x̄), which is a contradiction
to (). Hence the result. �

Theorem . Let M be a Cartan-Hadamard manifold and S be an open subset of M,
which is geodesic r-preinvex with respect to η :M ×M → TM with η(x, y) 
=  for all x 
= y.
Assume that f : S → (–∞,∞] is a lower semi-continuous geodesic r-preinvex function and
y ∈ dom(f ), ξ ∈ ∂pf (y). Then there exists a positive number δ such that

erf (x) – erf (y) ≥ erf (y)
〈
ξ ,η(x, y)

〉
y

for all x ∈ S ∩ B(y, δ).

Proof From the definition of ∂pf (y), there are positive numbers δ and σ such that

f (x)≥ f (y) +
〈
ξ , exp–y x

〉
y – σd(x, y) ()

for all x ∈ B(y, δ).
Now, fix x ∈ S ∩ B(y, δ). Since S is a geodesic invex set with respect to η, there exists a

unique geodesic γx,y : [, ] → M such that γx,y() = y, γ ′
x,y() = η(x, y), γx,y(t) ∈ S, for all

t ∈ [, ].
Since M is a Cartan-Hadamard manifold, then γx,y(t) = expy(tη(x, y)) for each t ∈ [, ]

(see [, p.]). If we choose t = δ
‖η(x,y)‖y , then expy(tη(x, y)) ∈ S ∩ B(y, δ) for all t ∈ [, t).

From the geodesic r-preinvexity of f , we get

f
(
expy

(
tη(x, y)

)) ≤ log
(
terf (x) + ( – t)erf (y)

) 
r

or

erf (expy(tη(x,y))) ≤ terf (x) + ( – t)erf (y). ()

Using () for each t ∈ (, t), we get

f
(
expy

(
tη(x, y)

)) ≥ f (y) +
〈
ξ , exp–y expy

(
tη(x, y)

)〉
y – σd(expy(tη(x, y), y))

= f (y) +
〈
ξ , tη(x, y)

〉
y – σd(expy(tη(x, y), y)).

http://www.journalofinequalitiesandapplications.com/content/2014/1/144
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SinceM is a Cartan-Hadamard manifold, for each t ∈ (, t), we have

d(expy(tη(x, y), y)) = ∥∥tη(x, y)∥∥
y = t

∥∥η(x, y)
∥∥
y .

Thus we have

f
(
expy

(
tη(x, y)

)) ≥ f (y) +
〈
ξ , tη(x, y)

〉
y – σ t

∥∥η(x, y)
∥∥
y

or

erf (expy(tη(x,y))) ≥ erf (y)e〈ξ ,tη(x,y)〉y–σ t‖η(x,y)‖y . ()

Thus from () and (), we have

terf (x) + ( – t)erf (y) ≥ erf (y)e〈ξ ,tη(x,y)〉y–σ t‖η(x,y)‖y .

By further calculation we arrive at

erf (x) – erf (y) ≥ erf (y)

t
[
e〈ξ ,tη(x,y)〉y–σ t‖η(x,y)‖y – 

]
,

taking the limit t → 

erf (x) – erf (y) ≥ erf (y)
〈
ξ ,η(x, y)

〉
y.

This proves the theorem completely. �

6 Mean value inequality
In this section, we introduce a mean value inequality for Cartan-Hadamard manifold
which is an extension of the result proved byAntczak [] andBarani andPouryayevali [].

Definition . [] Let S be a non-empty subset of a Riemannian manifold M, which is
a geodesic η-invex set with respect to η :M ×M → TM, and let x and u be two arbitrary
points of S. Let γ : [, ] → M be the unique geodesic such that γ () = u, γ ′() = η(x,u),
γ (t) ∈ S, for all t ∈ [, ].
A set Puv is said to be a closed η-path joining the points u and v = γ (), if

Puv =
{
y : y = γ (t), t ∈ [, ]

}
.

An open η-path joining the point u and v is a set of the form

P
uv =

{
y : y = γ (t), t ∈ (, )

}
.

If u = v we set P
uv = φ.

Theorem . (Mean value inequality) Let M be a Cartan-Hadamard manifold and S be
an open subset ofM,which is a geodesic invex set with respect to η :M×M → TM such that

http://www.journalofinequalitiesandapplications.com/content/2014/1/144


Khan et al. Journal of Inequalities and Applications 2014, 2014:144 Page 10 of 11
http://www.journalofinequalitiesandapplications.com/content/2014/1/144

η(a,b) 
=  for all a,b ∈ S, a 
= b. Let γb,a(t) = expa(tη(b,a)) for every a,b ∈ S, t ∈ [, ] and
c = γb,a(). Then a necessary and sufficient condition for a function f : S → R to be geodesic
r-preinvex is that the inequality

erf (x) ≤ erf (a) +
erf (b) – erf (a)

〈η(b,a),η(b,a)〉a
〈
exp–a x,η(b,a)

〉
a ()

is true for all x ∈ Pca.

Proof Let f : S → R be a geodesic preinvex function, a,b ∈ S and x ∈ Pca. If x = a or x = c
then () is true trivially. If x ∈ Pca, then x = exp(tη(b,a)), for some t ∈ (, ). From the
geodesic η-invexity of S, we have x ∈ S and

t =
〈exp–a x,η(b,a)〉a
〈η(b,a),η(b,a)〉a .

Since f is geodesic preinvex on S, it follows that

f (x) = f
(
expa

(
tη(b,a)

)) ≤ log
(
terf (b) + ( – t)erf (a)

) 
r

or

erf (x) ≤ terf (b) + ( – t)erf (a)

= erf (a) + t
(
erf (b) – erf (a)

)
.

Using the value of t we get

erf (x) ≤ erf (a) +
erf (b) – erf (a)

〈η(b,a),η(b,a)〉a
〈
exp–a x,η(b,a)

〉
a.

For sufficiency suppose that the mean value inequality () is true. Let a,b ∈ S and x =
expa(tη(b,a)), for some t ∈ [, ]. Then x ∈ S, and we have f (x) = f (expa(tη(b,a))), from ()

erf (x) ≤ erf (a) +
erf (b) – erf (a)

〈η(b,a),η(b,a)〉a
〈
exp–a x,η(b,a)

〉
a

= erf (a) +
erf (b) – erf (a)

〈η(b,a),η(b,a)〉a
〈
exp–a

(
expa

(
tη(b,a)

))
,η(b,a)

〉
a

= terf (b) + ( – t)erf (a)

or

f (x)≤ log
(
terf (b) + ( – t)erf (a)

) 
r .

Equivalently,

f
(
expa

(
tη(b,a)

)) ≤ log
(
terf (b) + ( – t)erf (a)

) 
r ,

which shows that f is geodesic r-preinvex function on S. �
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