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Abstract
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1 Introduction
Let f : I ⊆R→ R be a convex mapping and a,b ∈ I with a < b. Then

f
(
a + b


)
≤ 

b – a

∫ b

a
f (x)dx≤ f (a) + f (b)


. (.)

Both the inequalities in (.) hold in reversed direction if f is concave. Inequalities (.) are
famous in mathematical literature due to their rich geometrical significance and applica-
tions and are known as the Hermite-Hadamard inequalities (see []).
For several results which generalize, improve and extend inequalities (.), we refer the

interested reader to [–].
In [], Dragomir andAgarwal obtained the following inequalities for differentiable func-

tions which estimate the difference between the middle and the rightmost terms in (.).

Theorem  [] Let f : I ⊆ R → R be a differentiable mapping on I◦, where a,b ∈ I with
a < b, and f ′ ∈ L([a,b]). If |f ′| is a convex function on [a,b], the following inequality holds:

∣∣∣∣ f (a) + f (b)


–


b – a

∫ b

a
f (x)dx

∣∣∣∣ ≤ b – a


[∣∣f ′(a)
∣∣ + ∣∣f ′(b)

∣∣]. (.)

Theorem  [] Let f : I ⊆ R → R be a differentiable mapping on I◦, where a,b ∈ I with
a < b, and f ′ ∈ L([a,b]). If |f ′| p

p– is a convex function on [a,b], the following inequality
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holds:
∣∣∣∣ f (a) + f (b)


–


b – a

∫ b

a
f (x)dx

∣∣∣∣ ≤ b – a

(p + )

p

[∣∣f ′(a)
∣∣ p
p– +

∣∣f ′(b)
∣∣ p
p–

]
, (.)

where p >  and 
p +


q = .

In [], Pearce and Pečarić gave an improvement and simplification of the constant in
Theorem and consolidated these resultswithTheorem. The following is themain result
from [].

Theorem  [] Let f : I ⊆ R → R be a differentiable mapping on I◦, where a,b ∈ I with
a < b, and f ′ ∈ L([a,b]). If |f ′|q is a convex function on [a,b], for some q ≥ , the following
inequality holds:

∣∣∣∣ f (a) + f (b)


–


b – a

∫ b

a
f (x)dx

∣∣∣∣ ≤ b – a


[ |f ′(a)|q + |f ′(b)|q


] 
q
. (.)

If |f ′|q is concave on [a,b] for some q ≥ , then

∣∣∣∣ f (a) + f (b)


–


b – a

∫ b

a
f (x)dx

∣∣∣∣ ≤ b – a


∣∣∣∣f ′
(
a + b


)∣∣∣∣. (.)

Now, we recall that the notion of quasi-convex functions generalizes the notion of con-
vex functions. More exactly, a function f : [a,b] → R is said to be quasi-convex on [a,b]
if

f
(
tx + ( – t)y

) ≤max
{
f (x), f (y)

}
for all x, y ∈ [a,b] and t ∈ [, ]. Clearly, any convex function is a quasi-convex function.
Furthermore, there exist quasi-convex functions which are not convex (see []).
Recently, Ion [] introduced two inequalities of the right-hand side of Hadamard type

for quasi-convex functions, as follows.

Theorem  [] Let f : I ⊆ R → R be a differentiable mapping on I◦, where a,b ∈ I◦ with
a < b. If |f ′| is a quasi-convex function on [a,b], the following inequality holds:

∣∣∣∣ f (a) + f (b)


–


b – a

∫ b

a
f (x)dx

∣∣∣∣ ≤ b – a


max
{∣∣f ′(a)

∣∣, ∣∣f ′(b)
∣∣}. (.)

Theorem  [] Let f : I ⊆ R → R be a differentiable mapping on I◦, where a,b ∈ I◦ with
a < b. If |f ′|p is a quasi-convex function on [a,b], for some p > , the following inequality
holds:

∣∣∣∣ f (a) + f (b)


–


b – a

∫ b

a
f (x)dx

∣∣∣∣
≤ b – a

(p + )

p

[
max

{∣∣f ′(a)
∣∣ p
p– ,

∣∣f ′(b)
∣∣ p
p–

}] p–
p , (.)

where 
p +


q = .
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In [], Alomari et al. established Hermite-Hadamard-type inequalities for quasi-convex
functions which give refinements of those given above in Theorem  and Theorem .

Theorem  [] Let f : I ⊆ [,∞) → R be a differentiable mapping on I◦ such that f ′ ∈
L([a,b]), where a,b ∈ I◦ with a < b. If the mapping |f ′| is a quasi-convex function on [a,b],
the following inequality holds:

∣∣∣∣ f (a) + f (b)


–


b – a

∫ b

a
f (x)dx

∣∣∣∣
≤ b – a



[
max

{∣∣f ′(a)
∣∣, ∣∣∣∣f ′

(
a + b


)∣∣∣∣
}
+max

{∣∣f ′(b)
∣∣, ∣∣∣∣f ′

(
a + b


)∣∣∣∣
}]

. (.)

Theorem  [] Let f : I ⊆ [,∞) → R be a differentiable mapping on I◦ such that f ′ ∈
L([a,b]), where a,b ∈ I◦ with a < b. If |f ′| p

p– is a quasi-convex function on [a,b], for p > ,
the following inequality holds:

∣∣∣∣ f (a) + f (b)


–


b – a

∫ b

a
f (x)dx

∣∣∣∣
≤ b – a

(p + )

p

[(
max

{∣∣f ′(a)
∣∣ p
p– ,

∣∣∣∣f ′
(
a + b


)∣∣∣∣
p

p–
}) p–

p

+
(
max

{∣∣f ′(b)
∣∣ p
p– ,

∣∣∣∣f ′
(
a + b


)∣∣∣∣
p

p–
}) p–

p
]
. (.)

Theorem  [] Let f : I ⊆ [,∞) → R be a differentiable mapping on I◦ such that f ′ ∈
L([a,b]),where a,b ∈ I◦ with a < b. If |f ′|q is a quasi-convex function on [a,b], for q ≥ , the
following inequality holds:

∣∣∣∣ f (a) + f (b)


–


b – a

∫ b

a
f (x)dx

∣∣∣∣
≤ b – a



[(
max

{∣∣f ′(a)
∣∣q, ∣∣∣∣f ′

(
a + b


)∣∣∣∣
q}) 

q

+
(
max

{∣∣f ′(b)
∣∣q, ∣∣∣∣f ′

(
a + b


)∣∣∣∣
q}) 

q
]
. (.)

In [], Hwang established the following results for convex and quasi-convex functions;
those results provide a weighted generalization of the results given in Theorem , Theo-
rem , Theorem  and Theorem .

Theorem  [] Let f : I ⊆ R → R be a differentiable mapping on I◦, where a,b ∈ I◦ with
a < b, and let g : [a,b]→ [,∞) be a continuous positive mapping and symmetric to a+b

 . If
|f ′| is a convex function on [a,b], the following inequality holds:

∣∣∣∣
[
f (a) + f (b)



]∫ b

a
g(x)dx –

∫ b

a
f (x)g(x)dx

∣∣∣∣
≤ b – a


[∣∣f ′(a)

∣∣ + ∣∣f ′(b)
∣∣] ∫ 



∫ U(a,b,t)

L(a,b,t)
g(x)dxdt, (.)

where U(a,b, t) = –t
 a + +t

 b and L(a,b, t) = +t
 a + –t

 b.
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Theorem  [] Suppose that the assumptions of Theorem  are satisfied and q ≥ . If |f ′|q
is a convex function on [a,b], the following inequality holds:

∣∣∣∣
[
f (a) + f (b)



]∫ b

a
g(x)dx –

∫ b

a
f (x)g(x)dx

∣∣∣∣
≤ b – a



[ |f ′(a)|q + |f ′(b)|q


] 
q
∫ 



∫ U(a,b,t)

L(a,b,t)
g(x)dxdt, (.)

where U(a,b, t) and L(a,b, t) are as defined in Theorem .

Theorem  [] Suppose that the assumptions of Theorem  are satisfied. If |f ′| is a quasi-
convex function on [a,b], the following inequality holds:

∣∣∣∣
[
f (a) + f (b)



]∫ b

a
g(x)dx –

∫ b

a
f (x)g(x)dx

∣∣∣∣
≤ b – a



[
max

{∣∣f ′(a)
∣∣, ∣∣∣∣f ′

(
a + b


)∣∣∣∣
}
+max

{∣∣f ′(b)
∣∣, ∣∣∣∣f ′

(
a + b


)∣∣∣∣
}]

×
∫ 



∫ U(a,b,t)

L(a,b,t)
g(x)dxdt, (.)

where U(a,b, t) and L(a,b, t) are as defined in Theorem .

Theorem  [] Suppose that the assumptions of Theorem  are satisfied and q ≥ . If |f ′|q
is a quasi-convex function on [a,b], the following inequality holds:

∣∣∣∣
[
f (a) + f (b)



]∫ b

a
g(x)dx –

∫ b

a
f (x)g(x)dx

∣∣∣∣
≤ b – a



[(
max

{∣∣f ′(a)
∣∣q, ∣∣∣∣f ′

(
a + b


)∣∣∣∣
q}) 

q

+
(
max

{∣∣f ′(b)
∣∣q, ∣∣∣∣f ′

(
a + b


)∣∣∣∣
q}) 

q
]∫ 



∫ U(a,b,t)

L(a,b,t)
g(x)dxdt, (.)

where U(a,b, t) and L(a,b, t) are as defined in Theorem .

In recent years, a lot of efforts have been made by many mathematicians to generalize
the classical convexity. These studies include, among others, thework ofHanson [], Ben-
Israel and Mond [], Pini [], Noor [, ], Yang and Li [] andWeir and Mond [].
Ben-Israel and Mond [], Weir and Mond [] and Noor [, ] have studied the basic
properties of the preinvex functions and their role in optimization, variational inequalities
and equilibrium problems. Hanson [] introduced invex functions as a significant gener-
alization of the convex functions. Ben-Israel and Mond [] gave the concept of preinvex
functions which is a special case of invexity. Pini [] introduced the concept of prequasi-
invex functions as a generalization of invex functions.
Let us recall some known results concerning preinvexity and prequasiinvexity.
Let K be a subset in R

n and let f : K →R and η : K ×K →R
n be continuous functions.

Let x ∈ K , then the set K is said to be invex at x with respect to η(·, ·) if

x + tη(y,x) ∈ K , ∀x, y ∈ K , t ∈ [, ].

http://www.journalofinequalitiesandapplications.com/content/2013/1/575


Latif and Dragomir Journal of Inequalities and Applications 2013, 2013:575 Page 5 of 19
http://www.journalofinequalitiesandapplications.com/content/2013/1/575

K is said to be an invex set with respect to η if K is invex at each x ∈ K . The invex set K
is also called an η-connected set.

Definition  [] The function f on the invex set K is said to be preinvex with respect to
η if

f
(
u + tη(v,u)

) ≤ ( – t)f (u) + tf (v), ∀u, v ∈ K , t ∈ [, ].

The function f is said to be preconcave if and only if –f is preinvex.

It is to be noted that every convex function is preinvex with respect to the map η(x, y) =
x – y, but the converse is not true; see, for instance, [].

Definition  [] The function f on the invex set K is said to be prequasiinvex with re-
spect to η if

f
(
u + tη(v,u)

) ≤max
{
f (u), f (v)

}
, ∀u, v ∈ K , t ∈ [, ].

Also every quasi-convex function is prequasiinvexwith respect to themap η(v,u) = v–u,
but the converse does not hold; see, for example, [].
In the recent paper, Noor [] obtained the following Hermite-Hadamard inequalities

for the preinvex functions.

Theorem  [] Let f : [a,a + η(b,a)]→ (,∞) be a preinvex function on the interval of
the real numbers K◦ (the interior of K ) and a,b ∈ K◦ with η(b,a) > . Then the following
inequalities hold:

f
(
a + η(b,a)



)
≤ 

η(b,a)

∫ a+η(b,a)

a
f (x)dx≤ f (a) + f (b)


. (.)

Barani et al. in [] presented the following estimates of the right-hand side of a
Hermite-Hadamard-type inequality in which some preinvex functions are involved.

Theorem  [] Let K ⊆R be an open invex subset with respect to η : K ×K → R. Sup-
pose that f : K → R is a differentiable function. If |f ′| is preinvex on K , for every a,b ∈ K
with η(b,a) �= , the following inequality holds:

∣∣∣∣ f (a) + f (a + η(b,a))


–


η(b,a)

∫ a+η(b,a)

a
f (x)dx

∣∣∣∣ ≤ |η(b,a)|


(∣∣f ′(a)
∣∣ + ∣∣f ′(b)

∣∣). (.)

Theorem  [] Let K ⊆R be an open invex subset with respect to η : K ×K → R. Sup-
pose that f : K →R is a differentiable function. Assume p ∈R with p > . If |f ′| p

p– is prein-
vex on K , for every a,b ∈ K with η(b,a) �= , the following inequality holds:

∣∣∣∣ f (a) + f (a + η(b,a))


–


η(b,a)

∫ a+η(b,a)

a
f (x)dx

∣∣∣∣
≤ |η(b,a)|

( + p)

p

[ |f ′(a)| p
p– + |f ′(b)| p

p–



] p–
p
. (.)
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In [], Barani et al. gave similar results for prequasiinvex functions as follows.

Theorem  [] Let K ⊆R be an open invex subset with respect to η : K ×K →R. Sup-
pose that f : K → R is a differentiable function. If |f ′| is prequasiinvex on K , for every
a,b ∈ K with η(b,a) �= , the following inequality holds:

∣∣∣∣ f (a) + f (a + η(b,a))


–


η(b,a)

∫ a+η(b,a)

a
f (x)dx

∣∣∣∣
≤ |η(b,a)|


max

{∣∣f ′(a)
∣∣, ∣∣f ′(b)

∣∣}. (.)

Theorem  [] Let K ⊆R be an open invex subset with respect to η : K ×K → R. Sup-
pose that f : K → R is a differentiable function. Assume p ∈ R with p > . If |f ′| p

p– is pre-
quasiinvex on K , for every a,b ∈ K with η(b,a) �= , the following inequality holds:

∣∣∣∣ f (a) + f (a + η(b,a))


–


η(b,a)

∫ a+η(b,a)

a
f (x)dx

∣∣∣∣
≤ |η(b,a)|

( + p)

p

(
max

{∣∣f ′(a)
∣∣ p
p– ,

∣∣f ′(b)
∣∣ p
p–

}) p–
p . (.)

Latif [] proved the following results which give a refinement of the results given in
Theorems -.

Theorem  [] Let K ⊆ [,∞) be an open invex subset with respect to η : K × K → R.
Suppose that f : K → R is a differentiable mapping on K such that f ′ ∈ L([a,a + η(b,a)]).
If |f ′| is prequasiinvex on K , then for every a,b ∈ K with η(b,a) > , we have the following
inequality:

∣∣∣∣ f (a) + f (a + η(b,a))


–


η(b,a)

∫ a+η(b,a)

a
f (x)dx

∣∣∣∣
≤ η(b,a)



[
max

{∣∣f ′(a)
∣∣, ∣∣∣∣f ′

(
a +



η(b,a)

)∣∣∣∣
}

+max

{∣∣∣∣f ′
(
a +



η(b,a)

)∣∣∣∣, ∣∣f ′(a + η(b,a)
)∣∣}]

. (.)

Theorem  [] Let K ⊆ [,∞) be an open invex subset with respect to η : K × K → R.
Suppose that f : K →R is a differentiable mapping on K such that f ′ ∈ L([a,a+ η(b,a)]). If
|f ′|p is prequasiinvex on K for some p > , then for every a,b ∈ K with η(b,a) > , we have
the following inequality:

∣∣∣∣ f (a) + f (a + η(b,a))


–


η(b,a)

∫ a+η(b,a)

a
f (x)dx

∣∣∣∣
≤ η(b,a)

(p + )

p

[(
max

{∣∣f ′(a)
∣∣ p
p– ,

∣∣∣∣f ′
(
a +



η(b,a)

)∣∣∣∣
p

p–
}) p–

p

+
(
max

{∣∣∣∣f ′
(
a +



η(b,a)

)∣∣∣∣
p

p–
,
∣∣f ′(a + η(b,a)

)∣∣ p
p–

}) p–
p

]
. (.)
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Theorem  [] Let K ⊆R be an open invex subset with respect to η : K ×K →R. Sup-
pose that f : K → R is a differentiable mapping on K such that f ′ ∈ L([a,a + η(b,a)]). If
|f ′|q for q ≥  is prequasiinvex on K , then for every a,b ∈ K with η(b,a) > , we have the
following inequality:

∣∣∣∣ f (a) + f (a + η(b,a))


–


η(b,a)

∫ a+η(b,a)

a
f (x)dx

∣∣∣∣
≤ η(b,a)



[(
max

{∣∣f ′(a)
∣∣q, ∣∣∣∣f ′

(
a +



η(b,a)

)∣∣∣∣
q}) 

q

+
(
max

{∣∣∣∣f ′
(
a +



η(b,a)

)∣∣∣∣
q

,
∣∣f ′(a + η(b,a)

)∣∣q}) 
q
]
. (.)

For several new results on inequalities for preinvex and prequasiinvex functions, we
refer the interested reader to [, , ] and the references therein.
In the present paperwe give new inequalities ofHermite-Hadamard for functionswhose

derivatives in absolute value are preinvex and prequasiinvex. Our results extend those
results presented in very recent results from [, , , ] and [] and generalize those results
from [, ] and [].

2 Main results
The following lemma is essential in establishing our main results in this section.

Lemma  Let K ⊆ R be an open invex subset with respect to η : K × K → R and a,b ∈
K with η(b,a) > . Suppose that f : K → R is a differentiable mapping on K such that
f ′ ∈ L([a,a + η(b,a)]). If h : [a,a + η(b,a)] → [,∞) is a differentiable mapping, then the
following equality holds:



[(
h
(
a + η(b,a)

)
– h(a)

)
f (a) + h

(
a + η(b,a)

)
f
(
a + η(b,a)

)]
–

∫ a+η(b,a)

a
f (x)h′(x)dx

=
η(b,a)



{∫ 



[
h

(
a +

(
 – t


)
η(b,a)

)
– h

(
a + η(b,a)

)]
f ′

(
a +

(
 – t


)
η(b,a)

)
dt

+
∫ 



[
h

(
a +

(
 + t


)
η(b,a)

)
– h

(
a + η(b,a)

)]

× f ′
(
a +

(
 + t


)
η(b,a)

)
dt

}
. (.)

Proof It suffices to note that

I =
∫ 



[
h

(
a +

(
 – t


)
η(b,a)

)
– h

(
a + η(b,a)

)]
f ′

(
a +

(
 – t


)
η(b,a)

)
dt

= –
[h(a + ( –t )η(b,a)) – h(a + η(b,a))]f (a + ( –t )η(b,a))

η(b,a)

∣∣∣∣




– 
∫ 


h′

(
a +

(
 – t


)
η(b,a)

)
f
(
a +

(
 – t


)
η(b,a)

)
dt

=
–[h(a) – h(a + η(b,a))]f (a)

η(b,a)

http://www.journalofinequalitiesandapplications.com/content/2013/1/575
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+
[h(a + 

η(b,a)) – h(a + η(b,a))]f (a + 
η(b,a))

η(b,a)

– 
∫ 


h′

(
a +

(
 – t


)
η(b,a)

)
f
(
a +

(
 – t


)
η(b,a)

)
dt.

Setting x = a + ( –t )η(b,a) and dx = – η(b,a)
 dt, which gives

I =
[h(a + η(b,a)) – h(a)]f (a)

η(b,a)
–


η(b,a)

∫ a+ 
 η(b,a)

a
h′(x)f (x)dx

+
[h(a + 

η(b,a)) – h(a + η(b,a))]f (a + 
η(b,a))

η(b,a)
. (.)

Similarly, we also have

I =
∫ 



[
h

(
a +

(
 + t


)
η(b,a)

)
– h

(
a + η(b,a)

)]
f ′

(
a +

(
 + t


)
η(b,a)

)
dt

=
h(a + η(b,a))f (a + η(b,a))

η(b,a)
–


η(b,a)

∫ a+η(b,a)

a+ 
 η(b,a)

h′(x)f (x)dx

–
[h(a + 

η(b,a)) – h(a + η(b,a))]f (a + 
η(b,a))

η(b,a)
. (.)

Thus, from (.) and (.), we have

η(b,a)


[I + I] =


[(
h
(
a + η(b,a)

)
– h(a)

)
f (a) + h

(
a + η(b,a)

)
f
(
a + η(b,a)

)]

–
∫ a+η(b,a)

a
f (x)h′(x)dx,

which is the required result. �

Remark  If we take η(b,a) = b – a, then Lemma  reduces to Lemma . from [].

Now using Lemma , we shall propose some new upper bounds for the difference be-
tween the rightmost and middle terms of a weighted version of the Hadamard inequality
(.) using preinvex and prequasiinvex mappings. Our results provide a weighted gener-
alization of those results given in [, ] and [].
In what follows we use the notations L′(a,b, t) = a + ( –t )η(b,a) and U ′(a,b, t) = a +

( +t )η(b,a).

Theorem Let K ⊆R be an open invex subset with respect to η : K×K →R and a,b ∈ K
with η(b,a) > . Suppose that f : K → R is a differentiable mapping on K and w : [a,a +
η(b,a)] → [,∞) is continuous and symmetric to a + 

η(b,a). If |f ′| is preinvex on K , we
have the following inequality:

∣∣∣∣ f (a) + f (a + η(b,a))


∫ a+η(b,a)

a
w(x)dx –

∫ a+η(b,a)

a
f (x)w(x)dx

∣∣∣∣
≤ η(b,a)


[∣∣f ′(a)

∣∣ + ∣∣f ′(b)
∣∣] ∫ 



∫ U ′(a,b,t)

L′(a,b,t)
w(x)dxdt. (.)
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Proof Let h(t) =
∫ t
a w(t)dt for all t ∈ [a,a + η(b,a)] in Lemma , we obtain

∣∣∣∣ f (a) + f (a + η(b,a))


∫ a+η(b,a)

a
w(t)dt –

∫ a+η(b,a)

a
f (x)w(x)dx

∣∣∣∣
≤ η(b,a)



{∫ 



∣∣∣∣h
(
a +

(
 – t


)
η(b,a)

)
– h

(
a + η(b,a)

)∣∣∣∣
×

∣∣∣∣f ′
(
a +

(
 – t


)
η(b,a)

)∣∣∣∣dt
+

∫ 



∣∣∣∣h
(
a +

(
 + t


)
η(b,a)

)
– h

(
a + η(b,a)

)∣∣∣∣
×

∣∣∣∣f ′
(
a +

(
 + t


)
η(b,a)

)∣∣∣∣dt
}
. (.)

Since w(x) is symmetric to a + 
η(b,a), we have

∣∣∣∣h
(
a +

(
 – t


)
η(b,a)

)
– h

(
a + η(b,a)

)∣∣∣∣ =
∫ U ′(a,b,t)

L′(a,b,t)
w(x)dx (.)

and

∣∣∣∣h
(
a +

(
 + t


)
η(b,a)

)
– h

(
a + η(b,a)

)∣∣∣∣ =
∫ U ′(a,b,t)

L′(a,b,t)
w(x)dx (.)

for all t ∈ [, ]. Using (.) and (.) in (.), we have

∣∣∣∣ f (a) + f (a + η(b,a))


∫ a+η(b,a)

a
w(t)dt –

∫ a+η(b,a)

a
f (x)w(x)dx

∣∣∣∣
≤ η(b,a)



∫ 



(∫ U ′(a,b,t)

L′(a,b,t)
w(x)dx

)[∣∣∣∣f ′
(
a +

(
 – t


)
η(b,a)

)∣∣∣∣
+

∣∣∣∣f ′
(
a +

(
 + t


)
η(b,a)

)∣∣∣∣
]
dt. (.)

Since |f ′| is preinvex on K , hence for every a,b ∈ K with η(b,a) > , we have

∣∣∣∣f ′
(
a +

(
 – t


)
η(b,a)

)∣∣∣∣ +
∣∣∣∣f ′

(
a +

(
 + t


)
η(b,a)

)∣∣∣∣
≤

(
 + t


)∣∣f ′(a)
∣∣ +(

 – t


)∣∣f ′(b)
∣∣ +(

 – t


)∣∣f ′(a)
∣∣ +(

 + t


)∣∣f ′(b)
∣∣

=
∣∣f ′(a)

∣∣ + ∣∣f ′(b)
∣∣. (.)

Using (.) in (.), we get the required inequality. This completes the proof of the theo-
rem. �

Remark  In Theorem , if we take w(x) = 
η(b,a) for all x ∈ [a,a + η(b,a)], then (.)

becomes inequality (.).

Remark  If η(b,a) = b–a in Theorem , then (.) reduces to inequality (.) from [].
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Theorem Let K ⊆R be an open invex subset with respect to η : K×K →R and a,b ∈ K
with η(b,a) > . Suppose that f : K → R is a differentiable mapping on K and w : [a,a +
η(b,a)] → [,∞) is continuous and symmetric to a + 

η(b,a). If |f ′|q is preinvex on K for
q > , we have the following inequality:

∣∣∣∣ f (a) + f (a + η(b,a))


∫ a+η(b,a)

a
w(x)dx –

∫ a+η(b,a)

a
f (x)w(x)dx

∣∣∣∣
≤ η(b,a)



[ |f ′(a)|q + |f ′(b)|q


] 
q
(∫ 



[∫ U ′(a,b,t)

L′(a,b,t)
w(x)dx

]p

dt
) 

p
, (.)

where 
p +


q = .

Proof Continuing from inequality (.) in the proof of Theorem  and using the well-
known Hölder integral inequality, we have

∣∣∣∣ f (a) + f (a + η(b,a))


∫ a+η(b,a)

a
w(t)dt –

∫ a+η(b,a)

a
f (x)w(x)dx

∣∣∣∣
≤ η(b,a)



(∫ 



[∫ U ′(a,b,t)

L′(a,b,t)
w(x)dx

]p

dt
) 

p

×
[(∫ 



∣∣∣∣f ′
(
a +

(
 – t


)
η(b,a)

)∣∣∣∣
q

dt
) 

q

+
(∫ 



∣∣∣∣f ′
(
a +

(
 + t


)
η(b,a)

)∣∣∣∣
q

dt
) 

q
]
. (.)

By the power-mean inequality tr + sr < –r(t + s)r for t > , s >  and r < , and by the
preinvexity of |f ′|q on K for q > , we have, for every a,b ∈ K with η(b,a) > , the following
inequality:

(∫ 



∣∣∣∣f ′
(
a +

(
 – t


)
η(b,a)

)∣∣∣∣
q

dt
) 

q
+

(∫ 



∣∣∣∣f ′
(
a +

(
 + t


)
η(b,a)

)∣∣∣∣
q

dt
) 

q

≤ –

q

[∫ 



∣∣∣∣f ′
(
a +

(
 – t


)
η(b,a)

)∣∣∣∣
q

dt +
∫ 



∣∣∣∣f ′
(
a +

(
 + t


)
η(b,a)

)∣∣∣∣
q

dt
] 

q

≤ –

q

[∫ 



{(
 + t


)∣∣f ′(a)
∣∣q +(

 – t


)∣∣f ′(b)
∣∣q

+
(
 – t


)∣∣f ′(a)
∣∣q +(

 + t


)∣∣f ′(b)
∣∣q}dt

] 
q

= –

q
[∣∣f ′(a)

∣∣q + ∣∣f ′(b)
∣∣q] 

q . (.)

Using the last inequality (.) in (.), we get the desired inequality. This completes the
proof of the theorem as well. �

Remark  In Theorem  if we take w(x) = 
η(b,a) for all x ∈ [a,a+ η(b,a)] with η(b,a) > ,

then (.) reduces to inequality (.).
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Remark  If we take η(b,a) = b – a in Theorem , then (.) reduces to the following
inequality:

∣∣∣∣ f (a) + f (b)


∫ b

a
w(x)dx –

∫ b

a
f (x)w(x)dx

∣∣∣∣
≤ b – a



[ |f ′(a)|q + |f ′(b)|q


] 
q
(∫ 



[∫ U(a,b,t)

L(a,b,t)
w(x)dx

]p

dt
) 

p
, (.)

where 
p +


q = , L(a,b, t) = ( +t )a + ( –t )b, U(a,b, t) = ( –t )a + ( +t )b, t ∈ [a,b].

A similar result may be stated as follows.

Theorem  Let K ⊆ R be an open invex subset with respect to η : K × K → R. Suppose
that f : K →R is a differentiable mapping on K and w : [a,a + η(b,a)]→ [,∞) is contin-
uous and symmetric to a+ 

η(b,a). If |f ′|q is preinvex on K for q ≥ , then for every a,b ∈ K
with η(b,a) > , we have the following inequality:

∣∣∣∣ f (a) + f (a + η(b,a))


∫ a+η(b,a)

a
w(x)dx –

∫ a+η(b,a)

a
f (x)w(x)dx

∣∣∣∣
≤ η(b,a)



[ |f ′(a)|q + |f ′(b)|q


] 
q
∫ 



∫ U ′(a,b,t)

L′(a,b,t)
w(x)dxdt. (.)

Proof Continuing from inequality (.) in the proof of Theorem  and using the well-
known Hölder integral inequality, we have

∣∣∣∣ f (a) + f (a + η(b,a))


∫ a+η(b,a)

a
w(t)dt –

∫ a+η(b,a)

a
f (x)w(x)dx

∣∣∣∣
≤ η(b,a)



[∫ 



(∫ U ′(a,b,t)

L′(a,b,t)
w(x)dx

)
dt

]– 
q

×
[{(∫ 



(∫ U ′(a,b,t)

L′(a,b,t)
w(x)dx

)∣∣∣∣f ′
(
a +

(
 – t


)
η(b,a)

)∣∣∣∣
q

dt
)} 

q

+
{(∫ 



(∫ U ′(a,b,t)

L′(a,b,t)
w(x)dx

)∣∣∣∣f ′
(
a +

(
 + t


)
η(b,a)

)∣∣∣∣
q

dt
)} 

q
]
. (.)

By the power-mean inequality tr + sr < –r(t + s)r for t > , s >  and r < , and by the
preinvexity of |f ′|q on K for q > , we have, for every a,b ∈ K with η(b,a) > , the following
inequality:

{(∫ 



(∫ U ′(a,b,t)

L′(a,b,t)
w(x)dx

)∣∣∣∣f ′
(
a +

(
 – t


)
η(b,a)

)∣∣∣∣
q

dt
)} 

q

+
{(∫ 



(∫ U ′(a,b,t)

L′(a,b,t)
w(x)dx

)∣∣∣∣f ′
(
a +

(
 + t


)
η(b,a)

)∣∣∣∣
q

dt
)} 

q

≤ –

q

[∫ 



(∫ U ′(a,b,t)

L′(a,b,t)
w(x)dx

)
dt

] 
q [∣∣f ′(a)

∣∣q + ∣∣f ′(b)
∣∣q] 

q . (.)
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Utilizing inequality (.) in (.), we get inequality (.). This completes the proof of
the theorem. �

Corollary  Suppose that all the assumptions of Theorem  are satisfied and if w(x) =


η(b,a) for all x ∈ [a,a + η(b,a)] with η(b,a) > , then we have the following inequality:

∣∣∣∣ f (a) + f (a + η(b,a))


–


η(b,a)

∫ a+η(b,a)

a
f (x)dx

∣∣∣∣
≤ η(b,a)



[ |f ′(a)|q + |f ′(b)|q


] 
q
. (.)

Remark  If we take η(b,a) = b–a in Theorem , then the inequality reduces to inequal-
ity (.) from [].

Remark  For q = , (.) reduces to the inequality proved in Theorem . If q = p
p–

(p > ), we have p > p +  for p >  and, accordingly,



<



(p + )

p
.

This reveals that inequality (.) is better than the one given by (.) in Theorem 
from [].

Now we give our results for prequasiinvex functions.

Theorem  Let K ⊆ [,∞) be an open invex subset with respect to η : K ×K →R. Sup-
pose that f : K →R is a differentiablemapping on K andw : [a,a+η(b,a)]→ [,∞) is con-
tinuous and symmetric to a + 

η(b,a). If |f ′| is prequasiinvex on K , then for every a,b ∈ K
with η(b,a) > , we have the following inequality:

∣∣∣∣ f (a) + f (a + η(b,a))


∫ a+η(b,a)

a
w(x)dx –

∫ a+η(b,a)

a
f (x)w(x)dx

∣∣∣∣
≤ η(b,a)



[
max

{∣∣f ′(a)
∣∣, ∣∣∣∣f ′

(
a +



η(b,a)

)∣∣∣∣
}

+max

{∣∣∣∣f ′
(
a +



η(b,a)

)∣∣∣∣, ∣∣f ′(a + η(b,a)
)∣∣}]∫ 



∫ U ′(a,b,t)

L′(a,b,t)
w(x)dxdt. (.)

Proof We continue inequality (.) in the proof of Theorem . Since |f ′| is prequasiinvex
on K , hence for every t ∈ [, ], we obtain

∣∣∣∣f ′
(
a +

(
 – t


)
η(b,a)

)∣∣∣∣ ≤max

{∣∣f ′(a)
∣∣, ∣∣∣∣f ′

(
a +



η(b,a)

)∣∣∣∣
}

(.)

and ∣∣∣∣f ′
(
a +

(
 + t


)
η(b,a)

)∣∣∣∣ ≤max

{∣∣∣∣f ′
(
a +



η(b,a)

)∣∣∣∣, ∣∣f ′(a + η(b,a)
)∣∣}. (.)

A combination of (.), (.) and (.) gives the required inequality (.). �
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Corollary  Suppose that all the conditions of Theorem  are satisfied.Moreover,
() if |f ′| is non-decreasing, then the following inequality holds:

∣∣∣∣ f (a) + f (a + η(b,a))


∫ a+η(b,a)

a
w(x)dx –

∫ a+η(b,a)

a
f (x)w(x)dx

∣∣∣∣
≤ η(b,a)



[∣∣∣∣f ′
(
a +



η(b,a)

)∣∣∣∣ + ∣∣f ′(a + η(b,a)
)∣∣]

×
∫ 



∫ U ′(a,b,t)

L′(a,b,t)
w(x)dxdt; (.)

() if |f ′| is non-increasing, then the following inequality holds:

∣∣∣∣ f (a) + f (a + η(b,a))


∫ a+η(b,a)

a
w(x)dx –

∫ a+η(b,a)

a
f (x)w(x)dx

∣∣∣∣
≤ η(b,a)



[∣∣f ′(a)
∣∣ + ∣∣∣∣f ′

(
a +



η(b,a)

)∣∣∣∣
]∫ 



∫ U ′(a,b,t)

L′(a,b,t)
w(x)dxdt. (.)

Remark  [] If in Theoremwe takew(x) = 
η(b,a) for all x ∈ [a,a+η(b,a)] with η(b,a) >

, then we have the following inequality:

∣∣∣∣ f (a) + f (a + η(b,a))


–


η(b,a)

∫ a+η(b,a)

a
f (x)dx

∣∣∣∣
≤ η(b,a)



[
max

{∣∣f ′(a)
∣∣, ∣∣∣∣f ′

(
a +



η(b,a)

)∣∣∣∣
}

+max

{∣∣∣∣f ′
(
a +



η(b,a)

)∣∣∣∣, ∣∣f ′(a + η(b,a)
)∣∣}]

. (.)

Inequality (.) represents a new refinement of inequality (.) for prequasiinvex func-
tions and hence for preinvex functions. Moreover,
() if |f ′| is non-decreasing, then the following inequality holds:

∣∣∣∣ f (a) + f (a + η(b,a))


–


η(b,a)

∫ a+η(b,a)

a
f (x)dx

∣∣∣∣
≤ η(b,a)



[∣∣∣∣f ′
(
a +



η(b,a)

)∣∣∣∣ + ∣∣f ′(a + η(b,a)
)∣∣]; (.)

() if |f ′| is non-increasing, then the following inequality holds:

∣∣∣∣ f (a) + f (a + η(b,a))


–


η(b,a)

∫ a+η(b,a)

a
f (x)dx

∣∣∣∣
≤ η(b,a)



[∣∣f ′(a)
∣∣ + ∣∣∣∣f ′

(
a +



η(b,a)

)∣∣∣∣
]
. (.)

Remark  If η(b,a) = b – a in Theorem , then (.) reduces to inequality (.) es-
tablished in Theorem  from [], and inequalities (.) and (.) recapture the related
inequalities given in the corollary of Theorem .
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Remark  If η(b,a) = b – a in Remark , then (.) becomes inequality (.) of Theo-
rem  from [], and inequalities (.) and (.) recapture the related inequalities of the
corollary of Theorem .

Theorem  Let K ⊆ [,∞) be an open invex subset with respect to η : K ×K →R. Sup-
pose that f : K → R is a differentiable mapping on K and w : [a,a + η(b,a)] → [,∞) is
continuous and symmetric to a + 

η(b,a). If |f ′|q is prequasiinvex on K for q > , then for
every a,b ∈ K with η(b,a) > , we have the following inequality:

∣∣∣∣ f (a) + f (a + η(b,a))


∫ a+η(b,a)

a
w(x)dx –

∫ a+η(b,a)

a
f (x)w(x)dx

∣∣∣∣
≤ η(b,a)



(∫ 



[∫ U ′(a,b,t)

L′(a,b,t)
w(x)dx

]p

dt
) 

p

×
[(

max

{∣∣f ′(a)
∣∣q, ∣∣∣∣f ′

(
a +



η(b,a)

)∣∣∣∣
q}) 

q

+
(
max

{∣∣∣∣f ′
(
a +



η(b,a)

)∣∣∣∣
q

,
∣∣f ′(a + η(b,a)

)∣∣q}) 
q
]
, (.)

where 
p +


q = .

Proof We continue inequality (.) in the proof of Theorem . By the prequasiinvexity
of |f ′|q on K for q > , we have, for every t ∈ [, ],

∣∣∣∣f ′
(
a +

(
 – t


)
η(b,a)

)∣∣∣∣
q

≤max

{∣∣f ′(a)
∣∣q, ∣∣∣∣f ′

(
a +



η(b,a)

)∣∣∣∣
q}

(.)

and

∣∣∣∣f ′
(
a +

(
 + t


)
η(b,a)

)∣∣∣∣
q

≤max

{∣∣∣∣f ′
(
a +



η(b,a)

)∣∣∣∣
q

,
∣∣f ′(a + η(b,a)

)∣∣q}. (.)

A combination of (.), (.) and (.) gives us the required inequality (.). This
completes the proof of the theorem. �

Corollary  Suppose that all the conditions of Theorem  are satisfied.Moreover,
() if |f ′|q is non-decreasing for q > , then the following inequality holds:

∣∣∣∣ f (a) + f (a + η(b,a))


∫ a+η(b,a)

a
w(x)dx –

∫ a+η(b,a)

a
f (x)w(x)dx

∣∣∣∣
≤ η(b,a)



[∣∣∣∣f ′
(
a +



η(b,a)

)∣∣∣∣ + ∣∣f ′(a + η(b,a)
)∣∣]

×
(∫ 



[∫ U ′(a,b,t)

L′(a,b,t)
w(x)dx

]p

dt
) 

p
; (.)
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() if |f ′|q is non-increasing for q > , then the following inequality holds:

∣∣∣∣ f (a) + f (a + η(b,a))


∫ a+η(b,a)

a
w(x)dx –

∫ a+η(b,a)

a
f (x)w(x)dx

∣∣∣∣
≤ η(b,a)



[∣∣f ′(a)
∣∣ + ∣∣∣∣f ′

(
a +



η(b,a)

)∣∣∣∣
]

×
(∫ 



[∫ U ′(a,b,t)

L′(a,b,t)
w(x)dx

]p

dt
) 

p
, (.)

where 
p +


q = .

Remark  [] If in Theorem  we take w(x) = 
η(b,a) for all x ∈ [a,a + η(b,a)] with

η(b,a) > , then we have the following inequality:

∣∣∣∣ f (a) + f (a + η(b,a))


–


η(b,a)

∫ a+η(b,a)

a
f (x)dx

∣∣∣∣
≤ η(b,a)

(p + )

p

[
max

{∣∣f ′(a)
∣∣, ∣∣∣∣f ′

(
a +



η(b,a)

)∣∣∣∣
}

+max

{∣∣∣∣f ′
(
a +



η(b,a)

)∣∣∣∣, ∣∣f ′(a + η(b,a)
)∣∣}]

. (.)

Inequality (.) represents a new refinement of inequality (.) for prequasiinvex func-
tions and hence for preinvex functions. Moreover,
() if |f ′| is non-decreasing, then the following inequality holds:

∣∣∣∣ f (a) + f (a + η(b,a))


–


η(b,a)

∫ a+η(b,a)

a
f (x)dx

∣∣∣∣
≤ η(b,a)

(p + )

p

[∣∣∣∣f ′
(
a +



η(b,a)

)∣∣∣∣ + ∣∣f ′(a + η(b,a)
)∣∣]; (.)

() if |f ′| is non-increasing, then the following inequality holds:

∣∣∣∣ f (a) + f (a + η(b,a))


–


η(b,a)

∫ a+η(b,a)

a
f (x)dx

∣∣∣∣
≤ η(b,a)

(p + )

p

[∣∣f ′(a)
∣∣ + ∣∣∣∣f ′

(
a +



η(b,a)

)∣∣∣∣
]
, (.)

where 
p +


q = .

Remark  If we take η(b,a) = b – a in Remark , then (.) becomes inequality (.)
of Theorem  from [], and inequalities (.) and (.) become the related inequalities
given in the corollary of Theorem .

Theorem  Let K ⊆ [,∞) be an open invex subset with respect to η : K ×K →R. Sup-
pose that f : K → R is a differentiable mapping on K and w : [a,a + η(b,a)] → [,∞) is
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continuous and symmetric to a + 
η(b,a). If |f ′|q is prequasiinvex on K for q ≥ , then for

every a,b ∈ K with η(b,a) > , we have the following inequality:

∣∣∣∣ f (a) + f (a + η(b,a))


∫ a+η(b,a)

a
w(x)dx –

∫ a+η(b,a)

a
f (x)w(x)dx

∣∣∣∣
≤ η(b,a)



(∫ 



∫ U ′(a,b,t)

L′(a,b,t)
w(x)dxdt

)[(
max

{∣∣f ′(a)
∣∣q, ∣∣∣∣f ′

(
a +



η(b,a)

)∣∣∣∣
q}) 

q

+
(
max

{∣∣∣∣f ′
(
a +



η(b,a)

)∣∣∣∣
q

,
∣∣f ′(a + η(b,a)

)∣∣q}) 
q
]
. (.)

Proof We continue inequality (.) in the proof of Theorem . By the prequasiinvexity
of |f ′|q on K for q ≥ , we have, for every t ∈ [, ],

∣∣∣∣f ′
(
a +

(
 – t


)
η(b,a)

)∣∣∣∣
q

≤max

{∣∣f ′(a)
∣∣q, ∣∣∣∣f ′

(
a +



η(b,a)

)∣∣∣∣
q}

(.)

and

∣∣∣∣f ′
(
a +

(
 + t


)
η(b,a)

)∣∣∣∣
q

≤max

{∣∣∣∣f ′
(
a +



η(b,a)

)∣∣∣∣
q

,
∣∣f ′(a + η(b,a)

)∣∣q}. (.)

A combination of (.), (.) and (.) gives us the required inequality (.). This
completes the proof of the theorem. �

Corollary  Suppose that all the conditions of Theorem  are satisfied.Moreover,
() if |f ′|q is non-decreasing for q ≥ , then the following inequality holds:

∣∣∣∣ f (a) + f (a + η(b,a))


∫ a+η(b,a)

a
w(x)dx –

∫ a+η(b,a)

a
f (x)w(x)dx

∣∣∣∣
≤ η(b,a)



(∫ 



∫ U ′(a,b,t)

L′(a,b,t)
w(x)dxdt

)

×
[∣∣∣∣f ′

(
a +



η(b,a)

)∣∣∣∣ + ∣∣f ′(a + η(b,a)
)∣∣]; (.)

() if |f ′|q is non-increasing for q ≥ , then the following inequality holds:

∣∣∣∣ f (a) + f (a + η(b,a))


∫ a+η(b,a)

a
w(x)dx –

∫ a+η(b,a)

a
f (x)w(x)dx

∣∣∣∣
≤ η(b,a)



(∫ 



∫ U ′(a,b,t)

L′(a,b,t)
w(x)dxdt

)[∣∣f ′(a)
∣∣ + ∣∣∣∣f ′

(
a +



η(b,a)

)∣∣∣∣
]
. (.)

Remark  [] If in Theorem  we take w(x) = 
η(b,a) for all x ∈ [a,a + η(b,a)] with

η(b,a) > , then we have inequality (.). Moreover,
() if |f ′|q is non-decreasing, then inequality (.) holds,
() if |f ′|q is non-increasing, then inequality (.) holds.
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Remark  If η(b,a) = b – a in Theorem , then (.) reduces to inequality (.) es-
tablished in Theorem  from [], and inequalities (.) and (.) recapture the related
inequalities established in the corollary of Theorem .

Remark  If η(b,a) = b– a in Remark , then (.) becomes inequality (.) of Theo-
rem  from [], and inequalities (.) and (.) recapture the related inequalities of the
corollary of Theorem .

3 Applications to special means
In what follows we give certain generalizations of some notions for a positive valued func-
tion of a positive variable.

Definition  [] A functionM :R
+ →R+ is called amean function if it has the following

properties:
() Homogeneity:M(ax,ay) = aM(x, y) for all a > ;
() Symmetry:M(x, y) =M(y,x);
() Reflexivity:M(x,x) = x;
() Monotonicity: If x≤ x′ and y≤ y′, thenM(x, y) ≤M(x′, y′);
() Internality: min{x, y} ≤M(x, y) ≤max{x, y}.

We consider some means for arbitrary positive real numbers α, β (see, for instance,
[]).
() The arithmetic mean:

A := A(α,β) =
α + β


.

() The geometric mean:

G :=G(α,β) =
√

αβ.

() The harmonic mean:

H :=H(α,β) =



α
+ 

β

.

() The power mean:

Pr := Pr(α,β) =
(

αr + βr



) 
r
, r ≥ .

() The identric mean:

I := I(α,β) =

{

e (

ββ

αα ), α �= β ,
α, α = β .

() The logarithmic mean:

L := L(α,β) =
α – β

ln |α| – ln |β| , |α| �= |β|.
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() The generalized log-mean:

Lp := Lp(α,β) =
[

βp+ – αp+

(p + )(β – α)

]
, α �= β ,p ∈ R\{–, }.

It is well known that Lp ismonotonic nondecreasing over p ∈R, with L– := L and L := I .
In particular, we have the inequality H ≤G ≤ L≤ I ≤ A.
Now, let a and b be positive real numbers such that a < b. Consider the function M :=

M(a,b) : [a,a+η(b,a)]× [a,a+η(b,a)]→R
+, which is one of the abovementionedmeans,

therefore one can obtain variant inequalities for these means as follows.
Setting η(b,a) =M(b,a) in (.), (.) and (.), one can obtain the following interest-

ing inequalities involving means:

∣∣∣∣ f (a) + f (a +M(a,b))


∫ a+M(a,b)

a
w(x)dx –

∫ a+M(a,b)

a
f (x)w(x)dx

∣∣∣∣
≤ M(a,b)


[∣∣f ′(a)

∣∣ + ∣∣f ′(b)
∣∣] ∫ 



∫ U ′(a,b,t)

L′(a,b,t)
w(x)dxdt, (.)

∣∣∣∣ f (a) + f (a +M(a,b))


∫ a+M(a,b)

a
w(x)dx –

∫ a+M(a,b)

a
f (x)w(x)dx

∣∣∣∣
≤ M(a,b)



[ |f ′(a)|q + |f ′(b)|q


] 
q
(∫ 



[∫ U ′(a,b,t)

L′(a,b,t)
w(x)dx

]p

dt
) 

p
(.)

for q > , 
p +


q =  and

∣∣∣∣ f (a) + f (a +M(a,b))


∫ a+M(a,b)

a
w(x)dx –

∫ a+M(a,b)

a
f (x)w(x)dx

∣∣∣∣
≤ M(a,b)



[ |f ′(a)|q + |f ′(b)|q


] 
q
∫ 



∫ U ′(a,b,t)

L′(a,b,t)
w(x)dxdt (.)

for q ≥ , where U ′(a,b, t) = a + ( +t )M(a,b), L′(a,b, t) = a + ( –t )M(a,b). Letting M =
A,G,H ,Pr , I,L,Lp in (.), (.) and (.), we can get the required inequalities for a dif-
ferent weight function w(x), and the details are left to the interested reader.
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1. Pečarić, J, Proschan, F, Tong, YL: Convex Functions, Partial Ordering and Statistical Applications. Academic Press, New

York (1991)
2. Alomari, M, Darus, M, Kirmaci, US: Refinements of Hadamard-type inequalities for quasi-convex functions with

applications to trapezoidal formula and to special means. Comput. Math. Appl. 59, 225-232 (2010)

http://www.journalofinequalitiesandapplications.com/content/2013/1/575


Latif and Dragomir Journal of Inequalities and Applications 2013, 2013:575 Page 19 of 19
http://www.journalofinequalitiesandapplications.com/content/2013/1/575

3. Dragomir, SS, Agarwal, RP: Two inequalities for differentiable mappings and applications to special means of real
numbers and trapezoidal formula. Appl. Math. Lett. 11(5), 91-95 (1998)

4. Dragomir, SS: Two mappings in connection to Hadamard’s inequalities. J. Math. Anal. Appl. 167, 42-56 (1992)
5. Hwang, D-Y: Some inequalities for differentiable convex mapping with application to weighted trapezoidal formula

and higher moments of random variables. Appl. Math. Comput. 217(23), 9598-9605 (2011)
6. Ion, DA: Some estimates on the Hermite-Hadamard inequality through quasi-convex functions. An. Univ. Craiova,

Math. Comput. Sci. Ser. 34, 82-87 (2007)
7. Kırmacı, US: Inequalities for differentiable mappings and applications to special means of real numbers and to

midpoint formula. Appl. Math. Comput. 147(1), 137-146 (2004)
8. Kırmacı, US, Özdemir, ME: On some inequalities for differentiable mappings and applications to special means of real

numbers and to midpoint formula. Appl. Math. Comput. 153(2), 361-368 (2004)
9. Lee, KC, Tseng, KL: On a weighted generalization of Hadamard’s inequality for G-convex functions. Tamsui Oxford

Univ. J. Math. Sci. 16(1), 91-104 (2000)
10. Lupas, A: A generalization of Hadamard’s inequality for convex functions. Univ. Beogr. Publ. Elektroteh. Fak., Ser. Mat.

Fiz. 544-576, 115-121 (1976)
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