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Abstract
In this paper, we introduce two types of proper quasimonotone maps over cones for
a vector-valued bifunction and discuss their relations with generalized monotone
maps, namely cone pseudomonotone and cone quasimonotone maps. Strong vector
variational like inequality problems of the Stampacchia and the Minty type have been
defined. These problems are a generalization of the classical Stampacchia and Minty
problems and encompass many problems studied in the literature. A generalization
of celebrated Minty lemma, relating the solutions of the two problems, has been
proved. Existence results for strong Stampacchia and Minty type vector variational like
inequality problems have been established using the notions of proper
quasimonotone maps over cones. Gap functions have also been proposed for both
problems.
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1 Introduction
The study of vector variational inequality problem in finite dimensional spaces was ini-
tiated by Giannessi []. Vector variational inequalities have proved to be efficient tools
for investigating vector optimization problems and they also provide with a mathematical
model for the problems of equilibrium in a mechanical structure when there are several
aspects (weight, cost, resistance etc.) which are in conflict. Because of these applications,
the study of vector variational inequalities has attracted wide attention.
A useful and important generalization of the vector variational inequality problem is

the vector variational like inequality problem, which has been studied and investigated by
many authors like Ansari [], Garzon et al. [], Al-Homidan, Ansari and Yao [], Lee and
Lee [], Li and He [].
The classical Stampacchia variational inequality problem is to find a vector x ∈ K such

that

〈Tx, y – x〉 ≥ , ∀y ∈ K , (SVI)

where K ⊆ Rn is a nonempty closed convex set, T : Rn → Rn and the Minty variational
inequality problem is to find a vector x ∈ K such that

〈Ty,x – y〉 ≤ , ∀y ∈ K . (MVI)
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It is well known that in contrast to the Stampacchia problem, compactness and convex-
ity of K and continuity assumptions on T do not guarantee the existence of a solution
to (MVI) and that some generalized monotonicity assumptions on T are needed. Proper
quasimonotonicity, as introduced byDaniilidis andHadjisavvas [], plays a significant role
in establishing existence results for (MVI) (see []).
A generalization and an extension of the problems (SVI) and (MVI) to the vector case

was studied by Lalitha andMehta in [, ] where a general vector bifunction h : K ×Rn →
R̄m was considered, where R̄ = R ∪ {+∞, –∞} and K ⊆ Rn is a nonempty closed convex
subset. A systematic study of the problem for the scalar case can be found in Ansari et
al. []. The Stampacchia type vector variational inequality problem (SVVI) considered in
[] was to find x ∈ K such that

h(x; y – x) /∈ – intC, ∀y ∈ K , (SVVI)

and the Minty type vector variational inequality problem (MVVI) considered was to find
x ∈ K such that

h(y;x – y) /∈ – intC, ∀y ∈ K , (MVVI)

whereC ⊆ Rm is a pointed closed convex conewith nonempty interior. In [] the problem
(SVVI) was studied with a varying cone C(x).
The role of monotonocity in variational inequality theory is the same as that of convex-

ity in optimization theory. In recent years, a number of authors have usedmany important
generalizations of monotonicity such as quasimonotonicity, pseudomonotonicity, dense
pseudomonotonicity, p-monotonicity, semimonotonicity, and they have considered these
notions to study various variational inequalities and other related problems [, , –].
In this paper, we extend the notion of proper quasimonotonicity to vector-valued bifunc-
tions and use it to establish the existence of solutions to strong Stampacchia and Minty
type vector variational like inequalities problems defined by a bifunction h.
The paper is organized as follows. In Section , the notions of cone proper quasimono-

tonicity of Stampacchia and Minty type for a vector-valued bifunction are introduced.
Their relations with the class of cone pseudomonotone and cone quasimonotone maps
are discussed in this section. In Section  two types of strong vector variational like in-
equality problems, of Stampacchia and Minty kind, are introduced in terms of a general
bifunction. Conditions which ensure the equivalence of these problems and existence of
solutions for both problems form the basis of this section. In the last section two types of
gap functions are proposed for each of the problems. One of the gap functions is given for
the case where the cone considered is the nonnegative orthant.

2 Proper cone quasimonotonicity for vector-valued bifunctions
This section has been divided into two subsection. In the first subsection we introduce
two types of proper quasimonotone maps over cones for a vector-valued bifunction h and
give a set of sufficient conditions for such maps. The second subsection investigates the
relation of proper quasimonotonocity introduced in the previous subsection with other
generalized monotonicity.
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Throughout this paper, we assume the vector-valued bifunctions h : K × Rn → R̄m and
η : K ×K → Rn to be defined on a nonempty closed convex subsetK of Rn,C to be a closed
convex pointed cone in Rm with nonempty interior.

2.1 Stampacchia andMinty type proper quasimonotonicity
Definition . The bifunction h is said to be

(i) (C,η)-pseudomonotone on K if for any x, y ∈ Kh(x;η(y,x)) ∈ C ⇒ h(y;η(x, y)) ∈ –C;
(ii) (C,η)-quasimonotone on K if for any x, y ∈ Kh(x;η(y,x))∈ intC ⇒ h(y;η(x, y)) ∈ –C.

The above definition of quasimonotonicity appears for a general vector-valued bifunc-
tion F : K × K → Rn in []. When h(x;η(y,x)) = 〈T(x), y – x〉 where T : Rn → Rm×n and
η(x, y) = x– y then the definition of (C,η)-pseudomonotonicity reduces to the one consid-
ered by Komlosi in [] referred to as neutral C-pseudomonotonicity.
From the above definition it is clear that every (C,η)-pseudomonotone bifunction is

(C,η)-quasimonotone but the converse implication is not necessarily true which is illus-
trated by the following example.

Example . Let K = [,π ] and h : K × R→ R̄ be defined as h(x;d) = (d sin x,dx). Let
C = R

+ and η : K × K → R be given as η(x, y) = cosx – cos y. Then it can easily be verified
that h is (C,η)-quasimonotone on K , but not (C,η)-pseudomonotone on K because for
x = , y = π/, h(x;η(y,x)) = (, ) ∈ C but h(y;η(x, y)) = (,π/) /∈ –C.

The notion of proper quasimonotonicity for an operator was introduced by Daniilidis
and Hadjisavvas in []. An earlier version under the name of -diagonal quasiconcavity
was introduced in []. The concept of proper quasimonotonicity for an extended real-
valued bifunction h : K × R → R̄ has been given by Bianchi and Pini [] as follows. The
bifunction h is said to be properly quasimonotone if for every y, y, . . . , yp ∈ K and x ∈
co{y, y, . . . , yp} there exists i ∈ {, , . . . ,p} such that h(yi;x–yi) ≤ , where co{y, y, . . . , yp}
denotes the convex hull of {y, y, . . . , yp}.
We now extend the above definition to the vector case in terms of η.

Definition . If for every y, y, . . . , yp ∈ K and x ∈ co{y, y, . . . , yp} there exists i ∈
{, , . . . ,p} such that

(i) h(x;η(yi,x)) ∈ C, then h is said to be properly (C,η)-quasimonotone of the
Stampacchia type on K ;

(ii) h(yi;η(x, yi)) ∈ –C, then h is said to be properly (C,η)-quasimonotone of the Minty
type on K .

Remark .
(i) If m = , C = R+ and η(x, y) = x – y then the definition of proper

(C,η)-quasimonotonicity of the Minty type reduces to the definition of proper
quasimonotonicity given by Bianchi and Pini [].

(ii) If h(x;η(y,x)) = 〈Tx,η(y,x)〉, where T : K → L(Rn,Rm), L(Rn,Rm) is the space of all
continuous linear mappings from Rn to Rm, that is, for any l ∈ L(Rn,Rm) and x ∈ Rn,
〈l,x〉 denotes the value of l at x, then the above definition is the finite dimensional
version of Definition . given by Zhao and Xia [].
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Remark . The bifunction h considered in Example . is properly (C,η)-quasimono-
tone on K of the Stampacchia type. Suppose on the contrary there exist y, y, . . . , yp ∈ K
and λi ≥ , i = , , . . . ,p with

∑p
i= λi =  and x =

∑p
i= λiyi such that h(x;η(yi,x)) /∈ C, ∀i =

, , . . . ,p, which implies that x >  and cos yi < cosx. The second inequality implies that
yi > x, ∀i = , , . . . ,p. Summing over i we have x > x, which is a contradiction. Similarly it
can be established that h is also properly (C,η)-quasimonotone of the Minty type on K .

The following two examples elucidate that the two classes of properly (C,η)-quasimono-
tonicity are independent in the sense that a bifunction may be properly quasimonotone of
the Stampacchia type but may not be properly quasimonotone of the Minty type and vice
versa.

Example . Let K = R+ and h : K ×R → R̄ be defined as h(x;d) = (xd,xd). Let C = R
+,

and let η : K × K → R be defined as η(x, y) = x – y + y. We assert that h is properly
(C,η)-quasimonotone of the Stampacchia type on K . Suppose on the contrary there ex-
ist y, y, . . . , yp ∈ K and λi ≥ , i = , , . . . ,p with

∑p
i=– λi =  and x =

∑p
i= λiyi such that

h(x;η(yi,x)) /∈ C, ∀i = , , . . . ,p, which implies that yi – x + x < , ∀i = , , . . . ,p. Sum-
ming over i we have x < , which is a contradiction. However, h is not properly (C,η)-
quasimonotone of the Minty type because for y = , y = , y = , λi = /, for i = , , 
we have x =

∑
i= λiyi =  and we note that h(yi;η(x, yi)) /∈ –C for all i = , , .

Example . Let K = [, ] and h : K × R → R be defined as

h(x;d) =

{
(, ) if x = ,
(d, ) if  < x ≤ .

Let C = R
+ and η : K × K → R be defined as η(x, y) = y – x. We assert that h is prop-

erly (C,η)-quasimonotone of the Minty type on K . On the contrary suppose that there
exist y, y, . . . , yp ∈ K and λi ≥ , i = , , . . . ,p with

∑p
i= λi =  and x =

∑p
i= λiyi such

that h(yi;η(x, yi)) /∈ –C, ∀i = , , . . . ,p which implies that yi – x > , ∀i = , , . . . ,p. Sum-
ming over i we have x <  which is a contradiction as x ∈ K . Therefore, h is properly
(C,η)-quasimonotone of the Minty type. It can be seen that h is not properly (C,η)-
quasimonotone of the Stampacchia type on K because for y = /, y = , λi = /, for
i = , , we have x =

∑
i= λiyi = / and h(x;η(yi,x)) /∈ C, ∀i = , .

The following proposition is an extension of Lemma . of [] and Lemma . of []
in the finite dimensional case.

Proposition . If h is properly (C,η)-quasimonotone of the Stampacchia type and is also
(C,η)-pseudomonotone on K , then h is properly (C,η)-quasimonotone of the Minty type.

Proof The result follows directly from Definitions . and .. �

The next proposition gives sufficient conditions for the map h to be properly (C,η)-
quasimonotone of the Stampacchia type.

Proposition . If the following conditions hold:
(i) h(x;η(x,x)) ∈ C, ∀x ∈ K ;

http://www.journalofinequalitiesandapplications.com/content/2014/1/142
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(ii) the mapping y→ h(x;η(y,x)) is a ∗-quasiconvex on K , that is, for all
u ∈ C∗ = {u ∈ Rm | 〈u, v〉 ≥ ,∀v ∈ C} we have

〈
u,h

(
x;η

(
ty + ( – t)y,x

))〉 ≤max
{〈
u,h

(
x;η(y,x)

)〉
,
〈
u,h

(
x;η(y,x)

)〉}
;

then h is properly (C,η)-quasimonotone of the Stampacchia type on K .

Proof Let y, y, . . . , yp ∈ K and λi ≥ , i = , , . . . ,pwith
∑p

i= λi =  and x =
∑p

i= λiyi. Then
from assumptions (i) and (ii) it follows that for any u ∈ C∗

 ≤ 〈
u,h

(
x;η(x,x)

)〉
≤max

{〈
(u,h

(
x;η(y,x)

)〉
,
〈
u,h

(
x;η(y,x)

)〉
, . . . ,

〈
u,h

(
x;η(yp,x)

)〉}
=

〈
u,h

(
x;η(yi,x)

)〉
, for some i ∈ {, , . . . ,p}.

Then it follows that h(x;η(yi,x)) ∈ C∗∗ = C andhence h is properly (C,η)-quasimonotone
of the Stampacchia type. �

Remark . If h is (C,η)-pseudomonotone and satisfies the assumptions of Proposi-
tion . then by Proposition . h is properly (C,η)-quasimonotone of the Minty type
on K .

Remark . The conditions of the Proposition . are not necessary as can be seen from
the following example.

Example . Let K = R and h : K ×R → R̄ be defined as h(x;d) = (–d– , ). Let C = R
+

and η : K × K → R be defined as η(x, y) = y – x. Then it is easy to verify that h is prop-
erly (C,η)-quasimonotone of the Minty type on K . It can be observed that h is (C,η)-
pseudomonotone on K . Here, h is not properly (C,η)-quasimonotone of the Stampac-
chia type because for y = /, y = , λi = / for i = , , we have x =

∑
i= λiyi = / and

h(x;η(yi,x)) /∈ C, ∀i = , .

2.2 Relation with generalized montonicity
In this section, we discuss the relationship of proper quasimonotonicity with pseu-
domonotonicity and quasimonotonicity.

Remark . Unlike the operators wherein every pseudomonotone operator is properly
quasimonotone (in the Minty sense) (see []) we do not have such a relation for the bi-
function h as can be seen from the following examples.

Example . Let K = R, C = R
+ and h : K × R → R be defined as h(x;d) = (d, –d).

Let η : K × K → R be defined as η(x, y) = (x – y). Then we observe that h is (C,η)-
pseudomonotone on K but is not properly (C,η)-quasimonotone of the Minty type on
K because for y = , y = , y = , λi = /, for i = , ,  we have x =

∑
i= λiyi = / and

h(yi;η(x, yi)) /∈ –C for all i = , , . Also, h is not properly (C,η)-quasimonotone of the
Stampacchia type as h(x;η(yi,x)) /∈ C, for all i = , , .

http://www.journalofinequalitiesandapplications.com/content/2014/1/142
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In case of an operator T : X → X∗ , where X is a Banach space and X∗ is the dual space,
it was shown in [] that if T is properly quasimonotone in theMinty sense then it is quasi-
monotone. But without any specific assumptions on h and η there is no relation between
proper (C,η)-quasimonotonicity of the Minty type and (C,η)-quasimonotonicity, as the
following two examples put in evidence.

Example . Let K , C and η be the same as in the above example. Let h : K × R→ R̄ be
defined as

h(x;d) =

{
(, ) if d = ,
(–,–) otherwise.

Then as shown in the above example the bifunction h is not (C,η)-quasimonotone on
K and hence not (C,η)-pseudomonotone on K . We assert that the bifunction h is prop-
erly (C,η)-quasimonotone of the Minty type on K . Suppose on the contrary there ex-
ist y, y, . . . , yp ∈ K and λi ≥ , i = , , . . . ,p with

∑p
i= λi =  and x =

∑p
i= λiyi such that

h(yi;η(x, yi)) /∈ –C, ∀i = , , . . . ,p. This implies that x + yi = , ∀i = , , . . . ,p, which cannot
be true. But h is not properly (C,η)-quasimonotone of the Stampacchia type on K because
for y = /, y = , λi = / for i = , , we have x =

∑
i= λiyi = / and h(x,η(yi,x)) /∈ C,

∀i = , .

Example . Let K = [,π/] × [,π/], C = R and h : K × R → R̄ be defined as
h(x;d) = (d cosx,d sinx), where x = (x,x) and d = (d,d). Let η : K × K → R be de-
fined as η(x, y) = (sinx – sin y, cosx – cos y). Then h is (C,η)-quasimonotone on K but h
is not properly (C,η)-quasimonotone of the Minty type on K because for y = (π/,π/),
y = (π/,π/), y = (π/,π/) and λ = /, λ = /, λ = / we have x =

∑
i= λiyi =

(π/, π/) but h(yi;η(x, yi)) /∈ –C, ∀i = , , , and also for these set of points
h(x;η(yi,x)) /∈ C, ∀i = , , . Therefore h is not properly (C,η)-quasimonotone of the Stam-
pacchia type as well. Also, h fails to be (C,η)-pseudomonotone on K because for x = (, )
and y = (π/,π/) we have h(x;η(y,x)) ∈ C but h(y;η(x, y)) /∈ –C.

The following result is an extension of Proposition . of [] to the vector case.

Theorem . Let h be positively homogeneous in the second argument, η be linear in the
first argument and η(x,x) = , ∀x ∈ K . If h is properly (C,η)-quasimonotone of the Minty
type on K then h is (C,η)-quasimonotone on K .

Proof Let x, y ∈ K be such that

h
(
x;η(y,x)

) ∈ intC. ()

Let yt = tx + ( – t)y, for t ∈ (, ). Now since η is linear in the first argument and
η(x,x) = , ∀x ∈ K , we have h(x;η(yt ,x)) = h(x; ( – t)η(y,x)). By positive homogeneity of
h in the second argument it follows that h(x;η(yt ,x)) ∈ intC. As h is properly (C,η)-
quasimonotone of the Minty type and yt ∈ co{x, y} therefore from () it follows that
h(y;η(yt , y)) ∈ –C that is, h(y; tη(x, y)) ∈ –C. Again invoking positive homogeneity of h in
the second argument we get h(y;η(x, y)) ∈ –C. �
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Also there does not exist any relationship between proper (C,η)-quasimonotonicity of
the Stampacchia type and (C,η)-quasimonotonicity of the Minty type.

Example . Let K = [, ] and h : K × R→ R̄ be defined as

h(x;d) =

{
(, ) if d = ,
(, ) otherwise.

Let C = R
+ and η : K × K → R be defined as η(x, y) = x + y. Then for x =  and

y = , h(x;η(y,x)) ∈ intC but h(y;η(x, y)) /∈ –C. Thus, h is not (C,η)-quasimonotone on K .
Clearly, h is properly (C,η)-quasimonotone of the Minty type as well as Stampacchia type
on K .

The next example is that of a bifunction which is (C,η)-quasimonotone as well
as properly (C,η)-quasimonotone of the Stampacchia type but not properly (C,η)-
quasimonotone of the Minty type.

Example . Let K = R, C = R
+ and h : K × R → R̄ be defined as

h(x;d) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
( + x + x – d – d, ) if x = (, ),
(d, /) if x = (, ),
(,d) if x = (, ),
(, ) otherwise.

Let η : K ×K → R be defined as η(x; y) = (x +y,x +y). Then it can be verified that h is
properly (C,η)-quasimonotone of the Stampacchia type and is also (C,η)-quasimonotone
on K . But h is not (C,η)-pseudomonotone on K because for x = (, ) and y = (, ) we
have h(x;η(y,x)) ∈ C but h(y;η(x, y)) /∈ –C. Also h is not properly (C,η)-quasimonotone of
the Minty type because for y = (, ), y = (, ), y = (, ) and λi = /, for i = , ,  we
have x = (/, /) and we note that h(yi;η(x, yi)) /∈ –C for i = , , .

Remark . The relationship between different classes of bifunctions, studied in this
section, is summarized in the following diagram (see Figure ), where pm, qm, pqmS,
pqmM denote the class of (C,η)-pseudomonotone, (C,η)-quasimonotone, properly
(C,η)-quasimonotone of the Stampacchia type, properly (C,η)-quasimonotone of the
Minty type, respectively.

Figure 1 Relation between different types of
generalized monotonicity.
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3 Strong vector variational like inequality problems
In this section, we consider the following strong vector variational like inequalities of the
Stampacchia and the Minty type. The Stampacchia type vector variational like inequality
is to find x ∈ K such that

h
(
x;η(y,x)

) ∈ C, ∀y ∈ K , (SVVLI)

and the Minty type vector variational like inequality is to find x ∈ K such that

h
(
y;η(x, y)

) ∈ –C, ∀y ∈ K . (MVVLI)

Some special cases are as follows:
(i) Whenm =  and C = R+ the problem (SVVLI) was studied by Mehta in [] wherein

existence theorems and relation with an optimization problem were studied.
(ii) When h(x;η(y,x)) = 〈T(x),η(y,x)〉 where T : Rn → Rm×n then the problems

(SVVLI) and (MVVLI) are the finite dimensional versions of the problems studied
by Zhao and Xia [].

(iii) If h(x;η(y,x)) = 〈T(x),η(y,x)〉 and η(x, y) = x – g(y) where T : Rn → Rm×n and
g : K → Rn then the problems (SVVLI) and (MVVLI), respectively, reduce to the
problem of finding x ∈ K such that 〈T(x), y – g(x)〉 ∈ C, ∀y ∈ K and

〈
T(y),x – g(y)

〉 ∈ –C, ∀y ∈ K .

These are the finite dimensional versions of the strong implicit vector variational
inequality problems that were considered by Fang and Huang [].

(iv) If h(x;η(y,x)) = 〈T(x),η(y,x)〉 where η(x, y) = x – y then the problems (SVVLI) and
(MVVLI), respectively, reduce to the problems of finding x ∈ K such that
〈T(x), y – x〉 ∈ C, ∀y ∈ K and

〈
T(y),x – y

〉 ∈ –C, ∀y ∈ K ,

which were the problems studied by Komlosi [] and referred to as ‘neutral’
Stampacchia and Minty vector variational inequalities, respectively.

Definition . The vector bifunction h is said to be (C,η)-subodd onK if for each x, y ∈ K
we have h(x;η(y,x)) + h(x;η(x, y)) ∈ C.

Remark . If η(x, y) + η(y,x) = , then the above definition reduces to the definition of
C-subodd given by Lalitha and Mehta [].

The next theorem is a generalization of the famous Minty Lemma [].

Theorem . If the bifunctions h and η satisfy the following conditions:
(i) h is (C,η)-pseudomonotone on K ;
(ii) for each d ∈ Rn, the mapping x → h(x;d) is hemicontinuous, that is, for any

x, y ∈ Rn, limt→+ h(x + t(y – x);d) = h(x;d);
(iii) η is affine in the second argument and η(x,x) = , ∀x ∈ K ;

http://www.journalofinequalitiesandapplications.com/content/2014/1/142
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(iv) h is (C,η)-subodd on K ;
(v) h is positively homogeneous in the second argument;

then the problems (SVVLI) and (MVVLI) are equivalent.

Proof As h is (C,η)-pseudomonotone on K therefore it follows that every solution of
(SVVLI) is also a solution of (MVVLI). Conversely, let x ∈ K be a solution of (MVVLI)
then we have

h
(
y;η(x, y)

) ∈ –C, ∀y ∈ K .

Let y ∈ K and let zt = x + t(y – x), for t ∈ (, ). Then it follows that h(zt ;η(x, zt)) ∈
–C, and since η is affine in the second argument and η(x,x) = , ∀x ∈ K , it follows
that h(zt ; tη(x, y)) ∈ –C. Using assumption (v) we get h(zt ;η(x, y)) ∈ –C, and by assump-
tion (ii) on letting t → +, we have h(x;η(x, y)) ∈ –C. Then (C,η)-suboddness of h yields
h(x;η(y,x)) ∈ C, that is, x solves (SVVLI). �

We now give an example to illustrate the above result.

Example . Let K = R, C = R
+, and let h : K × R → R̄ be defined as

h(x;d) =

{
(xd,xd

 /d
) if d �= ,

(, ) if d = .

Let η : K × K → R be defined as η(x, y) = (x – y, y – x). Then we note that h is a
positively homogeneous function in the second argument and h is (C,η)-subodd on K as
well. Clearly, h is (C,η)-pseudomonotone onK . So all the conditions of the above theorem
are satisfied and it can be seen that {(,x) | x ≥ } is the solution set of the problems
(SVVLI) and (MVVLI).

We now give an existence theorem for the problem (SVVLI) using the KKM lemma.

Definition . Apoint to setmap F : X ⊆ Rn → X is called a KKMmap, if for every finite
subset {x,x, . . . ,xp} of X, co{x,x, . . . ,xp} ⊆ ⋃p

i= F(xi).

Lemma . ([]) Let X be a nonempty, convex subset of Rn. Let F : X → X be a KKM-
map such that for each x ∈ X, F(x) is closed and is compact for at least one x ∈ X then⋂

x∈X F(x) �= ϕ.

The following two theorems are extensions of Theorems . and . of [] in the finite
dimensional case.

Theorem . Let K be a nonempty compact convex subset of Rn If the bifunctions h and η

satisfy the following conditions:
(i) for each y ∈ K , the mapping x → h(x;η(y,x)) is continuous;
(ii) h(x;η(x,x)) ∈ C, ∀x ∈ K ;
(iii) h is properly (C,η)-quasimonotone of the Stampacchia type on K ;

then the problem (SVVLI) is solvable.

http://www.journalofinequalitiesandapplications.com/content/2014/1/142
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Proof Define the set-valued mapping F : K → K as

F(y) =
{
x ∈ K | h(x;η(y,x)) ∈ C

}
.

Then by assumption (ii) it follows that for each y ∈ K , y ∈ F(y) and hence F(y) �= φ. Next
we prove that F is a KKM-map. On the contrary suppose that there exists x,x, . . . ,xp ∈
K and x ∈ co{x,x, . . . ,xp} such that x /∈ ⋃p

i= F(xi). This implies that h(x;η(xi,x)) /∈ C,
∀i = , , . . . , p which contradicts assumption (iii). Thus, F is a KKM-map. Assumption (i)
ensures that F(y) is a closed subset of K and since K is compact it follows that F(y) is
compact, for each y ∈ K . Hence by Lemma . we have

⋂
y∈K F(y) �= ϕ that is, the problem

(SVVLI) is solvable. �

We now establish an existence theorem for (MVVLI) using the proper (C,η)-quasimon-
otonicity of h of the Minty type.

Theorem . Let K be a nonempty compact convex subset of Rn If the bifunctions h and η

satisfy the following conditions:
(i) for each y ∈ K , the mapping x → h(y;η(x, y)) is continuous;
(ii) h(x;η(x,x)) ∈ –C, ∀x ∈ K ;
(iii) h is properly (C,η)-quasimonotone of the Minty type on K ;

then the problem (MVVLI) is solvable.

Proof Define the set-valued mapping F : K → K as

F(y) =
{
x ∈ K | h(y;η(x, y)) ∈ –C

}
.

Proceeding on the lines of the above theorem it can be shown that
⋂

y∈K F(y) �= ϕ, that
is, (MVVLI) has a solution. �

4 Gap functions
It is well known that the concept of gap functions is very important for the study of vector
variational inequality problems. Until now, two methods have been used for introducing
gap functions for vector variational inequality problems: one is of single-valued type and
the other is of vector-valued type. But single-valued gap functions are computationally
more tractable. Yang and Yao [] defined gap functions for vector variational inequal-
ity problems as real-valued functions, whereas Chen et al. [] defined gap functions for
vector variational inequality problems as set-valued maps.
We now propose two gap functions for a Stampacchia type vector variational like in-

equality problem (SVVLI).

Definition . A function g : K → R∪ {–∞} is said to be a gap function for the problem
(SVVLI) if

(i) g(x)≤ , ∀x ∈ K ;
(ii) g(x̂) =  if and only if x̂ solves (SVVLI).
Define � : K → R∪ {–∞} as

�(x) = inf
y∈K inf

u∈B∗
〈
u,h

(
x;η(y,x)

)〉
,

where B∗ = {u ∈ C∗ | ‖u‖ = }. If C is a closed convex cone then C∗∗ = C.

http://www.journalofinequalitiesandapplications.com/content/2014/1/142
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Theorem . The function � is a gap function for the problem (SVVLI) provided
h(x;η(x,x)) = , ∀x ∈ K .

Proof (i) For any x ∈ K , �(x) ≤ infu∈B∗ 〈u,h(x;η(y,x))〉 = , ∀y ∈ K . In particular, for y = x
we have �(x)≤ infu∈B∗ 〈u,h(x;η(x,x))〉 = .
(ii) Now �(x̂) =  is equivalent to the fact that infu∈B∗ 〈u,h(x̂;η(y, x̂))〉 ≥ , ∀y ∈ K which

is further equivalent to the fact that 〈u,h(x̂;η(y, x̂))〉 ≥ , ∀y ∈ K , ∀u ∈ C∗ which holds if
and only if h(x̂;η(y, x̂)) ∈ C∗∗, ∀y ∈ K , that is, x̂ solves (SVVLI). �

We now propose another gap function for (SVVLI) when C = Rm
+ . Let

h
(
x;η(y,x)

)
=

(
h

(
x;η(y,x)

)
,h

(
x;η(y,x)

)
, . . . ,hm

(
x;η(y,x)

))
.

Define �′ : K → R∪ {–∞} as

�′(x) = inf
y∈K min

≤i≤m
hi

(
x;η(y,x)

)
.

Theorem . The function �′ is a gap function for the problem (SVVLI) when C = Rm
+

provided h(x;η(x,x)) = , ∀x ∈ K .

Proof For any x ∈ K , �′(x) ≤ min≤i≤m hi(x;η(y,x)), ∀y ∈ K . In particular, for y = x we
have �′(x) ≤ min≤i≤m hi(x;η(x,x)) = . Now �′(x̂) =  is equivalent to the fact that
min≤i≤m hi(x̂;η(y, x̂)) ≥ , ∀y ∈ K which is further equivalent to the fact that h(x̂;η(y, x̂)) ∈
Rm
+ , ∀y ∈ K that is, x̂ solves (SVVLI). �

We now give an example to show that the solution of the problem (SVVLI) can easily be
computed using the gap function.

Example . Let K = [–, ] × [, ], C = R
+ and h : K × R → R̄ be defined as h(x;d) =

(h(x;d)h(x;d)) = (x + x – d,d – x – x), where x = (x,x) and d = (d,d). Let η :
K ×K → R be defined as η(x, y) = (x +y,x +y), where y = (y, y). Then h(x;η(x,x)) = ,
∀x ∈ K and x̂ = (, ) is the only solution of (SVVLI). By taking ‖u‖ = |u| + |u| the gap
function � is given as

�(x) = inf
y∈K inf

u∈B∗
〈
u,h

(
x;η(y,x)

)〉
=min

y∈K inf
u∈B∗

{
u(x – y) + (u)(y – x)

}
=min

y∈K inf
≤u≤

{
u(x – y) + ( – u)(y – x)

}
.

Since

inf
≤u≤

{
u(x – y) + ( – u)(y – x)

}
=

{
y – x if x + x ≥ y + y,
x – y if x + x < y + y
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we have �(x) =min{x – ,–x}. Clearly �(x)≤ , ∀x ∈ K and �(x̂) =  for x̂ = (, ). Also
�′ is given as

�′(x) = inf
y∈K min

≤i≤m
hi

(
x;η(y,x)

)
= inf

y∈Kmin{x – y, y – x}

=min{x – ,–x}.

So �′(x)≤ , ∀x ∈ K and �′(x̂) =  for x̂ = (, ).

Remark . If in the above example we define η as η(x, y) = (x + y,x + x), then the gap
function �′ for the problem (SVVLI) is given as

�′(x) =min{x – ,–x – x – }.

We observe that �′(x) ≤ , ∀x ∈ K but �′(x) �=  for any x ∈ K . Thus, the problem
(SVVLI) does not have a solution.

It is also possible to define gap functions as defined above for Minty type vector varia-
tional like inequality problem.

Definition . A function g : K → R ∪ {∞} is said to be a gap function for the problem
(MVVLI) if

(i) g(x)≥ , ∀x ∈ K ;
(ii) g(x̂) =  if and only if x̂ solves (MVVLI).
The first gap function for the problem (MVVLI) ψ : K → R∪ {∞} is defined as

ψ(x) = sup
y∈K

sup
u∈C∗

〈
u,h

(
x;η(y,x)

)〉
.

The following theorem can be established on the lines of Theorem ..

Theorem . The function ψ is a gap function for the problem (MVVLI) provided
h(x;η(x,x)) = , ∀x ∈ K .
We now propose a second gap function for (MVVLI) when C = Rm

+ .
Define ψ ′ : K → R∪ {∞} as

ψ ′(x) = sup
y∈K

max
≤i≤m

hi
(
x;η(y,x)

)
.

The following theorem can be established along the lines of Theorem ..

Theorem . The function ψ ’ is a gap function for the problem (MVVLI) when C = Rm
+

provided h(x;η(x,x)) = , ∀x ∈ K .

Remark . For the bifunction h considered in Example . the solution for the Minty
type vector variation like inequality problem (MVVLI) is also x̂ = (, ). It is notewor-
thy that all the conditions of Theorem . are satisfied and hence the problems (SVVLI)
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and (MVVLI) are equivalent. The gap functions can also be evaluated for the problem
(MVVLI) along lines similar to the problem (SVVLI).
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