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1 Introduction
The homogeneous singular integral operator T� is defined by

T�f (x) = p.v.
∫
Rn

�(x – y)
|x – y|n f (y)dy,

when � ∈ L(Sn–) satisfies the following conditions:
(a) � is a homogeneous function of degree zero on Rn \ {}, i.e.,

�(tx) =�(x) for any t >  and x ∈Rn \ {}. (.)

(b) � has mean zero on Sn–, the unit sphere in Rn, i.e.,

∫
Sn–

�
(
x′)dσ

(
x′) = . (.)

Using a rotation method, Calderón and Zygmund [] proved that T� is bounded in
Lp(Rn) for  < p < ∞ if � is odd or � ∈ L log+ L(Sn–). In [], Grafakos and Stefanov gave a
nice survey, which contains a thorough discussion of the history of the operator T�.
For a function b ∈ Lloc(Rn), letA be a linear operator on somemeasurable function space.

Then the commutator between A and b is defined by [b,A]f (x) := b(x)Af (x) –A(bf )(x).
In , Coifman et al. [] obtained a characterization of Lp-boundedness of the com-

mutators [b,Rj] generated by the Reisz transforms Rj (j = , . . . ,n) and a BMO function b.
As an application of this characterization, a decomposition theorem of the real Hardy
space is given in this paper. Moreover, the authors in [] proved also that if � ∈ Lip(Sn–),
then the commutator [b,T�] for T� and a BMO function b is bounded on Lp for  < p < ∞
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which is defined by

[b,T�]f (x) = p.v.
∫
Rn

�(x – y)
|x – y|n

(
b(x) – b(y)

)
f (y)dy.

In the same paper, Coifman et al. [] outlined a different approach, which is less direct
but shows a close relationship between the weighted inequalities of the operator T� and
the weighted inequalities of the commutator [b,T�]. In , Alvarez et al. [] developed
the idea of [] and established a generalized boundedness criterion for the commutator
of linear operators. The result of Alvarez et al. (see [], Theorem .) can be stated as
follows.

Theorem A ([]) Let  < p < ∞. If a linear operator T is bounded on Lp(w) for all w ∈
Aq, ( < q < ∞), where Aq denotes the weight class of Muckenhoupt, then for b ∈ BMO,
‖[b,T]f ‖Lp ≤ C‖b‖BMO‖f ‖Lp .

Combining Theorem A with the well-known results by Duoandikoetxea [] on the
weighted Lp boundedness of the rough singular integral T�, we know that if � ∈ Lq(Sn–)
for some q > , then [b,T�] is bounded on Lp for  < p < ∞. However, it is not clear up
to now whether the operator T� with � ∈ L \ ⋃

q> Lq(Sn–) is bounded on Lp(w) for
 < p < ∞ and all w ∈ Ar ( < r < ∞). Hence, if � ∈ L \ ⋃

q> Lq(Sn–), the Lp bounded-
ness of [b,T�] cannot be deduced from Theorem A. In this case, Hu [] used the refined
Fourier estimate, the Littlewood-Paley decomposition, and the properties of Young func-
tions and got the following result.

Theorem B ([]) Suppose that � ∈ L(log+ L)(Sn–) satisfying (.) and (.). Then, for
b ∈ BMO(Rn) and  < p < ∞, the commutator [b,T�] is bounded on Lp(Rn) with bound
C‖b‖BMO.

Recently, Chen and Ding [] gave a sufficient condition which contains
⋃

q> Lq(Sn–)
such that the commutator of convolution operators is bounded on Lp(Rn) for  < p < ∞.
This condition was introduced by Grafakos and Stefanov in [], and it is defined by

sup
ξ∈Sn–

∫
Sn–

∣∣�(y)
∣∣(ln 

|ξ · y|
)+α

dσ (y) < ∞, (.)

where α >  is a fixed constant. Let Fα(Sn–) denote the space of all integrable functions �

on Sn– satisfying (.). The result in [] can be stated as follows.

Theorem C Let � be a function in L(Sn–) satisfying (.) and (.). If � ∈ Fα(Sn–) for
some α > , then [b,T�] extends to a bounded operator from Lp into itself for α+

α
< p < α+.

The condition (.) above has been considered by many authors in the context of rough
integral operators. One can consult [–] among numerous references for its develop-
ment and applications. The examples in [] show that there is the following relationship
between Fα(Sn–) and H(Sn–) (the Hardy space on Sn–):

⋃
q>

Lq
(
Sn–

) ⊂
⋂
α>

Fα

(
Sn–

)
�H(Sn–) � ⋃

α>

Fα

(
Sn–

)
.
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On the other hand, for all τ ≥ , L(log+ L)+τ (Sn–) ⊂ H(Sn–). So, for all τ ≥ ,⋂
α> Fα(Sn–)� L(log+ L)+τ (Sn–).
The study of vector-valued inequalities for singular integrals with rough kernels has

attracted much attention (for example, see []). In , Tang and Wu [] considered
the vector-valued inequalities (Lp(�q), Lp(�q)), ( < p,q < ∞) of the commutator [b,T�]
with the kernel � ∈ L(log+ L)(Sn–) satisfying (.) and (.). In this paper, we consider
the vector-valued inequalities for a class of commutators of singular integrals with � ∈
Fα(Sn–) for some α > . Now we state our result as follows.

Theorem . Let � be a function in L(Sn–) satisfying (.) and (.) if � ∈ Fα(Sn–) for
some α > . Suppose that  < p,q < ∞ satisfy
(a)  ≤ p,q < ∞ and p · q < (α + ); or
(b)  < p < ∞,  < q <  and p · q′ < (α + ); or
(c)  < p,q <  and p′ · q′ < (α + ); or
(d)  < p < ,  < q < ∞ and p′ · q < (α + ).

Then [b,T�] extends to a bounded operator from Lp(�q) into itself.

Corollary . Let� be a function in L(Sn–) satisfying (.) and (.). If� ∈ ⋂
α> Fα(Sn–),

then [b,T�] extends to a bounded operator from Lp(�q) into itself for  < p,q < ∞.

This paper is organized as follows. First, in Section , we give some definitions, which
will be used in the proofs of the main results. In Section , we give some preliminary
lemmas for the proof of Theorem .. Then, in Section , we give the proof of Theorem ..
Throughout this paper, the letter C stands for a positive constant which is independent
of the essential variables and not necessarily the same one in each occurrence. Moreover,
the notations ‘∨’ and ‘∧’ denote the Fourier transform and the inverse Fourier transform,
respectively. As usual, for p ≥ , p′ = p/(p – ) denotes the dual exponent of p.
We collect the notation to be used throughout this paper:

∥∥{fj}
∥∥
Lp(�q) =

∥∥∥∥
(∑

j∈Z
|fj|q

)/q∥∥∥∥
Lp
; ‖f ‖Lp =

(∫
Rn

∣∣f (x)∣∣p dx)/p

.

2 Definitions
Firstly, we need to recall some definitions which will be used in the proof of Theorem ..
Let ϕ ∈ S(Rn) be a radial function which is supported in the unit ball and satisfies ϕ(ξ ) =

 for |ξ | ≤ 
 . The function ψ(ξ ) = ϕ(  ) – ϕ(ξ ) is supported in { 

 ≤ |ξ | ≤ } and satisfies
the identity

∑
j∈Z

ψ
(
–jξ

)
=  for ξ �= .

We denote by
j andGj the convolution operators whose symbols areψ(–jξ ) and ϕ(–jξ ),
respectively.
The paraproduct of Bony [] between two functions f , g is defined by

πf (g) =
∑
j∈Z

(
jf )(Gj – g).

http://www.journalofinequalitiesandapplications.com/content/2014/1/139
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At least formally, we have the following Bony decomposition:

fg = πf (g) + πg(f ) + R(f , g) with R(f , g) =
∑
i∈Z

∑
|k–i|≤

(
if )(
kg). (.)

3 Key lemmas
Let us begin with some lemmas, which will be used in the proof of Theorem .. The first
one can be found in [].

Lemma . If φ ∈ S(Rn) with supp(φ) ⊂ x : /≤ |x| ≤  and for l ∈ Z, define the multi-
plier operator Sl by Slf (ξ ) = φ(–lξ )f (ξ ) and Sl by S


l f = Sl(Sl). Then, for b ∈ BMO(Rn), for

any positive integer k and b ∈ BMO(Rn), denote by Sl;b;k (respectively Sl;b;k) the kth-order
commutator of Sl (respectively Sl ). Then, for  < p,q < ∞, we have

(i)
∥∥∥∥
(∑

j∈Z

(∑
l∈Z

|Sl;b;kfj|
)q/)/q∥∥∥∥

Lp
≤ C‖b‖BMO

∥∥∥∥
(∑

j∈Z
|fj|q

)/q∥∥∥∥
Lp
,

(ii)
∥∥∥∥
(∑

j∈Z

(∣∣∣∣∑
l∈Z

Sl;b;kfj,l
∣∣∣∣

)q/)/q∥∥∥∥
Lp

≤ C‖b‖BMO

∥∥∥∥
(∑

j∈Z

(∑
l∈Z

|fj,l|
)q/)/q∥∥∥∥

Lp
,

(iii)
∥∥∥∥
(∑

j∈Z

(∑
l∈Z

∣∣Sl;b;kfj∣∣
)q/)/q∥∥∥∥

Lp
≤ C‖b‖BMO

∥∥∥∥
(∑

j∈Z
|fj|q

)/q∥∥∥∥
Lp
,

(iv)
∥∥∥∥
(∑

j∈Z

(∣∣∣∣∑
l∈Z

Sl;b;kfj,l
∣∣∣∣

)q/)/q∥∥∥∥
Lp

≤ C‖b‖BMO

∥∥∥∥
(∑

j∈Z

(∑
l∈Z

|fj,l|
)q/)/q∥∥∥∥

Lp
,

where C is independent of j and l.

Lemma . ([]) Let  < p,q < ∞, {(∑k |gk;j|)/}j ∈ Lp(�q), and � ∈ L(Sn–). Denote
σk(x) = |x|–n|�(x′)|χ{k<|x|≤k+}(x). Then

∥∥∥∥
(∑

j∈Z

(∑
k∈Z

|σk ∗ gk,j|
)q/)/q∥∥∥∥

Lp
≤ C‖�‖L

∥∥∥∥
(∑

j∈Z

(∑
k∈Z

|gk,j|
)q/)/q∥∥∥∥

Lp
,

where C is independent of {gk,j}.

Lemma . ([]) For the multiplier Gk (k ∈ Z) defined in Section  and b ∈ BMO(Rn),

∣∣Gkb(x) –Gkb(y)
∣∣ ≤ C

|x – y|δkδ
δ

‖b‖BMO for  < δ < ,

where C is independent of k and δ.

Lemma . ([]) For any u ∈ S
′ (Rn) and v ∈ S

′ (Rn), the following properties hold:
(i) 
j
iu≡  if |j – i| ≥ ,
(ii) 
j(Gi–
iu) ≡  if |j – i| ≥ .
If we replace 
j with Sj, the above inequalities also hold.
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4 Proof of Theorem 1.1
Recall that

[b,T�]f (x) =
∫
Rn

�(x – y)
|x – y|n

(
b(x) – b(y)

)
f (y)dy.

Let φ ∈ C∞
 (Rn) be a radial function such that  ≤ φ ≤ , suppφ ⊂ {/ ≤ |ξ | ≤ } and∑

l∈Z φ(–lξ ) =  for |ξ | �= . Define the multiplier Sl by Ŝlf (ξ ) = φ(–lξ )̂f (ξ ). Set

σj(x) =
�(x′)
|x|n χ{j≤|x|<j+}(x)

for j ∈ Z. Set

mj(ξ ) = σ̂j(ξ ), ml
j(ξ ) =mj(ξ )φ

(
j–lξ

)
.

Define the operator Tj and Tl
j by

T̂jf (ξ ) =mj(ξ )̂f (ξ ), T̂ l
j f (ξ ) =ml

j(ξ )̂f (ξ ).

Denote by [b,Tj] and [b,Tl
j ] the commutator ofTj andTl

j , respectively. Define the operator
Vl by

Vlh(x) =
∑
j∈Z

[
b,Sl–jTl

j S

l–j

]
h(x).

Then we know

[b,T�]h(x) =
∑
l∈Z

Vlh(x).

Then by the Minkowski inequality, we have, for  < p,q < ∞,

∥∥∥∥
(∑

s∈Z

∣∣[b,T�]fs
∣∣q)/q∥∥∥∥

Lp
≤

∑
l∈Z

∥∥∥∥
(∑

s∈Z
|Vlfs|q

)/q∥∥∥∥
Lp
.

So, to prove Theorem ., it suffices to prove that

∑
l∈Z

(∑
s∈Z

|Vlfs|q
)/q∥∥∥∥

Lp
≤ C

(∑
s∈Z

|fs|q
)/q∥∥∥∥

Lp
. (.)

It is well known that for some constant  < β <  and any fixed constant  < υ <  (see []
and []),

‖Vlf ‖L ≤ C‖b‖BMOβl‖�‖L‖f ‖L , l ≤ ,

and

‖Vlf ‖L ≤ C‖b‖BMO log
(–α–)v+( + l

)‖f ‖L , l ≥ 

http://www.journalofinequalitiesandapplications.com/content/2014/1/139
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which gives that

∥∥∥∥
(∑

s∈Z
|Vlfs|

)/∥∥∥∥
L

≤ C‖b‖BMOβl
∥∥∥∥
(∑

s∈Z
|fs|

)/∥∥∥∥
L
, l ≤ , (.)

and

∥∥∥∥
(∑

s∈Z
|Vlfs|

)/∥∥∥∥
L

≤ C‖b‖BMO log
(–α–)β+( + l

)∥∥∥∥
(∑

s∈Z
|fs|

)/∥∥∥∥
L
, l ≥ . (.)

If we can prove that, for any  < p,q < ∞,  < δ < ,

∥∥∥∥
(∑

s∈Z
|Vlfs|q

)/q∥∥∥∥
Lp

≤ Cmax

{
,

δl

δ

}
‖�‖L‖b‖BMO

∥∥∥∥
(∑

s∈Z
|fs|q

)/q∥∥∥∥
Lp
, (.)

where C is independent of l and δ, we may finish the proof of Theorem .. The proof of
(.) will be postponed. Now, we will use (.), (.), and (.) to prove Theorem .. Since

∑
l∈Z

(∑
s∈Z

|Vlfs|q
)/q∥∥∥∥

Lp
≤

∑
l≤

(∑
s∈Z

|Vlfs|q
)/q∥∥∥∥

Lp

+
∑
l≥

(∑
s∈Z

|Vlfs|q
)/q∥∥∥∥

Lp

:= I + I,

we will estimate I and I, respectively. We first estimate I. For l ≤ , taking q =  in (.),
then interpolating between (.) and (.), there exists a constant  < θ <  such that for
 < p < ∞,

∥∥∥∥
(∑

s∈Z
|Vlfs|

)/∥∥∥∥
Lp

≤ Cθβl‖�‖L‖b‖BMO

∥∥∥∥
(∑

s∈Z
|fs|

)/∥∥∥∥
Lp
. (.)

For l ≤  and any fixed  < p < ∞, interpolating between (.) and (.), there exists a
constant  < θ <  such that for  < q <∞,

∥∥∥∥
(∑

s∈Z
|Vlfs|q

)/q∥∥∥∥
Lp

≤ Cθθβl‖�‖L‖b‖BMO

∥∥∥∥
(∑

s∈Z
|fs|q

)/q∥∥∥∥
Lp
.

Therefore we get, for  < p,q <∞,

∑
l≤

∥∥∥∥
(∑

s∈Z
|Vlfs|q

)/q∥∥∥∥
Lp

≤
∑
l≤

θθβl‖�‖L‖b‖BMO

∥∥∥∥
(∑

s∈Z
|fs|q

)/q∥∥∥∥
Lp

≤ C‖�‖L‖b‖BMO

∥∥∥∥
(∑

s∈Z
|fs|q

)/q∥∥∥∥
Lp
.
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Next, we will estimate I for (a), (b), (c), and (d), respectively. For  ≤ l <∞, taking δ = /l
in (.), we get, for any  < p,q <∞,

∥∥∥∥
(∑

s∈Z
|Vlfs|q

)/q∥∥∥∥
Lp

≤ Cl‖�‖L‖b‖BMO

∥∥∥∥
(∑

s∈Z
|fs|q

)/q∥∥∥∥
Lp
. (.)

Taking q =  in (.) gives that for any  < r <∞, we have

∥∥∥∥
(∑

s∈Z
|Vlfs|

)/∥∥∥∥
Lr

≤ Cl‖�‖L‖b‖BMO

∥∥∥∥
(∑

s∈Z
|fs|

)/∥∥∥∥
Lr
. (.)

We first treat the case (a) :  ≤ p,q < ∞ and p · q < (α + ). Now, for any p ≥ , we take
r sufficiently large such that r > p in (.). Using the Riesz-Thorin interpolation theorem
between (.) and (.), we have that for any l ≥ ,

∥∥∥∥
(∑

s∈Z
|Vlfs|

)/∥∥∥∥
Lp

≤ C‖b‖BMOl–θ log((–α–)v+)θ( + l
)∥∥∥∥

(∑
s∈Z

|fs|
)/∥∥∥∥

Lp
,

where θ = (r–p)
p(r–) . We can see that if r �→ ∞, then θ goes to /p and log((–α–)v+)θ ( + l)

goes to log((–α–)v+)/p( + l). Therefore, we get

∥∥∥∥
(∑

s∈Z
|Vlfs|

)/∥∥∥∥
Lp

≤ C‖b‖BMOl–/p log((–α–)v+) p
(
 + l

)∥∥∥∥
(∑

s∈Z
|fs|

)/∥∥∥∥
Lp

≤ C‖b‖BMOl–(α+)v

p

∥∥∥∥
(∑

s∈Z
|fs|

)/∥∥∥∥
Lp
. (.)

On the other hand, fix p, for any  ≤ q < ∞, (.) also means that for any λ sufficiently
large such that λ > q,

∥∥∥∥
(∑

s∈Z
|Vlfs|λ

)/λ∥∥∥∥
Lp

≤ Cl‖�‖L‖b‖BMO

∥∥∥∥
(∑

s∈Z
|fs|λ

)/λ∥∥∥∥
Lp
. (.)

Using the Riesz-Thorin interpolation theorem between (.) and (.), we have that

∥∥∥∥
(∑

s∈Z
|Vlfs|q

)/q∥∥∥∥
Lp

≤ C‖b‖BMOl–(α+)v

p θ l–θ

∥∥∥∥
(∑

s∈Z
|fs|q

)/q∥∥∥∥
Lp

≤ C‖b‖BMOl–(α+)v

p θ

∥∥∥∥
(∑

s∈Z
|fs|q

)/q∥∥∥∥
Lp
,

where θ = (λ–q)
q(λ–) . We can see that if λ �→ ∞, then θ goes to /q and l–(α+)v


p θ goes to

l–(α+)v

p

q . This gives that for any fixed  < υ < ,

∥∥∥∥
(∑

s∈Z
|Vlfs|q

)/q∥∥∥∥
Lp

≤ C‖b‖BMOl–(α+)v

p

q

∥∥∥∥
(∑

s∈Z
|fs|q

)/q∥∥∥∥
Lp
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/139
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Thus, by the inequality above, we have, for p · q < (α + ),

∑
l≥

∥∥∥∥
(∑

s∈Z
|Vlfs|q

)/q∥∥∥∥
Lp

≤ C
(∑

l≥

l–(α+)v

p

q

)
‖b‖BMO

∥∥∥∥
(∑

s∈Z
|fs|q

)/q∥∥∥∥
Lp

≤ C‖b‖BMO

∥∥∥∥
(∑

s∈Z
|fs|q

)/q∥∥∥∥
Lp
.

Next, for the case (b) : ≤ p < ∞,  < q < , and p · q′ < (α + ). For any p≥ , we have

∥∥∥∥
(∑

s∈Z
|Vlfs|

)/∥∥∥∥
Lp

≤ C‖b‖BMOl–(α+)v

p

∥∥∥∥
(∑

s∈Z
|fs|

)/∥∥∥∥
Lp
. (.)

Similarly, fix p, for  < q < , (.) also means that for any λ sufficiently small such that
 < λ < q,

∥∥∥∥
(∑

s∈Z
|Vlfs|λ

)/λ∥∥∥∥
Lp

≤ Cl‖�‖L‖b‖BMO

∥∥∥∥
(∑

s∈Z
|fs|λ

)/λ∥∥∥∥
Lp
. (.)

Using the Riesz-Thorin interpolation theorem between (.) and (.), we have

∥∥∥∥
(∑

s∈Z
|Vlfs|q

)/q∥∥∥∥
Lp

≤ C‖b‖BMOl–(α+)v

p θ

∥∥∥∥
(∑

s∈Z
|fs|q

)/q∥∥∥∥
Lp
,

where θ = (λ–q)
q(λ–) . We can see that if λ �→ , then θ goes to /q′ and l–(α+)v


p θ goes to

l–(α+)v

p


q′ . This gives that for any fixed  < υ < ,

∥∥∥∥
(∑

s∈Z
|Vlfs|q

)/q∥∥∥∥
Lp

≤ C‖b‖BMOl
–(α+)v p


q′

∥∥∥∥
(∑

s∈Z
|fs|q

)/q∥∥∥∥
Lp
.

Thus, for ≤ p <∞,  < q < , and p · q′ < (α + ), we have

∑
l≥

∥∥∥∥
(∑

s∈Z
|Vlfs|q

)/q∥∥∥∥
Lp

≤ C‖b‖BMO

∥∥∥∥
(∑

s∈Z
|fs|q

)/q∥∥∥∥
Lp
.

Now, for the case (c) :  < p,q <  and p ·q′ < (α+). For any  < p < , we take r sufficiently
small such that  < r < p in (.). Using the Riesz-Thorin interpolation theorem between
(.) and (.), we have that for any l ≥ ,

∥∥∥∥
(∑

s∈Z
|Vlfs|

)/∥∥∥∥
Lp

≤ C‖b‖BMOl–θ log((–α–)v+)θ( + l
)∥∥∥∥

(∑
s∈Z

|fs|
)/∥∥∥∥

Lp
, (.)
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Chen and Ding Journal of Inequalities and Applications 2014, 2014:139 Page 9 of 14
http://www.journalofinequalitiesandapplications.com/content/2014/1/139

where θ = (r–p)
p(r–) . We can see that if r �→ , then θ goes to /p′ and log((–α–)v+)θ (+l) goes

to log((–α–)v+)/p′ ( + l). Therefore, we get

∥∥∥∥
(∑

s∈Z
|Vlfs|

)/∥∥∥∥
Lp

≤ C‖b‖BMOl–/p log
((–α–)v+) p′

(
 + l

)∥∥∥∥
(∑

s∈Z
|fs|

)/∥∥∥∥
Lp

≤ C‖b‖BMOl
–(α+)v 

p′
∥∥∥∥
(∑

s∈Z
|fs|

)/∥∥∥∥
Lp
. (.)

Then, using the previous argument, for any fixed  < p <  and  < q < , we get

∥∥∥∥
(∑

s∈Z
|Vlfs|q

)/q∥∥∥∥
Lp

≤ C‖b‖BMOl
–(α+)v 

p′

q′

∥∥∥∥
(∑

s∈Z
|fs|q

)/q∥∥∥∥
Lp
. (.)

Thus if p′ · q′ < (α + ), then

∑
l≥

∥∥∥∥
(∑

s∈Z
|Vlfs|q

)/q∥∥∥∥
Lp

≤ C‖b‖BMO

∥∥∥∥
(∑

s∈Z
|fs|q

)/q∥∥∥∥
Lp
.

Finally, for the case (d) :  < p < ,  ≤ q < ∞, and p′ · q′ < (α + ), using the previous
argument, we get

∑
l≥

∥∥∥∥
(∑

s∈Z
|Vlfs|q

)/q∥∥∥∥
Lp

≤ C‖b‖BMO

∥∥∥∥
(∑

s∈Z
|fs|q

)/q∥∥∥∥
Lp
.

Therefore, we prove that

I ≤ C‖b‖BMO

∥∥∥∥
(∑

s∈Z
|fs|q

)/q∥∥∥∥
Lp

for four cases.
Now, we turn our attention to proving (.). Since Tl

j Sl–j = TjSl–j for any j, l ∈ Z, we may
write

[
b,Sl–jT

l
j Sl–j

]
f =

[
b,Sl–j

](
TjSl–jf

)
+ Sl–j[b,Tj]

(
Sl–jf

)
+ Sl–jTj

([
b,Sl–j

]
f
)
.

Thus,

∥∥∥∥
(∑

s∈Z
|Vlfs|q

)/q∥∥∥∥
Lp

≤
∥∥∥∥
(∑

s∈Z

∣∣∣∣∑
j∈Z

[
b,Sl–j

](
TjSl–jfs

)∣∣∣∣q
)/q∥∥∥∥

Lp
+

∥∥∥∥
(∑

s∈Z

∣∣∣∣∑
j∈Z

Sl–jTj
([
b,Sl–j

]
fs
)∣∣∣∣q

)/q∥∥∥∥
Lp

+
∥∥∥∥
(∑

s∈Z

∣∣∣∣∑
j∈Z

Sl–j[b,Tj]
(
Sl–jfs

)∣∣∣∣q
)/q∥∥∥∥

Lp

:= L + L + L. (.)
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Below we shall estimate Li for i = , , , respectively. As regards L, by Lemma . and
Lemma ., we have, for  < p < ∞,

L ≤ C
∥∥∥∥
(∑

s∈Z

(∑
j∈Z

∣∣TjSl–jfs
∣∣)q/)/q∥∥∥∥

Lp

≤ C‖b‖BMO‖�‖L
∥∥∥∥
(∑

s∈Z

(∑
j∈Z

∣∣Sl–jfs∣∣
)q/)/q∥∥∥∥

Lp

≤ C‖b‖BMO‖�‖L
∥∥∥∥
(∑

s∈Z
|fs|q

)/q∥∥∥∥
Lp
.

Similarly, we get

L ≤ C‖b‖BMO‖�‖L
∥∥∥∥
(∑

s∈Z
|fs|q

)/q∥∥∥∥
Lp
.

Hence, by (.), to show (.) it remains to give the estimate of L. We will apply Bony
paraproduct to do this. By (.),

fg = πf (g) + πg(f ) + R(f , g).

We have

b(x)
(
TjSl–jfs

)
(x)

= π(TjSl–j fs)
(b)(x) + R

(
b,TjSl–jfs

)
(x) + πb

(
TjSl–jfs

)
(x)

and

bSl–jfs(x) = π(Sl–j fs)
(b)(x) + R

(
b,Sl–jfs

)
(x) + πb

(
Sl–jfs

)
(x).

Then we get

[b,Tj]Sl–jfs(x)

= b(x)
(
TjSl–jfs

)
(x) – Tj

(
bSl–jfs

)
(x)

=
[
π(TjSl–j fs)

(b)(x) – Tj
(
π(Sl–j fs)

(b)
)
(x)

]
+

[
R
(
b,TjSl–jfs

)
(x) – Tj

(
R
(
b,Sl–jfs

))
(x)

]
+

[
πb

(
TjSl–jfs

)
(x) – Tj

(
πb

(
Sl–jfs

))
(x)

]
.

Thus

L ≤
∥∥∥∥
(∑

s∈Z

∣∣∣∣∑
j∈Z

Sl–j
[
π(TjSl–j fs)

(b) – Tj
(
π(Sl–j fs)

(b)
)]∣∣∣∣q

)/q∥∥∥∥
Lp

+
∥∥∥∥
(∑

s∈Z

∣∣∣∣∑
j∈Z

Sl–j
[
R
(
b,TjSl–jfs

)
– Tj

(
R
(
b,Sl–jfs

))]∣∣∣∣q
)/q∥∥∥∥

Lp

http://www.journalofinequalitiesandapplications.com/content/2014/1/139
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+
∥∥∥∥
(∑

s∈Z

∣∣∣∣∑
j∈Z

Sl–j
[
πb

(
TjSl–jfs

)
– Tj

(
πb

(
Sl–jfs

))]∣∣∣∣q
)/q∥∥∥∥

Lp

:=M +M +M. (.)

(a) The estimate of M. Recall that πg(f ) =
∑

j∈Z(
jf )(Gj–g). For M, by Lemma .(i),
we know 
iSkg =  for g ∈ S′(Rn) when |i – k| ≥ . Then

π(TjSl–j fs)
(b)(x) – Tj

(
π(Sl–j fs)

(b)
)
(x)

=
∑

|i–(l–j)|≤

{

i

(
TjSl–jfs

)
(x)(Gi–b)(x) – Tj

[(

iSl–jfs

)
(Gi–b)

]
(x)

}

=
∑

|i–(l–j)|≤

[Gi–b,Tj]
(

iSl–jfs

)
(x). (.)

Then we get

M ≤
∑
|k|≤

∥∥∥∥
(∑

s∈Z

∣∣∣∣∑
j∈Z

Sl–j
(
[Gl–j+k–b,Tj]

(

l–j+kSl–jfs

))∣∣∣∣q
)/q∥∥∥∥

Lp
. (.)

Without loss of generality, we may assume k = . By Lemma ., we get

M ≤ C
∥∥∥∥
(∑

s∈Z

(∑
j∈Z

∣∣[Gl–j–b,Tj]
(

l–jSl–jfs

)∣∣)q/)/q∥∥∥∥
Lp
. (.)

Note that

∣∣[Gl–j–b,Tj]
(

l–jSl–jfs

)
(x)

∣∣
=

∣∣∣∣
∫
j≤|x–y|<j+

�(x – y)
|x – y|n

(
Gl–j–b(x) –Gl–j–b(y)

)

l–jSl–jfs(y)dy

∣∣∣∣
≤ C

∫
j≤|x–y|<j+

∣∣�(x – y)
∣∣

|x – y|n
∣∣Gl–j–b(x) –Gl–j–b(y)

∣∣∣∣
l–jSl–jfs(y)
∣∣dy.

By Lemma ., we have, for any  < δ < ,

∣∣[Gl–j–b,Tj]
l–jSl–jfs(x)
∣∣

≤ C(l–j–)δ
|x – y|δ

δ
‖b‖BMO

∫
j≤|x–y|<j+

∣∣�(x – y)
∣∣

|x – y|n
∣∣
l–jSl–jfs(y)

∣∣dy
≤ C

lδ

δ
‖b‖BMO

∫
j≤|x–y|<j+

∣∣�(x – y)
∣∣

|x – y|n
∣∣
l–jSl–jfs(y)

∣∣dy
= C

lδ

δ
‖b‖BMOT|�|,j

(∣∣
l–jSl–jfs
∣∣)(x), (.)

where

T|�|,jfs(x) =
∫
j≤|x–y|<j+

∣∣�(x – y)
∣∣

|x – y|n fs(y)dy,
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and C is independent of δ and l. Then, by (.), (.) and applying Lemma . and
Lemma ., we have that for  < p < ∞,

M ≤ C
lδ

δ
‖b‖BMO

∥∥∥∥
(∑

s∈Z

(∑
j∈Z

∣∣T|�|,j,d
(∣∣
l–jSl–jfs

∣∣)∣∣)q/)/q∥∥∥∥
Lp

≤ C‖�‖L 
lδ

δ
‖b‖BMO

∥∥∥∥
(∑

s∈Z

(∑
j∈Z

∣∣
l–jSl–jfs
∣∣)q/)/q∥∥∥∥

Lp

≤ C‖�‖L 
lδ

δ
‖b‖BMO

∥∥∥∥
(∑

s∈Z

(∑
j∈Z

∣∣Sl–jfs∣∣
)q/)/q∥∥∥∥

Lp

≤ C‖�‖L 
lδ

δ
‖b‖BMO

∥∥∥∥
(∑

s∈Z
|fs|q

)/q∥∥∥∥
Lp
, (.)

where C is independent of l and δ.
(b)The estimate ofM. By Lemma .(i), we know for |k| ≤ ,
i+kSl–jg =  for g ∈ S

′ (Rn)
when |i – (l – j)| ≥ . Thus

R
(
b,TjSl–jfs

)
– Tj

(
R
(
b,Sl–jfs

))
(x)

=
∑
i∈Z

∑
|k|≤

(
ib)(x)
(
Tj
i+kSl–jfs

)
(x) – Tj

(∑
i∈Z

∑
|k|≤

(
ib)
(

i+kSl–jfs

))
(x)

=
∑

k=–

∑
|i–(l–j)|≤

(
(
ib)(x)

(
Tj
i+kSl–jfs

)
(x) – Tj

(
(
ib)

(

i+kSl–jfs

))
(x)

)

=
∑

k=–

∑
|i–(l–j)|≤

[
ib,Tj]
(

i+kSl–jfs

)
(x).

Then we get

M ≤
∑
|k|≤

∥∥∥∥
(∑

s∈Z

∣∣∣∣∑
j∈Z

Sl–j[
l–j+kb,Tj]
(

l–j+kSl–jfs

)∣∣∣∣q
)/q∥∥∥∥

Lp
.

Without loss of generality, we may assume k = . By the equality above and using
Lemma ., supi∈Z ‖
i(b)‖L∞ ≤ C‖b‖BMO (see []) and Lemma., we have, for  < p < ∞,

M ≤ C sup
i∈Z

∥∥
i(b)
∥∥
L∞

∥∥∥∥
(∑

s∈Z

(∑
j∈Z

∣∣T|�|,j
(∣∣
l–jSl–jfs

∣∣)∣∣)q/)/q∥∥∥∥
Lp

≤ C‖b‖BMO‖�‖L
∥∥∥∥
(∑

s∈Z

(∑
j∈Z

∣∣
l–jSl–jfs
∣∣)q/)/r∥∥∥∥

Lp

≤ C‖b‖BMO‖�‖L
∥∥∥∥
(∑

s∈Z

(∑
j∈Z

∣∣Sl–jfs∣∣
)q/)/q∥∥∥∥

Lp

≤ C‖b‖BMO‖�‖L
∥∥∥∥
(∑

s∈Z
|fs|q

)/q∥∥∥∥
Lp
. (.)
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(c) The estimate of M. Finally, we give the estimate of M. By Lemma .(ii), we know
Sj(
igGi–h) =  for g,h ∈ S

′ (Rn) if |j – i| ≥ . We get

Sl–j
(
πb

(
TjSl–jfs

)
– Tj

(
πb

(
Sl–jfs

)))
= Sl–j

(∑
i∈Z

(
ib)
(
Gi–TjSl–jfs

)
– Tj

(∑
i∈Z

(
ib)
(
Gi–Sl–jfs

)))
(x)

=
∑

|i–(l–j)|≤

{
Sl–j

(
(
ib)

(
Gi–TjSl–jfs

))
(x) – Sl–jTj

(
(
ib)

(
Gi–Sl–jfs

))
(x)

}
.

Thus, by Lemma ., supi∈Z ‖
i(b)‖L∞ ≤ C‖b‖BMO, and Lemma ., we get, for  < p < ∞,

M ≤ C sup
i∈Z

∥∥
i(b)
∥∥
L∞

∥∥∥∥
(∑

s∈Z

(∑
j∈Z

∣∣T|�|,j
(∣∣Gl–jSl–jfs

∣∣)∣∣)q/)/q∥∥∥∥
Lp

≤ C‖b‖BMO‖�‖L
∥∥∥∥
(∑

s∈Z

(∑
j∈Z

∣∣Gl–jSl–jfs
∣∣)q/)/q∥∥∥∥

Lp

≤ C‖b‖BMO‖�‖L
∥∥∥∥
(∑

s∈Z

(∑
j∈Z

∣∣Sl–jfs∣∣
)q/)/q∥∥∥∥

Lp

≤ C‖b‖BMO‖�‖L
∥∥∥∥
(∑

s∈Z
|fs|q

)/q∥∥∥∥
Lp
. (.)

By (.), (.)-(.), we get

L ≤ Cmax

{
,

δl

δ

}
‖b‖BMO‖�‖L

∥∥∥∥
(∑

s∈Z
|fs|q

)/q∥∥∥∥
Lp

for l ∈ Z,

where C is independent of δ and l. This establishes the proof of (.).
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