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Abstract
The main purpose of this paper is, using the analytic methods and the properties of
character sums, to study the computational problem of one kind of hybrid mean
value involving the quadratic Gauss sums and a new sum analogous to Kloosterman
sums, and to give an interesting hybrid mean value formula for it.
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1 Introduction
Let q ≥  be an integer, and let χ be a Dirichlet character mod q. Then for any integer n,
the famous quadratic Gauss sums G(χ ,n;q) is defined as follows:

G(χ ,n;q) =
q∑

a=

χ (a) · e
(
na

q

)
,

where e(y) = eπ iy.
This sum plays a very important role in the study of analytic number theory, many fa-

mous number theoretic problems are closely related to it. For example, the distribution
of primes, the Goldbach problem, the properties of Dirichlet L-functions are some good
examples. About the arithmetic properties of G(χ ,n;q), some authors had studied it and
obtained many interesting results. For example, if q = p is a prime and (p,n) = , then one
can get the estimate |G(χ ,n;p)| ≤ √p. Some other results can be found in references
[–].
On the other hand, the classical Kloosterman sums K (m,n;q) is defined as

K (m,n;q) =
q–∑′

a=

e
(
ma + na

q

)
,

where
∑′q–

a= denotes the summation over all  ≤ a ≤ q such that (a,q) = , and a denotes
the solution of the congruence equation ax≡  mod q.
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Now we define another sum analogous to Kloosterman sums as follows:

S(χ ,q) =
q–∑′

a=

χ (a + a).

In fact, this sum is a special case of the general character of polynomials, some related
results can be found in [, ] and [, ].
The main purpose of this paper is using the analytic method and the properties of the

character sums to study the hybrid mean value properties of G(χ ,n;p) and S(χ ,p), and to
give an interesting mean value formula. That is, we shall prove the following two conclu-
sions.

Theorem  Let p be an odd prime, χ be any non-principal even character (i.e. χ (–) = )
mod p. Then for any integer n with (n,p) = , we have the identity

∣∣∣∣∣
p–∑
a=

χ (a) · e
(
na

p

)∣∣∣∣∣


= p + χ () ·
(
n
p

)
· τ (χ) ·

p–∑
a=

χ (a + a),

where ( ∗
p ) = χ denotes the Legendre symbol, and τ (χ) =

∑p–
a= χ(a) · e( ap ) denotes the clas-

sical Gauss sums with τ (χ) = (–p ) · p.

Theorem Let p be an odd prime with p ≡  mod . Then for any integer n with (n,p) = ,
we have the identity

∑′

χ mod p

∣∣∣∣∣
p–∑
a=

χ (a) · e
(
na

p

)∣∣∣∣∣


·
∣∣∣∣∣
p–∑
a=

χ (a + a)

∣∣∣∣∣


= (p – ) · (p – p – 
)
,

where
∑′

χ mod p denotes the summation over all even character mod p, i.e. χ (–) = .

Some notes: Theorem  tells us that there exists a close relationship between G(χ ,n;p)
and S(χ ,p). That is, |G(χ ,n;p)| can be represented by S(χ ,p).
Since for any odd character χ mod p, we have G(χ ,n;p) = S(χ ,p) = , we only discussed

the summation for all even characters χ mod p in Theorem .
If p≡  mod , then we cannot give a computational formula for the hybrid mean value

in Theorem . In this case, the difficulty is that we cannot obtain an exact value for the
behind formula (). We hope that the interested reader will stay with us as we turn to
further study.
For general integer q ≥ , whether there exists a computational formula for the hybrid

mean value

∑′

χ mod q

∣∣∣∣∣
q∑

a=

χ (a) · e
(
na

q

)∣∣∣∣∣


·
∣∣∣∣∣
q–∑′

a=

χ (a + a)

∣∣∣∣∣


is an interesting open problem, where n is any integer with (n,q) = .
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2 Several lemmas
In this section, we shall give two simple lemmas, which are necessary in the proofs of our
theorems. Hereinafter, we shall use many properties of character sums and Gauss sums,
all of these can be found in references [, ] and []. First we have the following.

Lemma  Let p be an odd prime, χ be any non-principal even character mod p. Then we
have the identity

∣∣∣∣∣
p–∑
a=

χ (a + a)

∣∣∣∣∣


= p +
p–∑
a=

χ (a)
p–∑
b=

(
b(b – )(ab – )

p

)
,

where ( ∗
p ) denotes the Legendre symbol.

Proof Let a + a = u, then we have

p–∑
a=

χ (a + a) =
p–∑
u=

χ (u)
p–∑
a=

a+a≡u mod p

 =
p–∑
u=

χ (u)
p–∑
a=

a–au+≡ mod p



=
p–∑
u=

χ (u)
p–∑
a=

(a–u)≡u– mod p

 =
p–∑
u=

χ (u)
p–∑
a=

a≡u– mod p

. ()

Note that for any fixed integer u –, the number of the solutions of the congruence equa-
tion x ≡ u –  mod p are  + ( u–p ), so from () we have

p–∑
a=

χ (a + a) =
p–∑
u=

χ (u)
(
 +

(
u – 
p

))

=
p–∑
u=

χ (u)
(
u – 
p

)
= χ ()

p–∑
u=

χ (u)
(
u – 
p

)
. ()

Now from () and the properties of reduced residue system mod p we have

∣∣∣∣∣
p–∑
a=

χ (a + a)

∣∣∣∣∣


=

∣∣∣∣∣
p–∑
u=

χ (u)
(
u – 
p

)∣∣∣∣∣


=
p–∑
a=

p–∑
b=

χ (ab)
(
a – 
p

)(
b – 
p

)

=
p–∑
a=

χ (a)
p–∑
b=

(
ab – 

p

)(
b – 
p

)

=
p–∑
a=

χ (a)
p–∑
b=

(
 +

(
b
p

))(
ab – 

p

)(
b – 
p

)

=
p–∑
a=

χ (a)
p–∑
b=

(
(ab – )(b – )

p

)

+
p–∑
a=

χ (a)
p–∑
b=

(
(ab – )b(b – )

p

)
. ()
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Note that χ (–) = , from the properties of the complete residue system mod p we also
have

p–∑
a=

χ (a)
p–∑
b=

(
(ab – )(b – )

p

)
=

p–∑
a=

χ (a)
p–∑
b=

(
(ab – a – ) – (a – )

p

)

=
p–∑
a=

χ (a)
p–∑
b=

(
b – (a – )

p

)
()

and
p∑

a=

(
a + n
p

)
=

{
–, if (n,p) = ;
p – , if (n,p) = p.

()

(This formula can be found in Hua’s book [], Section ., Theorem ..)
Combining () and () we can deduce the identity

p–∑
a=

χ (a)
p–∑
b=

(
(ab – )(b – )

p

)
= (p – ) –

p–∑
a=

χ (a) = p. ()

Now Lemma  follows from () and (). �

Lemma  Let p be an odd prime, χ be any non-principal even character mod p. Then for
any integer m with (m,p) = , we have the identity

∣∣∣∣∣
p–∑
a=

χ (a) · e
(
ma

p

)∣∣∣∣∣


= p +
(
m
p

)
· τ (χ) ·

p–∑
a=

χ (a)
(
a – 
p

)
,

where χ = ( ∗
p ) denotes the Legendre symbol with τ (χ) = (–p ) · p.

Proof If (m,p) = , then from the properties of Gauss sums and quadratic residue mod p
we have

p–∑
a=

e
(
ma

p

)
=  +

p–∑
a=

e
(
ma

p

)
=  +

p–∑
a=

(
 +

(
a
p

))
· e

(
ma
p

)

=
p–∑
a=

e
(
ma
p

)
+

p–∑
a=

(
a
p

)
· e

(
ma
p

)

=
(
m
p

) p–∑
a=

(
a
p

)
· e

(
a
p

)
=

(
m
p

)
· τ (χ). ()

Since χ is a non-principal even character mod p, so from identity () and the definition of
G(χ ,m;p) we have

∣∣G(χ ,m;p)
∣∣ = p–∑

a=

p–∑
b=

χ (ab) · e
(
ma –mb

p

)

=
p–∑
a=

χ (a) ·
p–∑
b=

e
(
mb(a – )

p

)
=

p–∑
a=

χ (a) ·
( p–∑

b=

e
(
mb(a – )

p

)
– 

)
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= (p – ) +
p–∑
a=

χ (a) ·
( p–∑

b=

e
(
mb(a – )

p

)
– 

)

= (p – ) –
p–∑
a=

χ (a) + τ (χ) ·
p–∑
a=

χ (a)
(
m(a – )

p

)

= p –
p–∑
a=

χ (a) + τ (χ) ·
p–∑
a=

χ (a)
(
m(a – )

p

)

= p +
(
m
p

)
· τ (χ) ·

p–∑
a=

χ (a)
(
a – 
p

)
.

This completes the proof of Lemma . �

3 Proof of the theorems
In this section, we shall complete the proof of our theorems. First we prove Theorem . In
fact from () and Lemma  we may immediately deduce the identity

∣∣∣∣∣
p–∑
a=

χ (a) · e
(
ma

p

)∣∣∣∣∣


= p +
(
m
p

)
· τ (χ) ·

p–∑
a=

χ (a)
(
a – 
p

)

= p + χ () ·
(
m
p

)
· τ (χ) ·

p–∑
a=

χ (a + a).

This proves Theorem .
Now we prove Theorem ; from Lemma  and Lemma  we have

∑′

χ mod p

∣∣∣∣∣
p–∑
a=

χ (a) · e
(
na

p

)∣∣∣∣∣


·
∣∣∣∣∣
p–∑
a=

χ (a + a)

∣∣∣∣∣


=

∣∣∣∣∣
p–∑
a=

χ(a) · e
(
na

p

)∣∣∣∣∣


·
∣∣∣∣∣
p–∑
a=

χ(a + a)

∣∣∣∣∣


+
∑′

χ mod p
χ �=χ

(
p +

(
n
p

)
· τ (χ) ·

p–∑
a=

χ (a)
(
a – 
p

))

×
(
p +

p–∑
a=

χ (a)
p–∑
b=

(
b(b – )(ab – )

p

))
. ()

If p≡  mod , then we have (–p ) = – and

∣∣∣∣∣
p–∑
a=

χ(a) · e
(
na

p

)∣∣∣∣∣


=

∣∣∣∣∣
p–∑
a=

e
(
na

p

)
– 

∣∣∣∣∣


=
∣∣χ(n)τ (χ) – 

∣∣ = p + , ()

∣∣∣∣∣
p–∑
a=

χ(a + a)

∣∣∣∣∣


=

( p–∑
a=



)

= (p – ). ()
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Note that the identity

∑′

χ mod p

χ (a) =

{
p–
 , if a≡ ± mod p,
, otherwise,

from () we have

∑′

χ mod p
χ �=χ

p–∑
a=

χ (a)
(
a – 
p

)
=

∑′

χ mod p

p–∑
a=

χ (a)
(
a – 
p

)
–

p–∑
a=

(
a – 
p

)

= –
p–∑
a=

(
a – 
p

)
+

(
–
p

)
=  +

(
–
p

)
= ; ()

∑′

χ mod p
χ �=χ

p–∑
a=

χ (a)
p–∑
b=

(
b(b – )(ab – )

p

)

=
∑′

χ mod p

p–∑
a=

χ (a)
p–∑
b=

(
b(b – )(ab – )

p

)
–

p–∑
a=

p–∑
b=

(
b(b – )(ab – )

p

)

= (p – ) ·
p–∑
b=

(
b(b – )(b – )

p

)
–

p–∑
b=

(
b – 
p

) p–∑
a=

(
a – b
p

)

= (p – ) ·
p–∑
b=

(
b
p

)
–

p–∑
b=

(
b – 
p

)(
– –

(
–b
p

))

=  – p – 
(
–
p

)
= –(p – ). ()

Note that ( –p ) = – and

p–∑
a=

p–∑
b=

(
(a – )(b – )(ab – )

p

)

=
p–∑
a=

p–∑
b=

(
(ab – )(b – )(a – )

p

)

=
p–∑
a=

p–∑
b=

(
(a – b)(b – )(a – )

p

)

= –
p–∑
a=

p–∑
b=

(
(b – a)(b – )(a – )

p

)

= –
p–∑
a=

p–∑
b=

(
(ba – a)(ba – )(a – )

p

)

= –
p–∑
a=

p–∑
b=

(
(a – )(b – )(ab – )

p

)
,
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so that we have the identities

p–∑
a=

p–∑
b=

(
(a – )(b – )(ab – )

p

)
=  ()

and

∑′

χ mod p
χ �=χ

( p–∑
a=

χ (a)
p–∑
b=

(
b(b – )(ab – )

p

))( p–∑
a=

χ (a)
(
a – 
p

))

=
∑′

χ mod p

( p–∑
a=

χ (a)
p–∑
b=

(
b(b – )(ab – )

p

))( p–∑
c=

χ (c)
(
c – 
p

))

–

( p–∑
a=

p–∑
b=

(
b(b – )(ab – )

p

))( p–∑
a=

(
a – 
p

))

= (p – ) ·
p–∑
a=

p–∑
b=

(
b(b – )(ab – )

p

)(
a – 
p

)
–  – 

(
–
p

)

= –(p – ) ·
p–∑
a=

p–∑
b=

(
 +

(
b
p

))(
(b – )(ab – )

p

)(
a – 
p

)

+ (p – ) ·
p–∑
a=

p–∑
b=

(
(b – )(ab – )

p

)(
a – 
p

)

= –(p – ) ·
p–∑
a=

p–∑
b=

(
(a – )(b – )(ab – )

p

)

+ (p – ) ·
p–∑
a=

(
a – 
p

) p–∑
b=

(
(ab – a – ) – (a – )

p

)

= (p – ) ·
p–∑
a=

(
a – 
p

) p–∑
b=

(
b – (a – )

p

)
= . ()

Combining ()-() and () we may immediately deduce

∑′

χ mod p

∣∣∣∣∣
p–∑
a=

χ (a) · e
(
na

p

)∣∣∣∣∣


·
∣∣∣∣∣
p–∑
a=

χ (a + a)

∣∣∣∣∣


=

∣∣∣∣∣
p–∑
a=

χ(a) · e
(
na

p

)∣∣∣∣∣


·
∣∣∣∣∣
p–∑
a=

χ(a + a)

∣∣∣∣∣


+
∑′

χ mod p
χ �=χ

(
p +

(
n
p

)
· τ (χ) ·

p–∑
a=

χ (a)
(
a – 
p

))

×
(
p +

p–∑
a=

χ (a)
p–∑
b=

(
b(b – )(ab – )

p

))
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= (p + )(p – ) + p
(
p – 


– 
)
– p(p – )

= p – p + p +  = (p – ) · (p – p – 
)
.

This completes the proof of our theorems.
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