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Abstract
The purpose of this paper is to investigate a sharpened version of Hardy’s inequality
for parameter p = 5/4. By evaluating the weight coefficientW(k, 5/4), sharpened
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1 Introduction
Let p > , /p + /q = , an ≥  (n = , , . . .),  <

∑∞
n= a

p
n < ∞. Then

∞∑
n=

(

n

n∑
k=

ak

)p

< qp
∞∑
n=

apn, ()

where qp = ( p
p– )

p is the best coefficient. Inequality () is called Hardy’s inequality which is
of great use in the field of modern mathematics (see [, ]).
A special case of () yields the following inequalities:

∞∑
n=

(

n

n∑
k=

ak

)

< 
∞∑
n=

an, ()

∞∑
n=

(

n

n∑
k=

ak

)

<



∞∑
n=

an. ()

In , Yang and Zhu [] evaluated the weight coefficientW (k,p),

W (k,p) = k–/p
∞∑
n=k


np

( n∑
j=


j/p

)p–

, k = , , . . . , ()

and established an improved version of inequality () as follows:

∞∑
n=

(

n

n∑
k=

ak

)

< 
∞∑
n=

(
 –



√
n + 

)
an. ()
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With the same approach, that is, evaluating the weight coefficientW (k,p), Huang [–]
gave some improvements on Hardy’s inequality for p =  and p = /, i.e.,

∞∑
n=

(

n

n∑
k=

ak

)

<



∞∑
n=

(
 –


n/

)
an, ()

∞∑
n=

(

n

n∑
k=

ak

)/

≤ 
√


∞∑
n=

(
 –




· 
√n + 

)
a/n . ()

Some further extensions of Hardy’s inequality related to the range of parameter p were
given in Huang [, ].
In , Yang [] proved an inequality for the weight coefficientW (k, )

W (k, ) =
√
k

∞∑
n=k


n

( n∑
j=

√
j

)
≤ 

[
 –

√
k

(
 –



W (, )

)]

and established the following inequality:

∞∑
n=

(

n

n∑
k=

ak

)

< 
∞∑
n=

(
 –

θ√
n

)
an, ()

where θ = – 
W (, ) = . . . . is the best coefficient under the weight coefficient

W (k, ).
In , Zhang and Xumade use of the monotonicity theorem [–] and obtained an

improvement of inequality ():

∞∑
n=

(

n

n∑
k=

ak

)p

≤
(

p
p – 

)p ∞∑
n=

(
 –

cp
(n – /)–/p

)
apn, ()

where

cp =

{
(p – )[ – /p( – /p)],  < p ≤ ,
 – –/p( – /p)p–, p > .

By evaluating the weight coefficientW (k,p), and with the help of an inequality-proving
package called BOTTEMA [, ], He [] investigated a sharpened version of Hardy’s
inequality for p ∈N and obtained the following improved version of inequality ():

∞∑
n=

(

n

n∑
k=

ak

)

≤ 


∞∑
n=

(
 –

θ

n/

)
an, ()

where θ =  – 
W (, ) = . . . . is the best coefficient under the weight coefficient

W (k, ).
In addition, in [] the author wrote the computer programHDISCOVER to accomplish

the automated verification of the following inequality for p ∈ N (N is the set of natural
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numbers):

∞∑
n=

(

n

n∑
k=

ak

)p

≤
(

p
p – 

)p ∞∑
n=

(
 –

θp()
n–/p

)
apn, ()

where θp() =  – ( p–p )pW (,p) is the best coefficient of () under the weight coefficient
W (k,p).
Recently, based on the program HDISCOVER  written by Deng, He and Wu [],

an automated verification of inequality () is achieved for p ∈ Q (Qis the set of rational
numbers).
For more detailed information of Hardy’s inequality, we refer the interested readers to

relevant research papers [, , –].
In this paper, by evaluating the weight coefficient W (k, /), we establish an improve-

ment of Hardy’s inequality for parameter p = / as follows:

∞∑
n=

(

n

n∑
k=

ak

)/

≤ /
∞∑
n=

(
 –




· 
n/ + η/

)
a/n , ()

where η/ = /
[/–W (,/)] –  = . . . . is the best coefficient under the weight coefficient

W (k, /).

2 Lemmas
To prove the main results in Section , we will use the following lemmas.

Lemma  (see[]) If p > , then for all integers n ≥ , it holds that

p
p – 

n–/p –
p

p – 
+


+


n/p

≤
n∑
j=


j/p

≤ p
p – 

n–/p –
p

p – 
+


+


n/p

+


p
–


pn+/p

. ()

Lemma  (see[]) If p > , then for all integers n ≥ k ≥ , it holds that


(p – )kp–

+


kp
<

∞∑
n=k


np

<


(p – )kp–
+


kp

+
p

kp+
.

Lemma  Let p > , /p + /q = , and let gr , gl be the functions defined by

gr(x) = –
p + q – 
pqx/q

+


qx
–


pqx

, gl(x) = –
p + q
pqx/q

+


qx
, x ∈ [, +∞).

Then – < gr(x) < , – < gl(x) < .

Proof Since p > , /p + /q = , hence /x+/p ≥ /x for x ∈ [, +∞).
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Further, we have

g ′
r(x) =

p + q – 
pqx+/q

–


qx
+


pqx

≥ p + q – 
pqx

–


qx
+


pqx

=
(px + x + p)(p – )

px
> ,

and consequently, gr is strictly increasing on [, +∞).
Now, from gr() = –/p > – and limx→+∞ gr(x) = , it follows that gr(x) ≥ gr() = –/p >

– and gr(x) < .
Similarly, from

g ′
l (x) =

p + q
pqx+/q

–


qx
≥ p + q

pqx
–


qx

=
p – 
px

> ,

gl() = –/p > – and lim
x→+∞ gl(x) = ,

we deduce that – < gl(x) < .
Lemma  is proved. �

Lemma  Let – < g(x) < . If α ∈ (, ], then

(
 + g(x)

)(
 + (α – )g(x) +

(α – )(α – )


g(x)
)

≤ (
 + g(x)

)α ≤  + αg(x) +
α(α – )


g(x).

If α ∈ [, ], then

(
 + g(x)

)α ≥  + αg(x) +
α(α – )


g(x).

Proof When α ∈ (, ]. By using the Maclaurin formula

(
 + g(x)

)α =  + αg(x) +
α(α – )


g(x)

+
α(α – )(α – )( + θg(x))α–


g(x), θ ∈ (, ),

and noticing – < g(x) < , we find

 + θg(x) >  + g(x) > ,

α(α – )(α – )( + θg(x))α–


g(x)≤ ,

(α – )(α – )(α – )( + θg(x))α–


g(x)≥ .
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Thus

(
 + g(x)

)α ≤  + αg(x) +
α(α – )


g(x),

(
 + g(x)

)α =
(
 + g(x)

)(
 + g(x)

)α–

≥ (
 + g(x)

)(
 + (α – )g(x) +

(α – )(α – )


g(x)
)
.

When α ∈ [, ]. We have

α(α – )(α – )( + θg(x))α–


g(x)≥ .

Thus

(
 + g(x)

)α ≥  + αg(x) +
α(α – )


g(x).

The proof of Lemma  is complete. �

Lemma  Let p > , /p+/q = , n≥ k ≥ , and let [x] denote the greatest integer less than
or equal to the real number x. Then we have

W (k,p)≤ qp–k/q
∞∑
n=k

[


n+/q
(
 + gr(n)

)[p]–

×
(
 +

(
p – [p]

)
gr(n) +

(p – [p])(p – [p] – )


gr (n)
)]

.

Proof By Lemma  and the identity pq = p + q, q(p – ) = p, it follows that

W (k,p) = k–/p
∞∑
n=k


np

( n∑
j=


j/p

)p–

≤ k–/p
∞∑
n=k


np

(
p

p – 
n–/p –

p
p – 

+


+


n/p

+


p
–


pn+/p

)p–

= k/q
∞∑
n=k


np

(
qn/q –

p + q – 
p

+


n/p
–


pn+/p

)p–

= k/q
∞∑
n=k


np

qp–n(p–)/q
(
 –

p + q – 
pqn/q

+


qn
–


pqn

)p–

= qp–k/q
∞∑
n=k


n+/q

(
 + gr(n)

)p–.
Combining Lemmas  and , we obtain

W (k,p)

≤ qp–k/q
∞∑
n=k

[


n+/q
(
 + gr(n)

)[p]–( + gr(n)
)p–[p]]

http://www.journalofinequalitiesandapplications.com/content/2013/1/63


Deng et al. Journal of Inequalities and Applications 2013, 2013:63 Page 6 of 13
http://www.journalofinequalitiesandapplications.com/content/2013/1/63

≤ qp–k/q
∞∑
n=k

[


n+/q
(
 + gr(n)

)[p]–

×
(
 +

(
p – [p]

)
gr(n) +

(p – [p])(p – [p] – )


gr (n)
)]

.

This completes the proof of Lemma . �

Lemma  Let /p + /q = , n ≥ k ≥ . If p ∈ (, ), then

W (k,p)≥ qp–k/q
∞∑
n=k

[


n+/q
(
 + gl(n)

)[p]

×
(
 +

(
p – [p] – 

)
gl(n) +

(p – [p] – )(p – [p] – )


gl (n)
)]

.

If p ∈ [, +∞), then

W (k,p)≥ qp–k/q
∞∑
n=k

[


n+/q
(
 + gl(n)

)[p]–

×
(
 +

(
p – [p] + 

)
gl(n) +

(p – [p] + )(p – [p])


gl (n)
)]

.

Proof Since pq = p + q, q(p – ) = p, using Lemma  gives

W (k,p) = k–/p
∞∑
n=k


np

( n∑
j=


j/p

)p–

≥ k–/p
∞∑
n=k


np

(
p

p – 
n–/p –

p
p – 

+


+


n/p

)p–

= k/q
∞∑
n=k


np

(
qn/q –

p + q
p

+


n/p

)p–

= k/q
∞∑
n=k


np

qp–n(p–)/q
(
 –

p + q
pqn/q

+


qn

)p–

= qp–k/q
∞∑
n=k


n+/q

(
 + gl(n)

)p–.
When p ∈ (, ). From Lemmas  and , we have

W (k,p)≥ qp–k/q
∞∑
n=k


n+/q

(
 + gl(n)

)[p]–( + gl(n)
)p–[p]

≥ qp–k/q
∞∑
n=k

[


n+/q
(
 + gl(n)

)[p]

×
(
 +

(
p – [p] – 

)
gl(n) +

(p – [p] – )(p – [p] – )


gl (n)
)]

.
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When p ∈ [, +∞). Using Lemmas  and , we obtain

W (k,p)≥ qp–k/q
∞∑
n=k


n+/q

(
 + gl(n)

)[p]–( + gl(n)
)p–[p]+

≥ qp–k/q
∞∑
n=k

[


n+/q
(
 + gl(n)

)[p]–

×
(
 +

(
p – [p] + 

)
gl(n) +

(p – [p] + )(p – [p])


gl (n)
)]

.

Lemma  is proved. �

Lemma  (see[]) Let p > , an ≥  (n = , , . . .),  <
∑∞

n= a
p
n < ∞. Then

∞∑
n=

(

n

n∑
k=

ak

)p

≤
∞∑
k=

[
k–/p

∞∑
n=k


np

( n∑
j=


j/p

)p–

apk

]
=

∞∑
k=

W (k,p)apk .

3 Main results
Theorem  For an arbitrary natural number k, the following inequality holds true:

W (k, /) < R/(k),

where

R/(k) = /
(
 –


k/

–
,

,k/
+


k

–


k/
–

,
,k/

+


,k

+


,k/
+


,k

+


,k/
+


,k

+


,k

)
.

Proof Using Lemma  gives

W (k, /)≤ /k/
∞∑
n=k

[


n/

(
 +



gr(n) –




gr (n)
)]

= /k/
∞∑
n=k

r/(n),

where

r/(n) =


n/
–


n/

–
,

,n/
+


n/

+


,n/
–


,n/

–


,n/
+


,n/

–


,n/
.

Hence

W (k, /)≤ /k/
∞∑
n=k

(


n/
–


n/

–
,

,n/
+


n/

+


,n/

–


,n/
–


,n/

+


,n/
–


,n/

)
.
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Using Lemma  and taking p = /, /, /, /, /, /, /, /, / in the right-
hand side of inequality (), respectively, we get

∞∑
n=k


n/

<

k/

+


k/
+


k/

,

–
∞∑
n=k


n/

< –


k/
–


,k/

,

. . . ,
∞∑
n=k


,n/

<


,k/
+


,k/

+


,k/
,

–
∞∑
n=k


,n/

< –


,k/
–


,k/

.

Adding up the above inequalities, we obtain

W (k, /) < R/(k).

Theorem  is proved. �

Theorem  For an arbitrary natural number k, the following inequality holds true:

W (k, /) > L/(k),

where

L/(k) = /
(
 –


k/

–


k/
–

,
,k/

+

k

–


k/
+

,
,k/

–
,

,k/
+


,k

–


,k/
+


,k/

–
,

,k/

–


,k
–


,k/

+


,k
–

,
,k/

)
.

Proof Utilizing Lemma  gives

W (k, /)≥ /k/
∞∑
n=k

[


n/
(
 + gl(n)

)(
 –



gl(n) +




gl (n)
)]

= /k/
∞∑
n=k

l/(n),

where

l/(n) =


n/
–


n/

–


,n/
–

,
,n/

+


n/
+


,n/

+
,

,n/
–


,n/

–


,n/
+


,n/

.
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Hence

W (k, /)≥ /k/
∞∑
n=k

(


n/
–


n/

–


,n/
–

,
,n/

+


n/

+


,n/
+

,
,n/

–


,n/

–


,n/
+


,n/

)
.

Using Lemma  and taking p = /, /, /, /, /, /, /, /, /, / in the left-
hand side of inequality (), respectively, we get

∞∑
n=k


n/

>

k/

+


k/
,

–
∞∑
n=k


n/

> –


k/
–


k/

–


k/
,

. . . ,

–
∞∑
n=k


,n/

> –


,k/
–


,k/

–
,

,k/
,

∞∑
n=k


,n/

>


,k/
+


,k/

.

Adding up the above inequalities, we obtain

W (k, /) > L/(k).

Theorem  is proved. �

Theorem  Let an ≥  (n = , , . . .),  <
∑∞

n= a/n < ∞. Then

∞∑
n=

(

n

n∑
k=

ak

)/

≤ /
∞∑
n=

(
 –




· 
n/ + η/

)
a/n , ()

where η/ = /
[/–W (,/)] –  = . . . . is the best possible under the weight coefficient

W (k, /).

Proof By Lemma , we have

∞∑
n=

(

n

n∑
k=

ak

)/

≤
∞∑
k=

W (k, /)a/k .

Therefore, to prove inequality (), it suffices to show that

W (k, /)≤ /
(
 –




· 
k/ + η/

)
. ()
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Obviously, inequality () becomes an equality for k = . In what follows, we will assume
that k ≥ .
By Theorem W (k, /) < R/(k), we need only to prove that

R/(k)≤ /
(
 –




· 
k/ + η/

)
.

Note that

η/ =
/

[/ –W (, /)]
–  = . . . . >




,

it suffices to show

R/(k)≤ /
(
 –




· 
k/ + /

)
. ()

Substituting k = x in (), inequality () becomes

R/
(
x

) ≤ /
(
 –




· 
x + /

)
, where x ≥ √,

which is equivalent to the following inequality:

/
(
 –


x

–
,

,x
+


x

–


x
–

,
,x

+


,x
+


,x

+


,x
+


,x

+


,x
+


,x

)

≤ /
(
 –




· 
x + /

)
()

⇔  –

x

–
,

,x
+


x

–


x
–

,
,x

+


,x
+


,x

+


,x
+


,x

+


,x
+


,x

≤  –



· 
x + /

⇔ –

x

–
,

,x
+


x

–


x
–

,
,x

+


,x
+


,x

+


,x
+


,x

+


,x
+


,x

+



· 
x + /

≤ 

⇔ –
f (x)

,,x(x + )
≤ ,

where

f (x) = ,,x + ,,,x + ,,x – ,,,x

– ,,x + ,,x + ,,x – ,,x

– ,,x – ,,x – ,,x – ,,x

– ,,x – ,x – ,x – ,x – ,.
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From the hypothesis x≥ √ > ., we have

,,x + ,,,x + ,,x – ,,,x

– ,,x + ,,x + ,,x

>
(
,,× . + ,,,× . + ,,× .

– ,,,
)
x – ,,x + ,,x + ,,x

= ,,,x – ,,x + ,,x + ,,x

=
[
(,,,x – ,,)x + ,,x + ,,

]
x

>
[
(,,,× . – ,,)× .

+ ,,× . + ,,
]
x

= ,,,x.

Further, we have

f (x) > ,,,x – ,,x – ,,x

– ,,x – ,,x – ,,x

– ,,x – ,x – ,x – ,x – ,

> ,,,x – ,,x – ,,x

– ,,x – ,,x

– ,,x – ,,x – ,x – ,x

– ,x – ,x

= ,,x > .

Consequently, inequality () holds true, and inequality () is proved.
Let us now show that η/ = /

[/–W (,/)] –  = . . . . is the best possible under the
weight coefficientW (k, /).
Consider inequality () in a general form as

W (k, /)≤ /
(
 –




· 
k/ + η/

)
. ()

Putting k =  in () yields

η/ ≥ /

[/ –W (, /)]
.

Thus the best possible value for η/ in () should be ηmin = /
[/–W (,/)] .

This completes the proof of Theorem . �
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Remark  From the definition ofW (k,p) and in the same way as in [], we can establish
the following accurate estimates ofW (, /):

. <W (, /) < .. ()

Further, the approximation of η/ can be derived as follows:

η/ =
/

[/ –W (, /)]
–  = . . . . .

Remark  For p = /, inequality () can be written as

∞∑
n=

(

n

n∑
k=

ak

)/

≤ /
∞∑
n=

(
 –

 – (  )
/W (, /)
n/

)
a/n . ()

It is easy to observe that




· 
n/ + η/

>



· 
n/ + ,/,

>


n/

and

 –
(



)/

W (, /) <  –
(



)/

× . = . . . . <



,

hence

 – (  )
/W (, /)
n/

<



· 
n/ + η/

.

This implies that inequality () is stronger than inequality ().
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