Correction: Cesàro summable difference sequence space

Vinod K Bhardwaj ${ }^{1 *}$ and Sandeep Gupta ${ }^{2}$
"Correspondence:
vinodk_bhj@rediffmail.com
${ }^{1}$ Department of Mathematics, Kurukshetra University, Kurukshetra, 136119, India
Full list of author information is available at the end of the article

Abstract

Theorem 3.7 of Bhardwaj and Gupta, Cesàro summable difference sequence space, J. Inequal. Appl. 2013:315, 2013, is incorrect as it stands. The corrected version of this theorem is given here.

MSC: 40C05; 40A05; 46A45
Keywords: sequence space; AK property; Schauder basis

In [1], Bhardwaj and Gupta have introduced the Cesàro summable difference sequence space $C_{1}(\Delta)$ as the set of all complex sequences $x=\left(x_{k}\right)$ with $\left(x_{k}-x_{k+1}\right) \in C_{1}$, where C_{1} is the linear space of all $(C, 1)$ summable sequences.

Unfortunately, Theorem 3.7 of [1] is incorrect, as it stands. Consequently the assertions of Corollaries 3.8 and 3.9 of [1] remain actually open. The corrected version of Theorem 3.7 of [1] is obtained here as Corollary 2 to Theorem 1, which is itself a negation of Corollary 3.8 of [1]. Finally Corollary 3.9 of [1] is proved as Theorem 3.

It is well known that C_{1} is separable (see, for example, Theorem 4 of [2]). In view of the fact [3, Theorem 3] that 'if a normed space X is separable, then so is $X(\Delta)$ ', it follows that Theorem 3.7 of [1] is untrue. The mistake lies in the third line of the proof where it is claimed that A is uncountable. In fact, A is countable.

The following theorem provides a Schauder basis for $C_{1}(\Delta)$ and hence negates Corollary 3.8 of [1].

Theorem $1 C_{1}(\Delta)$ has Schauder basis namely $\left\{\bar{e}, e, e_{1}, e_{2}, \ldots\right\}$, where $\bar{e}=(0,1,2,3, \ldots), e=$ $(1,1,1, \ldots)$ and $e_{k}=(0,0,0, \ldots, 1,0,0, \ldots), 1$ is in the kth place and 0 elsewhere for $k=1,2, \ldots$.

Proof Let $x=\left(x_{k}\right) \in C_{1}(\Delta)$ with $\frac{1}{k} \sum_{i=1}^{k} \Delta x_{i} \rightarrow \ell$, i.e., $\lim _{k} \frac{1}{k}\left(x_{1}-x_{k+1}\right)=\ell$. We have

$$
\begin{aligned}
\left\|x-\left\{x_{1} e-\ell \bar{e}+\sum_{k=1}^{n}\left(x_{k}-x_{1}+(k-1) \ell\right) e_{k}\right\}\right\|_{\Delta} & =\sup _{k \geq n}\left|\frac{1}{k}\left(x_{1}-x_{k+1}\right)-\ell\right| \\
& \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

so that $x=x_{1} e-\ell \bar{e}+\sum_{k}\left(x_{k}-x_{1}+(k-1) \ell\right) e_{k}$. If also we had $x=a e+b \bar{e}+\sum_{k} a_{k} e_{k}$, then

$$
s_{n}=\left(x_{1}-a\right) e-(\ell+b) \bar{e}+\sum_{k=1}^{n}\left(x_{k}-x_{1}+(k-1) \ell-a_{k}\right) e_{k} \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

But for all $n \in \mathbb{N},\left|x_{1}-a-a_{1}\right| \leq\left\|s_{n}\right\|_{\Delta},\left|\frac{k b-x_{k+1}+x_{1}+a_{k+1}-a_{1}}{k}\right| \leq\left\|s_{n}\right\|_{\Delta}$ for $1 \leq k \leq n-1$ and $\left|\frac{-a_{1}+k(\ell+b)}{k}\right| \leq\left\|s_{n}\right\|_{\Delta}$ for all $k \geq n$. Letting $n \rightarrow \infty$, we see that $x_{1}=a, b=-\ell, a_{1}=0$ and $a_{k+1}=x_{k+1}-k b-x_{1}+a_{1}=k \ell-x_{1}+x_{k+1}$, for $k \geq 1$, so that the representation $x=x_{1} e-\ell \bar{e}+$ $\sum_{k}\left(x_{k}-x_{1}+(k-1) \ell\right) e_{k}$ is unique.

The following is a correction of Theorem 3.7 of [1].

Corollary $2 C_{1}(\Delta)$ is separable.

The result follows from the fact that if a normed space has a Schauder basis, then it is separable.
Finally, we prove a theorem which is in fact Corollary 3.9 of [1].

Theorem $3 C_{1}(\Delta)$ does not have the AK property.

Proof Let $x=\left(x_{k}\right)=(1,2,3, \ldots) \in C_{1}(\Delta)$. Consider the nth section of the sequence $\left(x_{k}\right)$ written as $x^{[n]}=(1,2,3, \ldots, n, 0,0, \ldots)$. Then

$$
\begin{aligned}
\left\|x-x^{[n]}\right\|_{\Delta} & =\|(0,0,0, \ldots, n+1, n+2, \ldots)\|_{\Delta} \\
& =\sup _{k \geq n}\left|\frac{0-(k+1)}{k}\right| \\
& =1+\frac{1}{n}
\end{aligned}
$$

which does not tend to 0 as $n \rightarrow \infty$.

Author details

${ }^{1}$ Department of Mathematics, Kurukshetra University, Kurukshetra, 136119, India. ${ }^{2}$ Department of Mathematics, Arya P. G. College, Panipat, 132103, India.

Received: 18 December 2013 Accepted: 18 December 2013 Published: 09 Jan 2014

References

1. Bhardwaj, VK, Gupta, S: Cesàro summable difference sequence space. J. Inequal. Appl. 2013, 315 (2013)
2. Bennet, G: A representation theorem for summability domains. Proc. Lond. Math. Soc. 24, 193-203 (1972)
3. Çolak, R: On some generalized sequence spaces. Commun. Fac. Sci. Univ. Ank. Ser. 38, 35-46 (1989)
10.1186/1029-242X-2014-11

Cite this article as: Bhardwaj and Gupta: Correction: Cesàro summable difference sequence space. Journal of Inequalities and Applications 2014, 2014:11

