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Abstract
In this paper, we investigate the modified two-component Camassa-Holm equation
with κ �= 0 on the real line. Firstly, we establish sufficient conditions on the initial data
to guarantee that the corresponding solution blows up in finite time for the modified
two-component Camassa-Holm (MCH2) system. Then an infinite propagation speed
for MCH2 is proved in the following sense: the corresponding solution u(x, t) + κ with
compactly supported initial data (u0(x) + κ ,ρ0(x)) does not have compact x-support
in its lifespan.
MSC: 37L05; 35Q58; 26A12

Keywords: MCH2; blow-up; infinite propagation speed

1 Introduction
In this paper, we consider the followingmodified two-component Camassa-Holm system:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
yt + uyx + yux + κux = –gρρ̄x, t > ,x ∈R,
ρt + (ρu)x = , t > ,x ∈R,
y(,x) = y(x), x ∈ R,
ρ(,x) = ρ(x), x ∈ R,

(.)

where y = u – uxx, ρ = ( – ∂
x )(ρ̄ – ρ̄), u denotes the velocity field, and ρ is related to the

free surface density with the boundary assumptions; ρ̄ expresses an averaged or filtered
density, κ is a nonnegative dissipative parameter, g is the downward constant acceleration
of gravity in applications to shallow water waves. For convenience we assume g =  in this
paper.Moreover, u and γ satisfy the boundary conditions: u→ –κ and γ →  as |x| → ∞.
Let� = (–∂

x )

 , then the operator�– can be expressed by its associated Green’s func-

tion G = 
e

–|x| as

�–f (x) =G ∗ f (x) =



∫
R

e–|x–y|f (y)dy.

Let γ = ρ̄ – ρ̄, then γ =G ∗ ρ , and let ũ = u + κ . It is convenient to rewrite system (.) in
the following equivalent integral-differential form:
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
ũt + (̃u – κ )̃ux + ∂xG ∗ (̃u + 

 ũ

x +


γ

 – 
γ


x ) = , t > ,x ∈R,

γt + (̃u – κ)γx +G ∗ ((̃uxγx)x + ũxγ ) = , t > ,x ∈R,
ũ(,x) = ũ(x), x ∈R,
γ (,x) = γ(x), x ∈R.

(.)

In what follows, we will consider system (.) for ũ instead of system (.) for u, and we
omit the tilde on the u for simplicity. So we consider the following system:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut – uxxt + uux – uuxxx – uxuxx – κux + κuxxx = –gρρ̄x, t > ,x ∈R,
ρt + (ρu)x – κρx = , t > ,x ∈R,
y(,x) = y(x), x ∈R,
ρ(,x) = ρ(x), x ∈R.

(.)

Obviously, under the constraints of ρ(x, t) ≡  and κ = , system (.) reduces to the
Camassa-Holm equation, which was derived physically by Camassa and Holm in []
(found earlier by Fokas and Fuchssteniner [] as a bi-Hamiltonian generalization of the
KdV equation) by directly approximating the Hamiltonian for Euler’s equation in the shal-
low water region with u(x, t) representing the free surface above a flat bottom. There have
been extensive studies on Camassa-Holm equation. Now, we mention some results that
are related to our results. Firstly, wave breaking for a large class of initial data has been es-
tablished in [–]. Recently, Zhou andhis collaborators [] give a direct proof forMcKean’s
theorem []. In addition, the large time behavior for the support of momentum density of
the Camassa-Holm equation was studied in []. An interesting phenomenon of the prop-
agation speed for the Camassa-Holm equation with κ =  was presented by Zhou and his
collaborators in their work [] in the sense that a strong solution of the Cauchy problem
with compact initial profile cannot be compactly supported at any later time unless it is
the zero solution. Meanwhile, for the same problem about the equation κ �= , we refer to
[] for details.
The Camassa-Holm equation [] has recently been extended to a two-component

Camassa-Holm (CH) system:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut + uxxt + uux – uxuxx – uuxxx + gρρx = , t > ,x ∈R,
γt + (u – κ)γx +G ∗ ((uxγx)x + uxγ ) = , t > ,x ∈R,
u(,x) = u(x), x ∈R,
γ (,x) = γ(x), x ∈R.

(.)

The CH system appeared initially in [], and recently Constantin and Ivanov in []
gave a demonstration about its derivation in view of the fluid shallow water theory from
the hydrodynamic point of view. This generalization, similar to the Camassa-Holm equa-
tion, possessed the peakon, multi-kink solutions and the bi-Hamiltonian structure [, ]
and is always integrable. The wave breaking mechanism was discussed in [–] and the
existence of global solutions was analyzed in [, , ]. A geometric investigation can be
found in [, ].
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Recently the CH system was generalized into the following modified two-component
Camassa-Holm (MCH) system with ρ �=  and κ = :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut + uux + ∂xG ∗ (u + 

u

x +


γ

 – 
γ


x ) = , t > ,x ∈R,

γt + uγx +G ∗ ((uxγx)x + uxγ ) = , t > ,x ∈R,
u(,x) = u(x), x ∈ R,
γ (,x) = γ(x), x ∈ R.

(.)

Note that theMCH system is amodified version of the two-componentCamassa-Holm
(CH) system to allow a dependence on the average density ρ̄ (or depth, in the shallow
water interpretation) as well as the pointwise density ρ . ThisMCH system admits peaked
solutions in the velocity and average density [–]. We find that the MCH system is
expressed in terms of an averaged or filtered density ρ̄ in analogy to the relation between
momentum and velocity by setting ρ = (– ∂

x )(ρ̄ – ρ̄). Meanwhile, theMCHmay not be
integrable unlike theCH system.The characteristic is that it will amount to strengthening
the norm for ρ̄ from L to H in the potential energy term []. It means we have the
following conserved quantity:

E(t) =
∫
R

(
u + ux + γ  + γ 

x
)
dx.

We cannot obtain the conservation of H norm for the CH system.
In what follows, we always assume κ �=  and ρ �= .
This paper is organized as follows. In Section , we will present some results, which will

be used in this paper. In Section , we will establish several sufficient conditions to guar-
antee that the corresponding strong solution brows up. In Section , we will investigate
the infinite propagation speed of MCH with κ �= .

2 Preliminaries
In this section, for completeness, we recall some elementary results. We list them and
skip their proofs for conciseness. Local well-posedness for the MCH system (.) can be
obtained by Kato’s semigroup theory [].

Theorem . Given X = (u,γ)T ∈ Hs × Hs, s > 
 , there exist a maximal T =

T(‖X‖Hs×Hs ) >  and a unique solution X = (u,γ )T to system (.) such that

X = X(· ,X) ∈ C
(
[,T);Hs ×Hs) ∩C([,T);Hs– ×Hs–).

Moreover, the solution depends continuously on the initial data, i.e. the mapping

X → X(· ,X) :Hs ×Hs → C
(
[,T);Hs ×Hs) ∩C([,T);Hs– ×Hs–),

is continuous.

The proof of the theorem is similar to that in [] and [].
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Lemma . [] Suppose that �(t) is a twice continuously differential satisfying

{
� ′′(t) ≥ C�

′(t)�(t), t > ,C > ,
�(t) > , � ′(t) > .

(.)

Then ψ(t) blows up in finite time.Moreover, the blow-up time can be estimated in terms of
the initial data as

T ≤max

{


C�()
,
�()
� ′()

}
.

Lemma . [] Assume that a differentiable function y(t) satisfies

y′(t)≤ –Cy(t) +K , (.)

with constants C,K > . If the initial data y() = y < –
√

K
C , then the solution to (.) goes

to –∞ before t tends to 
–Cy+ K

y
.

We also need to introduce the standard particle trajectory method for later use. Moti-
vated by McKeans deep observation on the Camassa-Holm equation in [], we can do a
similar particle trajectory as

{
qt = u(q, t) – κ ,  < t < T ,x ∈ R,
q(x, ) = x, x ∈R.

(.)

Differentiating the first equation in (.) with respect to x, one has

dqt
dx

= qxt = ux(q, t)qx, t ∈ (,T).

Hence

qx(x, t) = exp

{∫ t


ux(q, s)ds

}
, qx(x, ) = , (.)

which is always positive before the blow-up time. Therefore, the function q(· , t) is an in-
creasing diffeomorphism of a line.

3 Blow-up
In this section, we establish sufficient conditions on the initial data to guarantee blow-up
for system (.). We start this section with the following useful lemma.

Lemma . Given X = (u,γ)T ∈ Hs × Hs, s > 
 , T is assumed to be the maximal exis-

tence time of the solution X = (u,γ )T to system (.) corresponding to the initial data X.
Then for all t ∈ [,T), we have the following conservation law:

E(t) =
∫
R

(
u + ux + γ  + γ 

x
)
dx. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/125
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Proof We will prove that E(t) is a conserved quantity with respect to the time variable.
Here we use the classical energy method. Multiplying the first equation in (.) by u(x, t)
and integrating by parts, we obtain

∫
R

uut dx +
∫
R

uxuxt dx = –
∫
R

uγ γx dx +
∫
R

uγxγxx dx. (.)

Similarly, we have the following identity for the second equation in (.):

∫
R

γ γt dx +
∫
R

γxγxt dx =
∫
R

uγ γx dx –
∫
R

uγxγxx dx + κ

∫
R

γ (γx – γxxx)dx. (.)

Combining the above equalities, we get

d
dt

∫
R

(
u + ux + γ  + γ 

x
)
dx = 

∫
R

(uut + uxuxt + γ γt + γxγxt) = .

Therefore, E(t) is conserved. Using the conservation law, we obtain

∥∥u(· , t)∥∥L∞(R) +
∥∥γ (· , t)∥∥L∞(R) ≤ 


‖u‖H(R) +



‖γ ‖H(R)

=


‖u‖H(R) +



‖γ‖H(R)

=


E,

for all t ∈ [,T), where E is the initial value of E(t). �

The next result describes the precise blow-up scenarios for sufficiently regular solutions
to system (.).

Theorem . Given X = (u,γ)T ∈ Hs × Hs, s > 
 , there exist a maximal T =

T(‖X‖Hs×Hs ) >  and a unique solution X = (u,γ )T to system (.).Then the corresponding
solutions blows up in finite time if and only if

lim inf
t→T

inf
x∈R

{
ux(x, t)

}
= –∞ or lim inf

t→T
inf
x∈R

{
γx(x, t)

}
= –∞.

Proof By a simple density argument, one needs only to show that the desired results are
valid when s≥ , so in the following section, s =  is taken for simplicity of notation. Firstly,
multiplying the first and second equations in (.) by uxx and γxx, respectively, and inte-
grating by parts, we have


(∫

R

uxuxt dx +
∫
R

uxxuxxt dx
)

= –
∫
R

ux
(
ux + uxx

)
dx + 

∫
uxx(γ γx – γxγxx)dx, (.)


(∫

R

γxγxt dx +
∫
R

γxxγxxt dx
)
= –

∫
R

ux
(
γ 

x + γ 
xx

)
dx – 

∫
uxxγ γx dx, (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/125
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and then combining (.) and (.), we obtain

d
dt

∫
R

u + ux + uxx + γ  + γ 
x + γ 

xx dx

= –
∫
R

ux
(
ux + uxx + γ 

x + γ 
xx

)
dx – 

∫
R

γxxγxuxx dx. (.)

Assume that T < ∞ and there existsM > , such that

ux(t,x)≥ –M and γx(t,x)≥ –M for ∀(t,x) ∈ [,T)×R. (.)

Then, applying Gronwall’s inequality to (.) and (.), we get

∥∥uxx(t)∥∥
L +

∥∥γxx(t)
∥∥
L ≤ ∥∥u(t)∥∥

H +
∥∥γ (t)

∥∥
H ≤ (‖u‖H + ‖γ‖H

)
eMT . (.)

On the other hand, differentiating the two equations in (.) with respect to x, then mul-
tiplying by uxxx and γxxx, respectively, and combining with (.) and (.), we obtain

d
dt

(∥∥u(t)∥∥
H +

∥∥γ (t)
∥∥
H

) ≤ CM
(∥∥u(t)∥∥

H +
∥∥γ (t)

∥∥
H

)
– 

∫
R

γxxγxxxuxx dx. (.)

Then applying the Sobolev embedding result Hs(R) ↪→ L∞(R) (with s > 
 ), we get

–
∫
R

γxxγxxxuxx dx ≤ C
(∥∥u(t)∥∥

H +
∥∥γ (t)

∥∥
H

)(∥∥uxx(t)∥∥
L +

∥∥γxx(t)
∥∥
L

) 
 , (.)

because of (.), (.), (.), and the Gronwall inequality, we obtain

∥∥u(t)∥∥
H +

∥∥γ (t)
∥∥
H ≤ (‖u‖H + ‖γ‖H

)
eA, for ∀t ∈ [,T), (.)

where A = C[M + (‖u‖H + ‖γ‖H )

 eMT ]T .

This contradicts the assumption. Conversely, the Sobelev embedding result Hs(R) ↪→
L∞(R) (with s > 

 ) implies that if Theorem . holds, the solution blows up in finite time,
which completes the proof of Theorem .. �

We state our first criterion via the associated initial potential as follows.

Theorem . Suppose X = (u,γ)T ∈ Hs ×Hs, s > 
 , ρ(x) = , y(x) = , and the ini-

tial data satisfies the following conditions:

(i) ρ ≥  on (–∞,x) and ρ ≤  on (x,∞),

(ii)
∫ x

–∞
eξy(ξ )dξ ≥  and

∫ ∞

x
e–ξy(ξ )dξ ≤ ,

for some point x ∈ R. Then the solution to our system (.) with initial value X blows up
in finite time.

http://www.journalofinequalitiesandapplications.com/content/2014/1/125
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Remark . This theorem is similar to the result proved by Zhou in [].

Proof Differentiating the first equation (.) with respect to variable x, we obtain

utx + (u – κ)uxx + ux + ∂
x

(
G ∗

(
u +



ux +



γ  –



γ 
x

))
= . (.)

Applying ∂
x (G ∗ f ) =G ∗ f – f to (.) yields

utx + (u – κ)uxx = u –


ux +



γ  –



γ 
x –G ∗

(
u +



ux +



γ  –



γ 
x

)
. (.)

This equation gives

d
dt

ux
(
q(x, t), t

)
= uxt

(
q(x, t), t

)
+

(
u
(
q(x, t), t

)
– κ

)
uxx

(
q(x, t), t

)
≤ 


u

(
q(x, t), t

)
–


ux

(
q(x, t), t

)
+


γ (q(x, t), t) – 


γ 
x
(
q(x, t), t

)
–G ∗

(


γ  –



γ 
x

)
, (.)

where we used the fact

G ∗
(
u +



ux

)
≥ 


u.

In order to arrive at our result, we need the following three claims.
Claim . y(q(x, t), t) + κ =  for all t in its lifespan.
It is worth to notice the first two equations in (.) as follows:

yt + yux + yxu – κyx + ργx = , t > ,x ∈R, (.)

ρt + (ρu)x – κρx = , t > ,x ∈R. (.)

By applying the particle trajectory method to the above two equations, we obtain

d
dt

y
(
q(x, t), t

)
qx(x, t) = ytqx + yxqtqx + yqxqxt

=
(
yt + yux + yx(u – κ)

)
qx(x, t)

= –ρ
(
q(x, t), t

)
γx

(
q(x, t), t

)
qx(x, t) (.)

and

d
dt

(
ρ
(
q(x, t), t

)
qx(x, t)

)
= (ρt + ρxu + ρux)qx = ,

which implies that

ρ
(
q(x, t), t

)
qx(x, t) = ρ(x). (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/125
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Obviously, we can obtain ρ(q(x, t), t) =  since ρ(x) = ; then we deduce that

d
dt

y
(
q(x, t), t

)
qx(x, t) = .

Thus it is easier to see that y(q(x, t), t)qx(x, t) is independent on time t. Without loss of
generality, we take t = , and we have

y
(
q(x, t), t

)
qx(x, t) = y(x) = .

Therefore, thanks to (.) we obtain y(q(x, t), t) = , for all t in its lifespan.
Claim . For any fixed t, γ 

x (x, t) – γ (x, t)≤ (γ 
x – γ )(q(x, t), t) for all x ∈R.

If x≤ q(x, t), then

γ 
x (x, t) – γ (x, t) = –

(∫ q(x,t)

–∞
eξ ρ(ξ , t)dξ –

∫ q(x,t)

x
eξ ρ(ξ , t)dξ

)

×
(∫ ∞

q(x,t)
e–ξ ρ(ξ , t)dξ +

∫ q(x,t)

x
e–ξ ρ(ξ , t)dξ

)
= γ 

x
(
q(x, t), t

)
– γ (q(x, t), t)

–
∫ x

–∞
eξ ρ(ξ , t)dξ

∫ q(x,t)

x
e–ξ ρ(ξ , t)dξ

+
∫ q(x,t)

x
eξ ρ(ξ , t)dξ

∫ ∞

q(x,t)
e–ξ ρ(ξ , t)dξ

≤ γ 
x
(
q(x, t), t

)
– γ (q(x, t), t), (.)

where the condition (i) is used. Similarly, for x ≥ q(x, t), we also have

γ 
x (x, t) – γ (x, t) ≤ γ 

x
(
q(x, t), t

)
– γ (q(x, t), t), (.)

for any fixed t. Combining (.) and (.), we get

γ 
x (x, t) – γ (x, t) ≤ γ 

x
(
q(x, t), t

)
– γ (q(x, t), t), for all x ∈R.

Combining Claim  with (.), we get

d
dt

ux
(
q(x, t), t

) ≤ 

u

(
q(x, t), t

)
–


ux

(
q(x, t), t

)
. (.)

Claim . ux(q(x, t), t) <  is decreasing, u(q(x, t), t) < ux(q(x, t), t) for all t ≥ .
Suppose not, i.e. there exists a t such that u(q(x, t), t) < ux(q(x, t), t) on [, t) and

u(q(x, t), t) = ux(q(x, t), t). Now, let

I(t) :=


e–q(x,t)

∫ q(x,t)

–∞
eξy(ξ , t)dξ

and

II(t) :=


eq(x,t)

∫ ∞

q(x,t)
e–ξy(ξ , t)dξ .

http://www.journalofinequalitiesandapplications.com/content/2014/1/125
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Firstly, differentiating I(t), we have

dI(t)
dt

= –


u
(
q(x, t), t

)
e–q(x,t)

∫ q(x,t)

–∞
eξy(ξ , t)dξ

+


κe–q(x,t)

∫ q(x,t)

–∞
eξy(ξ , t)dξ +



e–q(x,t)

∫ q(x,t)

–∞
eξyt(ξ , t)dξ

=


u(ux – u)

(
q(x, t), t

)
+


κe–q(x,t)

∫ q(x,t)

–∞
eξy(ξ , t)dξ

–


e–q(x,t)

∫ q(x,t)

–∞
eξ (uyx + uxy + ργx – κyx)dξ

≥ 

u(ux – u)

(
q(x, t), t

)
+


κe–q(x,t)

∫ q(x,t)

–∞
eξy(ξ , t)dξ

+



(
u + ux – uux

)(
q(x, t), t

)
+


κe–q(x,t)

∫ q(x,t)

–∞
eξyx(ξ , t)dξ

–



γ (q(x, t), t) + 


γ 
x
(
q(x, t), t

)
+G ∗

(



γ  –



γ 
x

)
≥ 


ux

(
q(x, t), t

)
–


u

(
q(x, t), t

)
> , on [, t), (.)

where we used the Claim .
Secondly, by the same argument, we get

dII(t)
dt

=


u
(
q(x, t), t

)
eq(x,t)

∫ ∞

q(x,t)
e–ξy(ξ , t)dξ

–


κeq(x,t)

∫ ∞

q(x,t)
e–ξy(ξ , t)dξ +



eq(x,t)

∫ ∞

q(x,t)
e–ξyt(ξ , t)dξ

=


u(ux + u)

(
q(x, t), t

)
–


κeq(x,t)

∫ ∞

q(x,t)
e–ξy(ξ , t)dξ

–


eq(x,t)

∫ ∞

q(x,t)
e–ξ (uyx + uxy + ργx – κyx)dξ

≤ 

u(ux + u)

(
q(x, t), t

)
–


κeq(x,t)

∫ ∞

q(x,t)
e–ξy(ξ , t)dξ

–



(
u + ux + uux

)(
q(x, t), t

)
+


κeq(x,t)

∫ ∞

q(x,t)
e–ξyx(ξ , t)dξ

+



γ (q(x, t), t) – 


γ 
x
(
q(x, t), t

)
–G ∗

(



γ  –



γ 
x

)
≤ –



ux

(
q(x, t), t

)
+


u

(
q(x, t), t

)
< , on [, t). (.)

Hence, based on (.), (.), and the continuity property of ODEs, we have

ux
(
q(x, t), t

)
– u

(
q(x, t), t

)
= –I(t)II(t) > –I()II() ≥ ,

for all t > , which implies t can be extended to infinity.
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Using (.) and (.) again, we have the following equation for ux(q(x, t), t) –
u(q(x, t), t):

d
dt

(
ux

(
q(x, t), t

)
– u

(
q(x, t), t

))
= –

d
dt

I(t)II(t)

= –II(t)
d
dt

I(t) – I(t)
d
dt

II(t)

≥ –II(t)
(
ux – u

)(
q(x, t), t

)
+ I(t)

(
ux – u

)(
q(x, t), t

)
= –ux

(
q(x, t), t

)(
ux – u

)(
q(x, t), t

)
, (.)

where we used ux(q(x, t), t) = –I(t) + II(t).
Now, substituting (.) into (.), it yields

d
dt

(
ux

(
q(x, t), t

)
– u

(
q(x, t), t

))
≥ 


(
ux

(
q(x, t), t

)
– u

(
q(x, t), t

)) × (–ux)
(
q(x, t), t

)
≥ 


(
ux

(
q(x, t), t

)
– u

(
q(x, t), t

))
×

(∫ t



(
ux

(
q(x, t), t

)
– u

(
q(x, t), t

))
dτ – ux(x)

)
. (.)

Let �(t) =
∫ t
 (u


x(q(x, t), t) – u(q(x, t), t))dτ – ux(x), then (.) is an equation of

type (.) with C = 
 . The proof is completed by applying Lemma .. �

Remark . Scrutinizing the proof, we discover that the condition (i) guarantees that
inequality (.), (.) hold. If it is replaced by

ρ ≤  on (–∞,x) and ρ ≥  on (x,∞),

we find that the inequalities (.), (.) still hold. As is well known, McKean [] states
that only the sign of the initial potential y(x), not the size of it, affects the wave breaking
phenomenon. Similar to his theorem, we apply a similar initial potential y(x) + κ to the
two-component case, and it reveals that the sign of the initial density ρ(x) also plays an
important role.

Then we give the second criterion in this paper.

Theorem . Suppose X = (u,γ)T ∈ Hs × Hs, s > 
 , and that we have the following

inequality:

(∫
R

ux dx
)

> E
 and

∫
R

ux dx < .

Then the corresponding solution to system (.) blows up in finite time.
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Proof Let

m(t) =
∫
R

ux dx, t ≥ .

Multiplying (.) with ux and integrating by parts subsequently, we obtain the equation
form(t) as



dm(t)
dt

= –



∫
R

ux dx +



∫
R

ux dx –
∫
R

uxG ∗
[
u +

ux


+
γ 


–

γ 
x


]
dx

+
∫
R

ux

[
u +

γ 


–

γ 
x


]
dx

≤ –



∫
R

ux dx +



∫
R

uux dx +



∫
R

uxG ∗ γ 
x dx +




∫
R

uxγ
 dx

≤ –



∫
R

ux dx +



∫
R

ux
[
u + γ ]dx + 


∥∥γ 

x
∥∥
L

∫
R

ux dx,

where we used

∥∥G ∗ γ 
x
∥∥
L∞ ≤ ‖G‖L∞

∥∥γ 
x
∥∥
L ≤ 


∥∥γ 

x
∥∥
L .

According to the invariant property of E(t), we get




∫
R

ux
[
u + γ ]dx + 


∥∥γ 

x
∥∥
L

∫
R

ux dx ≤ 

E
 +



E
 =



E
.

On the other hand, the Cauchy-Schwarz inequality implies that

∣∣∣∣∫
R

ux dx
∣∣∣∣ ≤

(∫
R

ux dx
)/(∫

R

ux dx
)/

,

therefore∫
R

ux dx ≥ 
E

(∫
R

ux dx
)

.

Thus we obtain from the above that

dm(t)
dt

≤ –
m

E
+


E
.

The hypothesis of this theorem and the standard argument on the Riccati type equation
ensure that there exists a time T such that

lim
t→T

∫
R

ux dx = –∞.

Since∫
R

ux dx ≥ infux(x, t)
∫
R

ux dx ≥ infux(x, t)E,
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we have

lim inf
t→T

inf
x∈R

ux(x, t) = –∞.

This completes the proof. �

Finally, we give the third criterion.

Theorem . Suppose X = (u,γ)T ∈ Hs × Hs, s > 
 , ρ and u satisfy the following

conditions:

(i) ρ ≥  on (–∞,x) and ρ ≤  on (x,∞)(
or ρ ≤  on (–∞,x) and ρ ≥  on (x,∞)

)
,

(ii) u′
(x) ≤ –

√



E


 .

Proof As mentioned in Claim  of Theorem ., condition (i) means that for any fixed t,
γ 
x (x, t) – γ (x, t)≤ γ 

x (q(x, t), t) – γ (q(x, t), t) for all x ∈R. Then

d
dt

ux
(
q(x, t), t

) ≤ 

u

(
q(x, t), t

)
–


ux

(
q(x, t), t

)
≤ 


‖u‖H –



ux

(
q(x, t), t

)
≤ 


E –



ux

(
q(x, t), t

)
,

let ϕ(t) = ux(q(x, t), t), we obtain

dϕ

dt
≤ –



ϕ +K,

where K = 
E



 . By applying Lemma ., we have

lim
t→T

ϕ(t) = –∞, with T =


– 
ϕ + K

ϕ

,

from the condition that

ϕ < –
√
K = –

√



E


 .

This completes the proof. �

4 Infinite propagation speed
In this section, we consider the infinite propagation speed for system (.). It can be shown
as follows.

Theorem . Assume T = T(u,ρ) >  is the maximal existence time of the unique clas-
sical solutions (u,ρ) to system (.). If u(x) = u(x, ) has compact support [α,β], and ρ is
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also compactly supported on the interval [α,β],moreover, ρ >  (or ρ <  ) on [α,β], then
for t ∈ (,T], we have

u(x, t) =

{
φ–(t)e–x, x > q(α, t),
φ+(t)ex, x < q(β , t),

where φ–(t) and φ+(t) denote continuous nonvanishing functions with φ–(t) <  and φ+(t) >
 for t ∈ (,T]. Furthermore, φ–(t) is a strictly decreasing function, while φ+(t) is an in-
creasing function.

Proof Since ρ has initially compact support [α,β], and thanks to (.) and (.), we
obtain y(q(x, t), t)qx(x, t) = y(x), for any x ∈ R – [α,β]; simultaneously, u(x) has com-
pact support [α,β], which implies that y(x) has compact support [α,β]. It follows that
y(q(x, t), t)qx(x, t) = y(x) = , for any x ∈ R – [α,β]. So y is compactly supported with its
support contained in the interval [q(α, t),q(β , t)]. Therefore the following functions are
well defined:

E+(t) =
∫
R

exy(x, t)dx and E–(t) =
∫
R

e–xy(x, t)dx,

with

E+(t) =
∫
R

exy dx =  and E–(t) =
∫
R

e–xy dx = . (.)

Then, for x > q(β , t),

u(x, t) =


e–|x| ∗ y(x, t) =



e–x

∫ q(β ,t)

q(α,t)
exy(x, t)dt =



e–xE+(t), (.)

similarly, when x < q(α, t)

u(x, t) =


e–|x| ∗ y(x, t) =



ex

∫ q(β ,t)

q(α,t)
e–xy(x, t)dt =



exE–(t). (.)

Hence, as consequences of (.) and (.), we have

u(x, t) = –ux(x, t) = uxx(x, t) =


e–xE+(t), as x > q(β , t), (.)

and

u(x, t) = ux(x, t) = uxx(x, t) =


exE–(t), as x < q(α, t). (.)

On the other hand,

dE+(t)
dt

=
∫ ∞

–∞
exyt(x, t)dx

=
∫ ∞

–∞
ex

{
–(yux) – yux + κyx – ργx

}
dx

http://www.journalofinequalitiesandapplications.com/content/2014/1/125
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=
∫ ∞

–∞
ex

[
u +



ux – ργx

]
dx

=
∫ ∞

–∞
ex

[
u +



ux + γ  – γ 

x

]
dx. (.)

For any fixed t, γ  – γ 
x = ex

∫ ∞
x eτ ρ(τ , t)dτ × e–x

∫ x
–∞ e–τ ρ(τ , t)dτ , for all x ∈ R. Then

for x > q(β , t), we have

γ  – γ 
x = , (.)

similarly, when x < q(α, t), we get

γ  – γ 
x = , (.)

when q(α, t)≤ x ≤ q(β , t), we obtain

γ  – γ 
x = ex

∫ q(β ,t)

x
eτ ρ(τ , t)dτ × e–x

∫ x

q(α,t)
e–τ ρ(τ , t)dτ > . (.)

By using (.), (.), and (.), we have

dE+(t)
dt

> . (.)

Therefore, E+(t) is an increasing function in the lifespan. From (.), it follows that
E+(t) >  for t ∈ (,T].
Similarly, it is easy to see that E–(t) is decreasing with E–() = . Therefore, E–(t) <  for

t ∈ (,T].
Taking ϕ±(t) = 

E±(t), we obtain what we want. Then the theorem is proved. �

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details
1Department of Mathematics, Zhejiang Normal University, Jinhua, China. 2Nonlinear Analysis and Applied Mathematics
(NAAM) Research Group, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia. 3Department of
Mathematics, Quaid-I-Azam University 45320, Islamabad, 44000, Pakistan.

Acknowledgements
This work is partially supported by NSFC (Grant No. 11101376), NSFC (Grant No. 11226176) and ZJNSF (Grant No.
LQ13A010008).

Received: 21 January 2014 Accepted: 14 March 2014 Published: 28 Mar 2014

References
1. Camassa, R, Holm, D: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661-1664

(1993)
2. Fuchssteiner, B, Fokas, AS: Symplectic structures, their Backlund transformations and hereditary symmetries. Physica

D 4(1), 47-66 (1981/1982)
3. Constantin, A, Escher, J: Well-posedness, global existence and blow-up phenomenon for a periodic quasi-linear

hyperbolic equation. Commun. Pure Appl. Math. 51, 475-504 (1998)
4. Constantin, A, Escher, J: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229-243

(1998)

http://www.journalofinequalitiesandapplications.com/content/2014/1/125


Lv et al. Journal of Inequalities and Applications 2014, 2014:125 Page 15 of 15
http://www.journalofinequalitiesandapplications.com/content/2014/1/125

5. McKean, HP: Breakdown of a shallow water equation. Asian J. Math. 2, 767-774 (1998)
6. Zhou, Y: Wave breaking for a shallow water equation. Nonlinear Anal. 57, 137-152 (2004)
7. Jiang, Z, Ni, L, Zhou, Y: Wave breaking of the Camassa-Holm equation. J. Nonlinear Sci. 22, 235-245 (2012)
8. Jiang, Z, Zhou, Y, Zhu, M: Large time behavior for the support of momentum density of the Camassa-Holm equation.

J. Math. Phys. 54, 081503 (2013)
9. Himonas, A, Misiolek, G, Ponce, G, Zhou, Y: Persistence properties and unique continuation of solutions of the

Camassa-Holm equation. Commun. Math. Phys. 271, 511-512 (2007)
10. Zhou, Y, Chen, H: Wave breaking and propagation speed for the Camassa-Holm equation with κ �= 0. Nonlinear Anal.,

Real World Appl. 12(3), 1875-1882 (2011)
11. Olver, P, Rosenau, P: Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support.

Phys. Rev. E 53, 1900-1906 (1996)
12. Constantin, A, Ivanov, R: On an integrable two-component Camassa-Holm shallow water system. Phys. Lett. A 372,

7129-7132 (2008)
13. Chen, M, Liu, S, Zhang, Y: A two-component generalization of the Camassa-Holm equation and its solutions. Lett.

Math. Phys. 75, 1-15 (2006)
14. Falqui, G: On a Camassa-Holm type equation with two dependent variables. J. Phys. A 39, 327-342 (2006)
15. Escher, J, Lechtenfeld, O, Yin, Z: Well-posedness and blow-up phenomena for the 2-component Camassa-Holm

equation. Discrete Contin. Dyn. Syst. 19, 493-513 (2007)
16. Gui, G, Liu, Y: On the global existence and wave-breaking criteria for the two-component Camassa-Holm system.

J. Funct. Anal. 258, 4251-4278 (2010)
17. Guo, Z, Zhu, M: Wave breaking for a modified two-component Camassa-Holm system. J. Differ. Equ. 252, 2759-2770

(2012)
18. Guo, Z: Blow-up and global solutions to a new integrable model with two components. J. Math. Anal. Appl. 372,

316-327 (2010)
19. Holm, D, Ivanov, R: Two component CH system: inverse scattering, peakons and geometry. Inverse Probl. 27, 045013

(2011)
20. Guan, C, Karlsen, KH, Yin, Z: Well-posedness and blow-up phenomena for a modified two-component

Camassa-Holm equation. In: Proceedings of the 2008-2009 Special Year in Nonlinear Partial Differential Equations.
Contemp. Math., pp. 199-220. Am. Math. Soc., Providence (2010)

21. Guo, Z, Zhu, M, Ni, L: Blow-up criteria of solutions to a modified two-component Camassa-Holm system. Nonlinear
Anal. 12, 3531-3540 (2011)

22. Holm, D, Náraigh, LÓ, Tronci, C: Singular solutions of a modified two-component Camassa-Holm equation. Phys. Rev.
E 3(79), 016601 (2009)

23. Jin, L, Guo, Z: A note on a modified two-component Camassa-Holm system. Nonlinear Anal., Real World Appl. 13,
887-892 (2012)

24. Kato, T: Spectral Theory and Differential Equations. Proceedings of the Symposium held, Dundee, 1974. Lecture
Notes in Math., vol. 48, p. 25. Springer, Berlin (1975). Dedicated to Konrad Jorgens

25. Yan, W, Tian, L, Zhu, M: Local well-posedness and blow-up phenomenon for a modified two-component
Camassa-Holm system in Besov spaces. Int. J. Nonlinear Sci. 13, 99-104 (2012)

26. Zhou, Y: On solutions to the Holm-Staley b-family of equations. Nonlinearity 23, 369-381 (2010)
27. Zhou, Y: Blow-up of solutions to a nonlinear dispersive rod equation. Calc. Var. Partial Differ. Equ. 25, 63-77 (2005)

10.1186/1029-242X-2014-125
Cite this article as: Lv et al.:Wave breaking and infinite propagation speed for a modified two-component
Camassa-Holm system with κ �= 0. Journal of Inequalities and Applications 2014, 2014:125

http://www.journalofinequalitiesandapplications.com/content/2014/1/125

	Wave breaking and inﬁnite propagation speed for a modiﬁed two-component Camassa-Holm system with kappa=0
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Blow-up
	Inﬁnite propagation speed
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


