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Abstract
Theorem 3.7 of Bhardwaj and Gupta, Cesàro summable difference sequence space,
J. Inequal. Appl. 2013:315, 2013, is incorrect as it stands. The corrected version of this
theorem is given here.
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In [], Bhardwaj and Gupta have introduced the Cesàro summable difference sequence
space C(�) as the set of all complex sequences x = (xk) with (xk – xk+) ∈ C, where C is
the linear space of all (C, ) summable sequences.
Unfortunately, Theorem . of [] is incorrect, as it stands. Consequently the assertions

of Corollaries . and . of [] remain actually open. The corrected version of Theo-
rem . of [] is obtained here as Corollary  to Theorem , which is itself a negation of
Corollary . of []. Finally Corollary . of [] is proved as Theorem .
It is well known that C is separable (see, for example, Theorem  of []). In view of the

fact [, Theorem ] that ‘if a normed space X is separable, then so is X(�)’, it follows that
Theorem . of [] is untrue. The mistake lies in the third line of the proof where it is
claimed that A is uncountable. In fact, A is countable.
The following theorem provides a Schauder basis for C(�) and hence negates Corol-

lary . of [].

Theorem  C(�) has Schauder basis namely {e, e, e, e, . . .}, where e = (, , , , . . .), e =
(, , , . . .) and ek = (, , , . . . , , , , . . .),  is in the kth place and elsewhere for k = , , . . . .

Proof Let x = (xk) ∈ C(�) with 
k
∑k

i= �xi → �, i.e., limk

k (x – xk+) = �. We have

∥∥∥∥∥x –
{
xe – �e +

n∑
k=

(
xk – x + (k – )�

)
ek

}∥∥∥∥∥
�

= sup
k≥n

∣∣∣∣ k (x – xk+) – �

∣∣∣∣
→  as n→ ∞

so that x = xe – �e +
∑

k(xk – x + (k – )�)ek . If also we had x = ae + be +
∑

k akek , then

sn = (x – a)e – (� + b)e +
n∑
k=

(
xk – x + (k – )� – ak

)
ek →  as n→ ∞.
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But for all n ∈ N, |x – a – a| ≤ ‖sn‖�, | kb–xk++x+ak+–ak | ≤ ‖sn‖� for  ≤ k ≤ n –  and
|–a+k(�+b)k | ≤ ‖sn‖� for all k ≥ n. Letting n → ∞, we see that x = a, b = –�, a =  and
ak+ = xk+ – kb– x + a = k�– x + xk+, for k ≥ , so that the representation x = xe– �e +∑

k(xk – x + (k – )�)ek is unique. �

The following is a correction of Theorem . of [].

Corollary  C(�) is separable.

The result follows from the fact that if a normed space has a Schauder basis, then it is
separable.
Finally, we prove a theorem which is in fact Corollary . of [].

Theorem  C(�) does not have the AK property.

Proof Let x = (xk) = (, , , . . .) ∈ C(�). Consider the nth section of the sequence (xk)
written as x[n] = (, , , . . . ,n, , , . . .). Then

∥∥x – x[n]
∥∥

�
=

∥∥(, , , . . . ,n + ,n + , . . .)
∥∥

�

= sup
k≥n

∣∣∣∣ – (k + )
k

∣∣∣∣
=  +


n

which does not tend to  as n → ∞. �
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