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Abstract
In the paper, we give some new improvements of Pólya-Szegö’s integral inequality
which in a special case yield some of the recent results related with Pólya-Szegö’s
inequality.
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1 Introduction
The well-known Pólya-Szegö’s inequality can be stated as follows ([] or see [], p.).
If  <m ≤ uk ≤M and  <m ≤ vk ≤M, where k = , , . . . ,n, then
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An integral analogue of Pólya-Szegö’s inequality easy follows.
If (E,A,x) is a measure space and f (x), g(x) are non-negative measurable functions and

f (x), g(x) are integrable on E, if  <m ≤ f (x) ≤M and  <m ≤ g(x) ≤M, then
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E
f (x)dx
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Pólya-Szegö’s inequalitywas studied extensively andnumerous variants, generalizations,
and extensions appeared in the literatures (see [–] and the references cited therein). The
aim of this paper is to give some new improvements of Pólya-Szegö’s integral inequality
which are generalizations of Pólya-Szegö’s integral inequality and interrelated result.

Theorem . Let (E,A,x) be a measure space and f (x), g(x), u(x), v(x) be non-negative
measurable functions. Let p,q > , 

p + 
q = , and f /p(x)g/q(x), u/p(x)v/q(x) be inte-

grable on E and u(x) and v(x) be proportional. If  <m ≤ f (x),u(x) ≤ M and  <m ≤
g(x), v(x)≤M, and f (x) > u(x), g(x) > v(x), then

(∫
E

(
f (x) – u(x)

)
dx

)/p(∫
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(
g(x) – v(x)

)
dx
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≤ �p,q

(
mm

MM

)∫
E

(
f /p(x)g/q(x) – u/p(x)v/q(x)

)
dx (.)
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with equality if and only if f (x) and g(x) are proportional and

(∫
E
f (x)dx,

∫
E
u(x)dx

)
= μ

(∫
E
g(x)dx,

∫
E
v(x)dx

)

for some constant μ and where

�p,q(ξ ) =
(

p√p · q√q
)–  – ξ

( – ξ /p)/p( – ξ /q)/q
· ξ–/pq. (.)

Remark . Taking for p = q =  and u(x) = v(x)≡  in (.), (.) changes to the following
result:
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with equality if and only if f (x) and g(x) are proportional.
Replace f /(x) and g/(x) by f (x) and g(x) in (.), respectively, and hence m/

i (x) and
M/

i (x) are replaced bymi andMi (i = , ), respectively. Therefore
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f /(x)dx
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This is just Pólya-Szegö integral inequality (.). In fact, Theorem . is just a special case
of Theorem . stated in Section .

Theorem . Let (E,A,x) be a measure space and f (x), g(x), u(x), v(x) be non-negative
measurable functions, and let f /p(x), g/p(x), u/p(x), v/p(x) be integrable on E, and u(x)
and v(x) be proportional. If p > ,  < m ≤ f (x)

(f (x)+g(x))p– ,
u(x)

(u(x)+v(x))p– ≤ M and  < m ≤
g(x)

(f (x)+g(x))p– ,
v(x)

(u(x)+v(x))p– ≤M, and f (x) > u(x), g(x) > v(x), then
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with equality if and only if f (x) and g(x) are proportional and

(∫
E
f p(x)dx,

∫
E
up(x)dx

)
= μ

(∫
E
gp(x)dx,

∫
E
vp(x)dx

)

for some constant μ and �p, p
p–

(ξ ) is as in (.).

Remark . Taking for u(x) = v(x)≡  in (.), (.) changes to the following inequality:
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with equality if and only if f (x) and g(x) are proportional.
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This is just the inequality in Lemma . (see Section ). In fact, Theorem . is just a
special case of Theorem . stated in Section .

2 Main results
We need the following lemmas to prove our main results.

Lemma . [] Let (E,A,x) be a measure space and f (x), g(x) be non-negative measurable
functions. Let p,q > , 

p +

q =  and f /p(x)g/q(x) be integrable on E. If  <m ≤ f (x)≤M

and  <m ≤ g(x)≤M, then

(∫
E
f (x)dx

)/p(∫
E
g(x)dx

)/q

≤ �p,q

(
mm

MM

)∫
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f /p(x)g/q(x)dx (.)

with equality if and only if f (x) and g(x) are proportional.

Lemma . [] Let (E,A,x) be ameasure space and f (x), g(x) be non-negative measurable
functions, and f /p(x), g/p(x) be integrable on E. If p > ,  < m ≤ f (x)

(f (x)+g(x))p– ≤ M and

 <m ≤ g(x)
(f (x)+g(x))p– ≤M, then

(∫
E
f p(x)dx

)/p

+
(∫
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gp(x)dx

)/p

≤ �p, p
p–

(
mm
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(
f (x) + g(x)

)p dx)/p

(.)

with equality if and only if f (x) and g(x) are proportional.

Lemma . (Bellman’s inequality []) If

φ(x) =
(
xp – xp – · · · – xpn

)/p, p > 

for xi in the region R defined by
(a) xi ≥ ,
(b) x ≥ (xp + xp + · · · + xpn)/p.

Then, for x, y ∈R, we have

φ(x + y) ≥ φ(x) + φ(y), (.)

with equality if and only if x = μy, where μ is a constant.

Lemma . [] Let a,b, c,d > ,  < α < ,  < β <  and α + β = . If a > b and c > d, then

aαcβ – bαdβ ≥ (a – b)α(c – d)β (.)

with equality if and only if a/b = c/d.

Our main results are given in the following theorems.

Theorem . Let (E,A,x) be a measure space and f (x), g(x), u(x), v(x) be non-negative
measurable functions. Let p,q > , 

p +

q = , and f /p(x)g/q(x), u/p(x)v/q(x) be integrable
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on E, and u(x) and v(x) be proportional. If  < m ≤ f (x) ≤ M,  <m ≤ g(x) ≤ M,  <
n ≤ u(x)≤N and  < n ≤ v(x)≤N, and f (x) > u(x), g(x) > v(x), then

(∫
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f (x) – u(x)

)
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with equality if and only if f (x) and g(x) are proportional and

(∫
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f (x)dx,

∫
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u(x)dx
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g(x)dx,
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)

for some constant μ.

Proof From the hypotheses and Lemma ., we obtain
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with equality if and only if f (x) and g(x) are proportional, and
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From (.), (.) and in view of /p + /q = , by using Lemma ., we have
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)
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. (.)

In view of the equality conditions of (.) and (.), it follows that the sign of equality in
(.) holds if and only if f (x) and g(x) are proportional and

(∫
E
f (x)dx,

∫
E
u(x)dx

)
= μ

(∫
E
g(x)dx,

∫
E
v(x)dx

)

for some constant μ. �

Remark . If  < n ≤ u(x) ≤ N and  < n ≤ v(x) ≤ N change to  <m ≤ u(x) ≤ M

and  <m ≤ v(x)≤M, respectively, then (.) reduces to (.) stated in the Introduction.

Theorem . Let (E,A,x) be a measure space and f (x), g(x), u(x), v(x) be non-negative
measurable functions, and let f /p(x), g/p(x), u/p(x), v/p(x) be integrable on E and u(x)
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and v(x) be proportional. If p > ,  < m ≤ f (x)
(f (x)+g(x))p– ≤ M,  <m ≤ g(x)

(f (x)+g(x))p– ≤ M,
 < n ≤ u(x)

(u(x)+v(x))p– ≤N and  < n ≤ v(x)
(u(x)+v(x))p– ≤N, and f (x) > u(x), g(x) > v(x), then

(∫
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with equality if and only if f (x) and g(x) are proportional and
(∫
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for some constant μ.

Proof From the hypotheses and Lemma ., it is easy to obtain
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In view of the equality conditions of (.) and (.), it follows that the sign of equality
(.) holds if and only if f and g are proportional and

(∫
E
f p(x)dx,

∫
E
up(x)dx

)
= μ

(∫
E
gp(x)dx,

∫
E
vp(x)dx

)

for some constant μ. �
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Remark . If  < n ≤ u(x)
(u(x)+v(x))p– ≤ N,  < n ≤ v(x)

(u(x)+v(x))p– ≤ N change to  < m ≤
u(x)

(u(x)+v(x))p– ≤M,  <m ≤ v(x)
(u(x)+v(x))p– ≤M, respectively, then (.) reduces to (.) stated

in the Introduction.
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