RESEARCH

Open Access

On Pólya-Szegö's inequality

Chang-Jian Zhao^{1*} and Wing-Sum Cheung²

*Correspondence: chjzhao@163.com; chjzhao@aliyun.com; chjzhao315@sohu.com ¹ Department of Mathematics, China Jiliang University, Hangzhou, 310018, P.R. China Full list of author information is available at the end of the article

Abstract

In the paper, we give some new improvements of Pólya-Szegö's integral inequality which in a special case yield some of the recent results related with Pólya-Szegö's inequality.

MSC: 26D15

Keywords: Pólya-Szegö's inequality; Pólya-Szegö's integral inequality; Bellman's inequality

1 Introduction

The well-known Pólya-Szegö's inequality can be stated as follows ([1] or see [2], p.62).

If $0 < m_1 \le u_k \le M_1$ and $0 < m_2 \le v_k \le M_2$, where k = 1, 2, ..., n, then

$$\left(\sum_{k=1}^{n} u_k^2\right) \left(\sum_{k=1}^{n} v_k^2\right) \le \frac{1}{4} \left(\sqrt{\frac{M_1 M_2}{m_1 m_2}} + \sqrt{\frac{m_1 m_2}{M_1 M_2}}\right)^2 \left(\sum_{k=1}^{n} u_k v_k\right)^2.$$

An integral analogue of Pólya-Szegö's inequality easy follows.

If (E, A, x) is a measure space and f(x), g(x) are non-negative measurable functions and $f^2(x)$, $g^2(x)$ are integrable on E, if $0 < m_1 \le f(x) \le M_1$ and $0 < m_2 \le g(x) \le M_2$, then

$$\left(\int_{E} f^{2}(x) \, dx\right) \left(\int_{E} g^{2}(x) \, dx\right) \leq \frac{1}{4} \left(\sqrt{\frac{M_{1}M_{2}}{m_{1}m_{2}}} + \sqrt{\frac{m_{1}m_{2}}{M_{1}M_{2}}}\right)^{2} \left(\int_{E} f(x)g(x) \, dx\right)^{2}.$$
 (1.1)

Pólya-Szegö's inequality was studied extensively and numerous variants, generalizations, and extensions appeared in the literatures (see [3–7] and the references cited therein). The aim of this paper is to give some new improvements of Pólya-Szegö's integral inequality which are generalizations of Pólya-Szegö's integral inequality and interrelated result.

Theorem 1.1 Let (E, \mathcal{A}, x) be a measure space and f(x), g(x), u(x), v(x) be non-negative measurable functions. Let p, q > 0, $\frac{1}{p} + \frac{1}{q} = 1$, and $f^{1/p}(x)g^{1/q}(x)$, $u^{1/p}(x)v^{1/q}(x)$ be integrable on E and u(x) and v(x) be proportional. If $0 < m_1 \le f(x)$, $u(x) \le M_1$ and $0 < m_2 \le g(x)$, $v(x) \le M_2$, and f(x) > u(x), g(x) > v(x), then

$$\left(\int_{E} (f(x) - u(x)) \, dx\right)^{1/p} \left(\int_{E} (g(x) - v(x)) \, dx\right)^{1/q}$$

$$\leq \Gamma_{p,q} \left(\frac{m_1 m_2}{M_1 M_2}\right) \int_{E} (f^{1/p}(x) g^{1/q}(x) - u^{1/p}(x) v^{1/q}(x)) \, dx \tag{1.2}$$

©2013 Zhao and Cheung; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons. Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

with equality if and only if f(x) and g(x) are proportional and

$$\left(\int_{E} f(x) \, dx, \int_{E} u(x) \, dx\right) = \mu\left(\int_{E} g(x) \, dx, \int_{E} v(x) \, dx\right)$$

for some constant μ and where

$$\Gamma_{p,q}(\xi) = \left(\sqrt[p]{p} \cdot \sqrt[q]{q} \right)^{-1} \frac{1 - \xi}{(1 - \xi^{1/p})^{1/p} (1 - \xi^{1/q})^{1/q}} \cdot \xi^{-1/pq}.$$
(1.3)

Remark 1.1 Taking for p = q = 2 and $u(x) = v(x) \equiv 0$ in (1.2), (1.2) changes to the following result:

$$\left(\int_{E} f(x) \, dx\right)^{1/2} \left(\int_{E} g(x) \, dx\right)^{1/2} \le \frac{1}{2} \left(\sqrt[4]{\frac{M_1 M_2}{m_1 m_2}} + \sqrt[4]{\frac{m_1 m_2}{M_1 M_2}}\right) \int_{E} f^{1/2}(x) g^{1/2}(x) \, dx \quad (1.4)$$

with equality if and only if f(x) and g(x) are proportional.

Replace $f^{1/2}(x)$ and $g^{1/2}(x)$ by f(x) and g(x) in (1.4), respectively, and hence $m_i^{1/2}(x)$ and $M_i^{1/2}(x)$ are replaced by m_i and M_i (i = 1, 2), respectively. Therefore

$$\left(\int_{E} f^{1/2}(x) \, dx\right)^{1/2} \left(\int_{E} g^{1/2}(x) \, dx\right)^{1/2} \leq \frac{1}{2} \left(\sqrt{\frac{M_1 M_2}{m_1 m_2}} + \sqrt{\frac{m_1 m_2}{M_1 M_2}}\right) \int_{E} f(x) g(x) \, dx.$$

This is just Pólya-Szegö integral inequality (1.1). In fact, Theorem 1.1 is just a special case of Theorem 2.1 stated in Section 2.

Theorem 1.2 Let (E, \mathcal{A}, x) be a measure space and f(x), g(x), u(x), v(x) be non-negative measurable functions, and let $f^{1/p}(x)$, $g^{1/p}(x)$, $u^{1/p}(x)$, $v^{1/p}(x)$ be integrable on E, and u(x) and v(x) be proportional. If p > 1, $0 < m_1 \le \frac{f(x)}{(f(x)+g(x))^{p-1}}, \frac{u(x)}{(u(x)+v(x))^{p-1}} \le M_1$ and $0 < m_2 \le \frac{g(x)}{(f(x)+g(x))^{p-1}}, \frac{v(x)}{(u(x)+v(x))^{p-1}} \le M_2$, and f(x) > u(x), g(x) > v(x), then

$$\left(\int_{E} \left[f^{p}(x) - u^{p}(x)\right] dx\right)^{1/p} + \left(\int_{E} \left[g^{p}(x) - v^{p}(x)\right] dx\right)^{1/p}$$

$$\leq \Gamma_{p,\frac{p}{p-1}} \left(\frac{m_{1}m_{2}}{M_{1}M_{2}}\right) \left(\int_{E} \left(\left[f(x) + g(x)\right]^{p} - \left[u(x) + v(x)\right]^{p}\right) dx\right)^{1/p}$$
(1.5)

with equality if and only if f(x) and g(x) are proportional and

$$\left(\int_E f^p(x)\,dx,\int_E u^p(x)\,dx\right)=\mu\left(\int_E g^p(x)\,dx,\int_E v^p(x)\,dx\right)$$

for some constant μ and $\Gamma_{p,\frac{p}{p-1}}(\xi)$ is as in (1.3).

Remark 1.2 Taking for $u(x) = v(x) \equiv 0$ in (1.5), (1.5) changes to the following inequality:

$$\left(\int_{E} f^{p}(x) \, dx\right)^{1/p} + \left(\int_{E} g^{p}(x) \, dx\right)^{1/p} \le \Gamma_{p, \frac{p}{p-1}} \left(\frac{m_{1}m_{2}}{M_{1}M_{2}}\right) \left(\int_{E} (f(x) + g(x))^{p} \, dx\right)^{1/p}$$

with equality if and only if f(x) and g(x) are proportional.

This is just the inequality in Lemma 2.2 (see Section 2). In fact, Theorem 1.2 is just a special case of Theorem 2.2 stated in Section 2.

2 Main results

We need the following lemmas to prove our main results.

Lemma 2.1 [8] Let (E, \mathcal{A}, x) be a measure space and f(x), g(x) be non-negative measurable functions. Let p, q > 0, $\frac{1}{p} + \frac{1}{q} = 1$ and $f^{1/p}(x)g^{1/q}(x)$ be integrable on E. If $0 < m_1 \le f(x) \le M_1$ and $0 < m_2 \le g(x) \le M_2$, then

$$\left(\int_{E} f(x) \, dx\right)^{1/p} \left(\int_{E} g(x) \, dx\right)^{1/q} \le \Gamma_{p,q} \left(\frac{m_1 m_2}{M_1 M_2}\right) \int_{E} f^{1/p}(x) g^{1/q}(x) \, dx \tag{2.1}$$

with equality if and only if f(x) and g(x) are proportional.

Lemma 2.2 [9] Let (E, \mathcal{A}, x) be a measure space and f(x), g(x) be non-negative measurable functions, and $f^{1/p}(x), g^{1/p}(x)$ be integrable on E. If p > 1, $0 < m_1 \le \frac{f(x)}{(f(x)+g(x))^{p-1}} \le M_1$ and $0 < m_2 \le \frac{g(x)}{(f(x)+g(x))^{p-1}} \le M_2$, then

$$\left(\int_{E} f^{p}(x) \, dx\right)^{1/p} + \left(\int_{E} g^{p}(x) \, dx\right)^{1/p} \le \Gamma_{p, \frac{p}{p-1}} \left(\frac{m_{1}m_{2}}{M_{1}M_{2}}\right) \left(\int_{E} \left(f(x) + g(x)\right)^{p} \, dx\right)^{1/p} \quad (2.2)$$

with equality if and only if f(x) and g(x) are proportional.

Lemma 2.3 (Bellman's inequality [10]) If

$$\phi(x) = (x_1^p - x_2^p - \dots - x_n^p)^{1/p}, \quad p > 1$$

for x_i in the region \mathbb{R} defined by

(a) $x_i \ge 0$, (b) $x_1 \ge (x_2^p + x_3^p + \dots + x_n^p)^{1/p}$.

Then, for $x, y \in \mathbb{R}$ *, we have*

$$\phi(x+y) \ge \phi(x) + \phi(y), \tag{2.3}$$

with equality if and only if $x = \mu y$, where μ is a constant.

Lemma 2.4 [11] *Let* $a, b, c, d > 0, 0 < \alpha < 1, 0 < \beta < 1$ *and* $\alpha + \beta = 1$. *If* a > b *and* c > d, *then*

$$a^{\alpha}c^{\beta} - b^{\alpha}d^{\beta} \ge (a-b)^{\alpha}(c-d)^{\beta}$$

$$\tag{2.4}$$

with equality if and only if a/b = c/d.

Our main results are given in the following theorems.

Theorem 2.1 Let (E, A, x) be a measure space and f(x), g(x), u(x), v(x) be non-negative measurable functions. Let p, q > 0, $\frac{1}{p} + \frac{1}{q} = 1$, and $f^{1/p}(x)g^{1/q}(x)$, $u^{1/p}(x)v^{1/q}(x)$ be integrable

on *E*, and u(x) and v(x) be proportional. If $0 < m_1 \le f(x) \le M_1$, $0 < m_2 \le g(x) \le M_2$, $0 < n_1 \le u(x) \le N_1$ and $0 < n_2 \le v(x) \le N_2$, and f(x) > u(x), g(x) > v(x), then

$$\left(\int_{E} (f(x) - u(x)) dx\right)^{1/p} \left(\int_{E} (g(x) - v(x)) dx\right)^{1/q}$$

$$\leq \Gamma_{p,q} \left(\frac{m_{1}m_{2}}{M_{1}M_{2}}\right) \int_{E} f^{1/p}(x) g^{1/q}(x) dx - \Gamma_{p,q} \left(\frac{n_{1}n_{2}}{N_{1}N_{2}}\right) \int_{E} u^{1/p}(x) v^{1/q}(x) dx \qquad (2.5)$$

with equality if and only if f(x) and g(x) are proportional and

$$\left(\int_E f(x)\,dx,\int_E u(x)\,dx\right) = \mu\left(\int_E g(x)\,dx,\int_E v(x)\,dx\right)$$

for some constant μ .

Proof From the hypotheses and Lemma 2.1, we obtain

$$\Gamma_{p,q}\left(\frac{m_1m_2}{M_1M_2}\right) \int_E f^{1/p}(x)g^{1/q}(x)\,dx \ge \left(\int_E f(x)\,dx\right)^{1/p} \left(\int_E g(x)\,dx\right)^{1/q} \tag{2.6}$$

with equality if and only if f(x) and g(x) are proportional, and

$$\Gamma_{p,q}\left(\frac{n_1n_2}{N_1N_2}\right) \int_E u^{1/p}(x)v^{1/q}(x)\,dx = \left(\int_E u(x)\,dx\right)^{1/p} \left(\int_E v(x)\,dx\right)^{1/q}.$$
(2.7)

From (2.6), (2.7) and in view of 1/p + 1/q = 1, by using Lemma 2.4, we have

$$\Gamma_{p,q}\left(\frac{m_1m_2}{M_1M_2}\right) \int_E f^{1/p}(x)g^{1/q}(x) \, dx - \Gamma_{p,q}\left(\frac{n_1n_2}{N_1N_2}\right) \int_E u^{1/p}(x)v^{1/q}(x) \, dx \geq \left(\int_E f(x) \, dx\right)^{1/p} \left(\int_E g(x) \, dx\right)^{1/q} - \left(\int_E u(x) \, dx\right)^{1/p} \left(\int_E v(x) \, dx\right)^{1/q} \geq \left(\int_E (f(x) - u(x)) \, dx\right)^{1/p} \left(\int_E (g(x) - v(x)) \, dx\right)^{1/q}.$$

$$(2.8)$$

In view of the equality conditions of (2.4) and (2.6), it follows that the sign of equality in (2.5) holds if and only if f(x) and g(x) are proportional and

$$\left(\int_{E} f(x) \, dx, \int_{E} u(x) \, dx\right) = \mu\left(\int_{E} g(x) \, dx, \int_{E} v(x) \, dx\right)$$

for some constant μ .

Remark 2.1 If $0 < n_2 \le u(x) \le N_2$ and $0 < n_2 \le v(x) \le N_2$ change to $0 < m_1 \le u(x) \le M_1$ and $0 < m_2 \le v(x) \le M_2$, respectively, then (2.5) reduces to (1.2) stated in the Introduction.

Theorem 2.2 Let (E, A, x) be a measure space and f(x), g(x), u(x), v(x) be non-negative measurable functions, and let $f^{1/p}(x)$, $g^{1/p}(x)$, $u^{1/p}(x)$, $v^{1/p}(x)$ be integrable on E and u(x)

and
$$v(x)$$
 be proportional. If $p > 1$, $0 < m_1 \le \frac{f(x)}{(f(x)+g(x))^{p-1}} \le M_1$, $0 < m_2 \le \frac{g(x)}{(f(x)+g(x))^{p-1}} \le M_2$, $0 < n_1 \le \frac{u(x)}{(u(x)+v(x))^{p-1}} \le N_1$ and $0 < n_2 \le \frac{v(x)}{(u(x)+v(x))^{p-1}} \le N_2$, and $f(x) > u(x)$, $g(x) > v(x)$, then

$$\left(\int_{E} \left[f^{p}(x) - u^{p}(x)\right] dx\right)^{1/p} + \left(\int_{E} \left[g^{p}(x) - v^{p}(x)\right] dx\right)^{1/p}$$

$$\leq \left[\Gamma_{p,\frac{p}{p-1}}^{p}\left(\frac{m_{1}m_{2}}{M_{1}M_{2}}\right) \left(\int_{E} \left(f(x) + g(x)\right)^{p} dx\right)\right]^{1/p}$$

$$-\Gamma_{p,\frac{p}{p-1}}^{p}\left(\frac{n_{1}n_{2}}{N_{1}N_{2}}\right) \left(\int_{E} \left(u(x) + v(x)\right)^{p} dx\right)^{1/p}$$
(2.9)

with equality if and only if f(x) and g(x) are proportional and

$$\left(\int_E f^p(x)\,dx,\int_E u^p(x)\,dx\right)=\mu\left(\int_E g^p(x)\,dx,\int_E v^p(x)\,dx\right)$$

for some constant μ .

Proof From the hypotheses and Lemma 2.2, it is easy to obtain

$$\Gamma_{p,\frac{p}{p-1}}\left(\frac{m_{1}m_{2}}{M_{1}M_{2}}\right)\left(\int_{E} (f(x) + g(x))^{p} dx\right)^{1/p} \\ \geq \left(\int_{E} f^{p}(x) dx\right)^{1/p} + \left(\int_{E} g^{p}(x) dx\right)^{1/p}$$
(2.10)

with equality if and only if f and g are proportional, and

$$\Gamma_{p,\frac{p}{p-1}}\left(\frac{n_1n_2}{N_1N_2}\right) \left(\int_E (u(x) + v(x))^p \, dx\right)^{1/p} \\ = \left(\int_E u^p(x) \, dx\right)^{1/p} + \left(\int_E v^p(x) \, dx\right)^{1/p}.$$
(2.11)

From (2.10), (2.11) and by using Lemma 2.3, we have

$$\left[\Gamma_{p,\frac{p}{p-1}}^{p} \left(\frac{m_{1}m_{2}}{M_{1}M_{2}} \right) \left(\int_{E} (f(x) + g(x))^{p} dx \right) - \Gamma_{p,\frac{p}{p-1}}^{p} \left(\frac{n_{1}n_{2}}{N_{1}N_{2}} \right) \left(\int_{E} (u(x) + v(x))^{p} dx \right) \right]^{1/p}$$

$$\geq \left\{ \left[\left(\int_{E} f^{p}(x) dx \right)^{1/p} + \left(\int_{E} g^{p}(x) dx \right)^{1/p} \right]^{p} - \left[\left(\int_{E} u^{p}(x) dx \right)^{1/p} + \left(\int_{E} v^{p}(x) dx \right)^{1/p} \right]^{p} \right\}^{1/p}$$

$$\geq \left(\int_{E} [f^{p}(x) - u^{p}(x)] dx \right)^{1/p} + \left(\int_{E} [g^{p}(x) - v^{p}(x)] dx \right)^{1/p}.$$

$$(2.12)$$

In view of the equality conditions of (2.10) and (2.3), it follows that the sign of equality (2.9) holds if and only if f and g are proportional and

$$\left(\int_{E} f^{p}(x) \, dx, \int_{E} u^{p}(x) \, dx\right) = \mu\left(\int_{E} g^{p}(x) \, dx, \int_{E} v^{p}(x) \, dx\right)$$

for some constant μ .

Remark 2.2 If $0 < n_1 \le \frac{u(x)}{(u(x)+v(x))^{p-1}} \le N_1$, $0 < n_2 \le \frac{v(x)}{(u(x)+v(x))^{p-1}} \le N_2$ change to $0 < m_1 \le \frac{u(x)}{(u(x)+v(x))^{p-1}} \le M_1$, $0 < m_2 \le \frac{v(x)}{(u(x)+v(x))^{p-1}} \le M_2$, respectively, then (2.9) reduces to (1.5) stated in the Introduction.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

CJZ and WSC jointly contributed to the main results Theorems 1.1-1.2 and Theorems 2.1-2.2. All authors read and approved the final manuscript.

Author details

¹Department of Mathematics, China Jiliang University, Hangzhou, 310018, P.R. China. ²Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China.

Acknowledgements

The authors express their grateful thanks to the referee for his very good suggestions. The first author is supported by the National Natural Science Foundation of China (11371334). The second author is partially supported by the National Natural Science Foundation of China (11371334) and a HKU Seed Grant for Basic Research.

Received: 24 September 2013 Accepted: 1 December 2013 Published: 23 Dec 2013

References

- 1. Pólya, G, Szegö, G: Aufgaben und Lehrsätze aus der Analysis, vol. I. Springer, Berlin (1925)
- 2. Hardy, GH, Littlewood, JE, Pólya, G: Inequalities. Cambridge University Press, Cambridge (1934)
- 3. Wu, SH: Generalization of a sharp Hölder's inequality and its application. J. Math. Anal. Appl. 332(1), 741-750 (2007)
- 4. Wu, SH: A new sharpened and generalized version of Hölder's inequality and its applications. Appl. Math. Comput. 197(2), 708-714 (2008)
- 5. Wu, SH: Some improvements of Aczél's inequality and Popoviciu's inequality. Comput. Math. Appl. 56(5), 1196-1205 (2008)
- 6. Dragomir, SS: Asupra unor inegalități. Caiete Metodico-Șiințifice, Matematica 13, Univ. Timisoara (1984)
- 7. Dragomir, SS, Khan, L: Two discrete inequalities of Grüss type via Pólya-Szegö and Shisha-Mond results for real
- numbers. Tamkang J. Math. **35**(2), 117-128 (2004)
- 8. Liu, XH: On reverse Hölder inequality. Math. Pract. Theory 1990(1), 32-35 (1990)
- 9. Yang, SG: Reverse Minkowski inequality and its applications. J. Tongling Coll. 13(1), 71-76 (2002)
- 10. Bechenbach, EF, Bellman, R: Inequalities. Springer, Berlin (1961)
- 11. Zhao, C, Cheung, W: On *p*-quermassintegral differences function. Proc. Indian Acad. Sci. Math. Sci. **116**, 221-231 (2006)

10.1186/1029-242X-2013-591

Cite this article as: Zhao and Cheung: On Pólya-Szegö's inequality. Journal of Inequalities and Applications 2013, 2013:591

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ▶ Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com