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Abstract
The study of this paper consists of two aspects. One is characterizing the so-called
circular cone convexity of f by exploiting the second-order differentiability of fLθ ; the
other is introducing the concepts of determinant and trace associated with circular
cone and establishing their basic inequalities. These results show the essential role
played by the angle θ , which gives us a new insight when looking into properties
about circular cone.
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1 Introduction
Recently, much attention has been paid to the nonsymmetric cone optimization problems,
see [–] and the references therein. Unlike symmetric cones [], there is no unified struc-
ture for nonsymmetric cones. Hence, how to tackle nonsymmetric cone optimization is
still an issue. For symmetric cone optimization, the algebraic structure associated with
symmetric cones, including second-order cone and positive semi-definite matrix cones,
allows us to study them via exploiting the unified Euclidean Jordan algebra []. In gen-
eral, the way to deal with nonsymmetric cone optimization depends on the feature of the
associated nonsymmetric cone. In this paper, we focus on a special nonsymmetric cone,
circular cone Lθ . The circular cone [–] is a pointed closed convex cone having hyper-
spherical sections orthogonal to its axis of revolution about which the cone is invariant
to rotation. Let its half-aperture angle be θ with θ ∈ (, ◦). Then, it is mathematically
expressed as

Lθ :=
{
x = (x,x)T ∈ R×R

n– | x ≥ ‖x‖ cos θ}
=

{
x = (x,x)T ∈ R×R

n– | x ≥ ‖x‖ cot θ
}
.

Real applications of a circular cone lie in some engineering problems, for example, in the
formulation for optimal grasping manipulation for multi-fingered robots, the grasping
force of ith finger is subject to a circular cone constraint, see [, ] and references for
more details.
Although Lθ is a nonsymmetric cone, we can, due to its special structure, establish the

explicit form of orthogonal decomposition (or spectral decomposition) [] as

x = λ(x) · u()x + λ(x) · u()x , ()
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where
⎧⎨
⎩λ(x) = x – ‖x‖ cot θ ,

λ(x) = x + ‖x‖ tan θ

and
⎧⎪⎨
⎪⎩
u()x = 

+cot θ

[
 
 cot θ In–

][


–x̄

]
=

[
sin θ

–(sin θ cos θ )x̄

]
,

u()x = 
+tan θ

[
 
 tan θ In–

][

x̄

]
=

[
cos θ

(sin θ cos θ )x̄

]

with x̄ = x/‖x‖ if x �= , and x̄ being any vector w in R
n– satisfying ‖w‖ =  if x = .

Clearly, x ∈Lθ if and only if λ(x)≥ .
The formula () allows us to define the following vector-valued function:

f Lθ (x) := f
(
λ(x)

)
u()x + f

(
λ(x)

)
u()x , ()

where f is a real-valued function from J to R with J being a subset in R. Let S be the set of
all x ∈R

n whose spectral values λi(x) for i = ,  belong to J , i.e., S := {x ∈ R
n | λi(x) ∈ J , i =

, }. According to [], we know that S is open if and only if J is open. In addition, as J is
an interval, then S is convex because

min
{
λ(x),λ(y)

} ≤ λ
(
βx + ( – β)y

) ≤ λ
(
βx + ( – β)y

)
≤ max

{
λ(x),λ(y)

}
, ∀β ∈ [, ].

Throughout this paper, we always assume that J is an interval in R. Clearly, as θ = ◦,
L◦ reduces to the second-order cone and the above expressions () and () correspond
to the spectral decomposition and the SOC-function associated with the second-order
cone, respectively (see [, ] for more information regarding f soc).
It is well known that in dealing with symmetric cone optimization problems, such as

second-order cone optimization problems and positive semi-definite optimization prob-
lems, this type of vector-valued functions plays an essential role. Inspired by this, we
study the properties of f Lθ , which is crucial for circular cone optimization problems. In
our previous works, we have studied the smooth and nonsmooth analysis of f Lθ [, ];
and the circular cone monotonicity and second-order differentiability of f Lθ []. From
the aforementioned research, there is an interesting observation: some properties com-
monly shared by f soc and f Lθ are independent of the angle θ ; for example, f Lθ is direc-
tionally differentiable, Fréchet differentiable, semi-smooth if and only if f is directionally
differentiable, Fréchet differentiable, semi-smooth; while some properties are dependent
on the angle θ ; for example, f Lθ with f (t) = –/t for t >  is circular cone monotone as
θ ∈ [◦, ◦), but not circular cone monotone as θ ∈ (, ◦).
In this paper, we further study the circular cone convexity of f . More precisely, a real-

valued function f : J →R is said to be Lθ -convex of order n on S if for any x, y ∈ S,

f Lθ
(
βx + ( – β)y

) 
Lθ
βf Lθ (x) + ( – β)f Lθ (y), ∀β ∈ [, ].
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The characterization ofLθ -convexity is based on the observation that f isLθ -convex if and
only if (f Lθ )′′(x)(h,h) ∈Lθ for all h ∈R

n. Our result shows that the circular cone convexity
requires that the angle θ belongs in [◦, ◦). In particular, we show that f is Lθ -convex
of order  if and only if θ ∈ [◦, ◦) and f is convex.
On the other hand, using the spectral decomposition (), we define the determinant and

trace of x in the framework of circular cone as

det(x) := λ(x)λ(x) and tr(x) := λ(x) + λ(x),

respectively. In the symmetric cone setting, the concepts of determinant and trace are the
key ingredients of barrier and penalty functions which are used in barrier and penalty
methods (including interior point methods) for symmetric cone optimization, see [–
]. Here we further study some basic inequalities of det(x) and tr(x) in the framework
of circular cone. As seen in Section , the obtained inequalities are classified into three
categories: (i) the first class is independent of the angle (i.e., still holds in the framework
of circular cone); (ii) the second class is dependent on the angle, for example, for x, y ∈Lθ ,
the inequality

det(e + x + y) ≤ det(e + x)det(e + y),

where e = (, , . . . , ) ∈ R
n, fails as θ ∈ (, ◦) but holds as θ ∈ [◦, ◦); (iii) the third

class always fails no matter what value of θ is chosen. These results give us a new insight
into a circular cone and make us focus more on the role played by the angle θ .
The notation used in this paper is standard. For example, denote by R

n the n-
dimensional Euclidean space and by R+ the set of all nonnegative real scalars, i.e.,
R+ = {t ∈ R | t ≥ }. For x, y ∈ R

n, the inner product is denoted by xTy. Let Sn mean
the spaces of all real symmetric matrices in R

n×n, and let Sn+ denote the cone of positive
semi-definite matrices. We write x �Lθ

y to stand for x – y ∈ Lθ . Finally, we define 
 := 

for convenience.

2 Circular cone convexity
The main purpose of this section is to provide characterizations of Lθ -convex functions.
First, we need the following technical lemma.

Lemma . Given αi ∈R for i = , . . . ,  and βi ∈R for i = , , , we define

F (β,β,β) := αβ

 + αβ


 + αβ


 β


 + αβ


β


 + αβ


 β


 + αβββ


 . ()

If F (β,β,β) ≥  for all (β,β,β) ∈R
, then

α ≥ , α ≥ , α ≥ , α ≥ , α ≥ –
√

αα.

Furthermore, if

α
 ≤

⎧⎨
⎩αα for α ≥ ,

[α – (α
/α)]α for α ∈ [–√αα, ),

()

then F (β,β,β) ≥  for all (β,β,β) ∈R
.
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Proof If β = , then F (β,β,β) = β
 [αβ


 + αβ


 ]. From F (β,β,β) ≥ , we have

αβ

 + αβ


 ≥ . Thus, α ≥  by letting β →  and α ≥  by letting β → .

If β = , then F (β,β,β) = β
 [αβ


 + αβ


 ]. From F (β,β,β) ≥ , we obtain α ≥ 

and α ≥ .
If β = , then

F (β,β,β) = αβ

 + αβ


 + αβ


 β


 = β

 β



[
α

(
β

β

)

+ α + α

(
β

β

)]
()

whenever β �=  and β �= . Let t = β/β. From F (β,β,β) ≥ , equation () implies

α ≥ –αt – α
(
/t

)
, ∀t �= ,

i.e.,

α ≥max
t �=

[
–αt – α

(
/t

)]
= –min

t �=
[
αt + α

(
/t

)]
= –

√
αα.

Furthermore, if α ≥ , then

F (β,β,β) ≥ αβ

 + αβ


 β


 + αβββ


 =

[
β
 ββ

][
α α/

α/ α

][
β


ββ

]
≥ ,

where the last step is due to
[

α α/
α/ α

]
�

S

+
O,

which is ensured by condition (). Similarly, if α ∈ [–√αα, ) (implying α �=  in this
case), then

F (β,β,β)

=
(√

αβ

 +

α

√α
β


)

+
(

α –
α


α

)
β
 + αβ


β


 + αβ


 β


 + αβββ




≥
(

α –
α


α

)
β
 + αβ


 β


 + αβββ




=
[
β
 ββ

][
α – (α

/α) α/
α/ α

][
β


ββ

]
≥ ,

where the last step is due to
[
α – (α

/α) α/
α/ α

]
�

S

+
O,

which is ensured by condition () and the fact α – (α
/α) ≥  since –√αα ≤ α < .

This completes the proof. �

Lemma. [, Theorem.] Let f : J →R and f Lθ be defined as in ().Then f Lθ is second-
order differentiable at x ∈ S if and only if f is second-order differentiable at λi(x) ∈ J for
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i = , .Moreover, for u, v ∈R
n, if x = , then

(
f Lθ

)′′(x)(u, v)

=

⎧⎪⎨
⎪⎩
f ′′(x)

[
uTv

uv+vu

]
, either u =  or v = ,[

f ′′(x)uTv
f ′′(x)(vu+uv)+ 

 f
′′(x)(tan θ–cot θ )(‖u‖v+ūT v̄‖v‖u)

]
, otherwise.

If x �= , then

(
f Lθ

)′′(x)(u, v) =

[
I
I

]
,

where

I := vuξ̃ + �̃
(
ux̄T v + vx̄T u

)
+ ãvT u + (η̃ – ã)x̄T vx̄

T
 u,

I :=
[
(η̃ – ã)ux̄T v + (	 – d̃)x̄T vx̄

T
 u + �̃vu + (η̃ – ã)vx̄T u

]
x̄

+ d̃
[
x̄T uv + vT ux̄ + x̄T vu

]
+ ã(uv + vu)

with

ã =
f ′(λ(x)) – f ′(λ(x))

λ(x) – λ(x)
,

ξ̃ =
f ′′(λ(x))
 + cot θ

+
f ′′(λ(x))
 + tan θ

,

�̃ = –
cot θ

 + cot θ
f ′′(λ(x)

)
+

tan θ

 + tan θ
f ′′(λ(x)

)
,

η̃ =
cot θ

 + cot θ
f ′′(λ(x)

)
+

tan θ

 + tan θ
f ′′(λ(x)

)
,

d̃ =


‖x‖
[

cot θ

 + cot θ
f ′(λ(x)

)
+

tan θ

 + tan θ
f ′(λ(x)

)
–
f (λ(x)) – f (λ(x))

λ(x) – λ(x)

]
,

	 = –
cot θ

 + cot θ
f ′′(λ(x)

)
+

tan θ

 + tan θ
f ′′(λ(x)

)
.

The characterization ofLθ -convexity is established below, which can be regarded as the
extension of some results given in [, –] from the second-order cone setting to the
circular cone setting.

Theorem . Suppose that f : J → R is second-order continuously differentiable. If f is
Lθ -convex of order n on S, then tan θ ≥ , f is convex on J , and for all τ, τ ∈ J with τ ≤ τ,

f ′′(τ)δ(τ, τ) ≥ 
(τ – τ)

δ(τ, τ) ()

and

[
tan θδ(τ, τ) +

(
tan θ – 

)
δ(τ, τ)

]
f ′′(τ) –


(τ – τ)

δ(τ, τ)

≥ –f ′′(τ)
√(

tan θ – 
)
δ(τ, τ)

[
 tan θδ(τ, τ) +

(
tan θ – 

)
δ(τ, τ)

]
. ()
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Furthermore, if

[
tan θδ(τ, τ) +

(
tan θ – 

)
δ(τ, τ)

]
f ′′(τ) ≥ 

(τ – τ)
δ(τ, τ) ()

and

δ(τ, τ)δ(τ, τ) ≤ [
 tan θδ(τ, τ) +

(
tan θ – 

)
δ(τ, τ)

]
f ′′(τ)f ′′(τ)(τ – τ), ()

or if

[
tan θδ(τ, τ) +

(
tan θ – 

)
δ(τ, τ)

]
f ′′(τ) <


(τ – τ)

δ(τ, τ)

and

δ(τ, τ)δ(τ, τ)
(
tan θ – 

)
f ′′(τ)

≤
{[(

tan θ – 
)
f ′′(τ)

[
 tan θδ(τ, τ) +

(
tan θ – 

)
δ(τ, τ)

]
δ(τ, τ)

]

–
[(
tan θδ(τ, τ) +

(
tan θ – 

)
δ(τ, τ)

)
f ′′(τ) –


(τ – τ)

δ(τ, τ)
]}

× f ′′(τ)(τ – τ), ()

then f is Lθ -convex. Here δ(τ , τ ′) := f (τ ) – f (τ ′) – f ′(τ ′)(τ – τ ′) for τ , τ ′ ∈ J .

Proof According to [, Theorem .], f is Lθ -convex if and only if (f Lθ )′′(x)(h,h) ∈Lθ for
all x ∈ S and h ∈R

n. We proceed the proof by considering the following three cases.
Case . For x =  and h = , it follows from Lemma . that

(
f Lθ

)′′(x)(h,h) = f ′′(x)

[
h


]
.

Hence, (f Lθ )′′(x)(h,h) ∈Lθ if and only if f ′′(x)≥ .
Case . For x =  and h �= , it follows from Lemma . that

(
f Lθ

)′′(x)(h,h) =

[
f ′′(x)‖h‖

f ′′(x)hh + f ′′(x)(tan θ – cot θ )‖h‖h

]
.

Hence, (f Lθ )′′(x)(h,h) ∈Lθ if and only if f ′′(x)≥  and

tan θ‖h‖ ≥ ∣∣h + (tan θ – cot θ )‖h‖
∣∣‖h‖,

i.e.,

– tan θ
(
h + ‖h‖

) ≤ [
h + (tan θ – cot θ )‖h‖

]‖h‖ ≤ tan θ
(
h + ‖h‖

)
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/571
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Dividing by ‖h‖ and letting t = h/‖h‖ yields

– tan θ
(
t + 

) ≤ t + tan θ – cot θ ≤ tan θ
(
t + 

)
⇐⇒ max

t∈R
– tan θ

(
t + 

)
– t ≤ tan θ – cot θ ≤min

t∈R
tan θ

(
t + 

)
– t

⇐⇒ cot θ – tan θ ≤ tan θ – cot θ ≤ tan θ – cot θ

⇐⇒ tan θ ≥ .

Case . For x �= , due to the simplification of notation, let us denote

μ := h – cot θ x̄T h, μ := h + tan θ x̄T h, μ :=
√

‖h‖ –
(
x̄T h

). ()

Then

x̄T h =
μ –μ

tan θ + cot θ
and h =

tan θμ + cot θμ

tan θ + cot θ
. ()

Note that μ, μ, and μ can take any value in R×R×R+ by taking a suitable value of h
(because the vector h has n variables). It follows from Lemma . that

(
f Lθ

)′′(x)(h,h)

=

[
ξ̃h + �̃x̄T hh + ã‖h‖ + (η̃ – ã)(x̄T h)

[(	 – d̃)(x̄T h) + (η̃ – ã)x̄T hh]x̄ + [�̃h + d̃‖h‖]x̄ + [ãh + d̃x̄T h]h

]

=:

[
�

�x̄ +�h

]
,

where

� = ξ̃h + �̃x̄T hh + ã‖h‖ + (η̃ – ã)
(
x̄T h

),
� = (	 – d̃)

(
x̄T h

) + (η̃ – ã)x̄T hh + �̃h + d̃‖h‖,
� = 

[
ãh + d̃x̄T h

]
.

Hence, (f Lθ )′′(x)(h,h) ∈Lθ is equivalent to

� ≥  and �
 tan

 θ ≥ ‖�x̄ +�h‖.

Note that

� =


 + cot θ
f ′′(λ(x)

)[
h – 

(
x̄T h

)
h cot θ +

(
x̄T h

)
cot θ

]
+


 + tan θ

f ′′(λ(x)
)[
h + 

(
x̄T h

)
h tan θ +

(
x̄T h

)
tan θ

]
+ ã

[‖h‖ – (
x̄T h

)]
=


 + cot θ

f ′′(λ(x)
)
μ
 +


 + tan θ

f ′′(λ(x)
)
μ
 + ãμ

. ()
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We now claim that � ≥  for all h ∈R
n if and only if

f ′′(λ(x)
) ≥ , f ′′(λ(x)

) ≥ , and ã ≥ . ()

The sufficiency is clear. Let us show the necessity. In particular, choosing h = (– tan θ , x̄)
yields μ =  and μ = . It then follows from � ≥  that f ′′(λ(x)) ≥ . If we choose
h = (cot θ , x̄), then we have f ′′(λ(x))≥ . Finally, choosing h = (,kz) with k ∈R, ‖z‖ = 
and zT x̄ =  gives

� =
f ′′(λ(x))
 + cot θ

+
f ′′(λ(x))
 + tan θ

+ ãk ≥ .

Dividing by k both sides and taking the limits as k → ∞, we obtain ã ≥ . Since λi(x)
can take an arbitrary value in J , it is clear that () is equivalent to saying that f ′′(τ ) ≥ 
for all τ ∈ J , i.e., f is convex on J . Indeed, the condition ã ≥  is ensured by the fact that
ã = f ′(λ(x))–f ′(λ(x))

λ(x)–λ(x)
= f ′′(t) ≥  for some t ∈ (λ(x),λ(x)).

Now we calculate the values of � and �, respectively.

� = –
cot θ

 + cot θ
f ′′(λ(x)

)
μ
 +

tan θ

 + tan θ
f ′′(λ(x)

)
μ


+ d̃μ
 – 

(
d̃x̄T h + ãh

)(
x̄T h

)
= –

cot θ

 + cot θ
f ′′(λ(x)

)
μ
 +

tan θ

 + tan θ
f ′′(λ(x)

)
μ
 + d̃μ

 –
(
x̄T h

)
�. ()

Meanwhile, it follows from () that

� = 
[
ã
tan θμ + cot θμ

tan θ + cot θ
+ d̃

μ –μ

tan θ + cot θ

]

=


tan θ + cot θ

[
μ(ã tan θ – d̃) +μ(ã cot θ + d̃)

]
. ()

Note that

‖�x̄ +�h‖ = �
 + ��x̄T h +�

‖h‖

= �
 + ��x̄T h +�


[
μ
 +

(
x̄T h

)]
=

(
� +�x̄T h

) +�
μ


. ()

Putting () and ()-() together, the condition �
 tan

 θ ≥ ‖�x̄ + �h‖ can be
rewritten equivalently as

tan θ

[
f ′′(λ(x))
 + cot θ

μ
 +

f ′′(λ(x))
 + tan θ

μ
 + ãμ



]

≥
[
–

cot θ

 + cot θ
f ′′(λ(x)

)
μ
 +

tan θ

 + tan θ
f ′′(λ(x)

)
μ
 + d̃μ



]

+


(tan θ + cot θ )
[
μ(ã tan θ – d̃) +μ(ã cot θ + d̃)

]
μ
,

http://www.journalofinequalitiesandapplications.com/content/2013/1/571
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i.e.,

(
tan θ – 

)
f ′′(λ(x)

)
μ
 + (tan θ + cot θ )

(
ã tan θ – d̃)μ



+ 
[
(tan θ + cot θ )

(
ã tan θ + d̃

)
f ′′(λ(x)

)
– (ã tan θ – d̃)

]
μ
μ




+ 
[
(tan θ + cot θ )(ã tan θ – d̃)f ′′(λ(x)

)
– (ã cot θ + d̃)

]
μ
μ




+ 
(
tan θ + 

)
f ′′(λ(x)

)
f ′′(λ(x)

)
μ
μ




– (ã tan θ – d̃)(ã cot θ + d̃)μμμ

 ≥ . ()

To apply Lemma ., we need to compute each coefficient in (). By calculation, we have

ã tan θ – d̃

=
f ′(λ(x)) – f ′(λ(x))

λ(x) – λ(x)
tan θ –


‖x‖

[
cot θ

 + cot θ
f ′(λ(x)

)
+

tan θ

 + tan θ
f ′(λ(x)

)]

+


‖x‖
f (λ(x)) – f (λ(x))

λ(x) – λ(x)

=
f ′(λ(x)) – f ′(λ(x))

λ(x) – λ(x)
tan θ –


‖x‖

[
cot θ

tan θ + cot θ
f ′(λ(x)

)
+

tan θ

tan θ + ctan θ
f ′(λ(x)

)]

+


‖x‖
f (λ(x)) – f (λ(x))

λ(x) – λ(x)

= –
tan θ + ctan θ

λ(x) – λ(x)
f ′(λ(x)

)
+

tan θ + ctan θ

[λ(x) – λ(x)]
[
f
(
λ(x)

)
– f

(
λ(x)

)]

=
(tan θ + cot θ )[f (λ(x)) – f (λ(x)) – f ′(λ(x))(λ(x) – λ(x))]

[λ(x) – λ(x)]

=
tan θ + cot θ

[λ(x) – λ(x)]
δ
(
λ(x),λ(x)

)
,

where the third equation follows from the fact λ(x)–λ(x) = (tan θ +ctan θ )‖x‖. Similarly,
we have

ã tan θ + d̃

=
(tan θ + cot θ )[f (λ(x)) – f (λ(x)) + (  tan θ

tan θ+cot θ f
′(λ(x)) + cot θ–tan θ

tan θ+cot θ f
′(λ(x)))(λ(x) – λ(x))]

[λ(x) – λ(x)]

=
tan θ + cot θ

[λ(x) – λ(x)]

[
 tan θ

tan +
δ
(
λ(x),λ(x)

)
+
tan θ – 
tan θ + 

δ
(
λ(x),λ(x)

)]
,

ã cot θ + d̃ =
(tan θ + cot θ )[f (λ(x)) – f (λ(x)) – f ′(λ(x))(λ(x) – λ(x))]

[λ(x) – λ(x)]

=
tan θ + cot θ

[λ(x) – λ(x)]
δ
(
λ(x),λ(x)

)
,

ã tan θ + d̃

=
(tan θ + cot θ )[f (λ(x)) – f (λ(x)) – [tan θ f ′(λ(x)) + ( – tan θ )f ′(λ(x))](λ(x) – λ(x))]

[λ(x) – λ(x)]

=
tan θ + cot θ

[λ(x) – λ(x)]
[
tan θδ

(
λ(x),λ(x)

)
+

(
tan θ – 

)
δ
(
λ(x),λ(x)

)]
.
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Corresponding each coefficient in () to (), we know

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α = (tan θ – )f ′′(λ(x)),

α = (tan θ+cot θ )
[λ(x)–λ(x)]

δ(λ(x),λ(x))[  tan θ

tan θ+δ(λ(x),λ(x)) + tan θ–
tan θ+δ(λ(x),λ(x))],

α =  (tan θ+cot θ )
[λ(x)–λ(x)]

{[tan θδ(λ(x),λ(x)) + (tan θ – )δ(λ(x),λ(x))]f ′′(λ(x)),

–  δ(λ(x),λ(x))
[λ(x)–λ(x)]

},
α =  (tan θ+cot θ )

[λ(x)–λ(x)]
[δ(λ(x),λ(x))f ′′(λ(x)) –  δ(λ(x),λ(x))

[λ(x)–λ(x)]
],

α = (tan θ + )f ′′(λ(x))f ′′(λ(x)),

α = – (tan θ+cot θ )
[λ(x)–λ(x)]

δ(λ(x),λ(x))δ(λ(x),λ(x)).

In view of Lemma ., the condition α ≥  means tan θ ≥ , α,α ≥  is ensured by the
convexity of f (see ()), α ≥  corresponds to (), and α ≥ –√αα corresponds to ().
In addition, condition () takes the special form () and (), respectively. �

Theorem . Suppose that f : J → R is second-order continuously differentiable. Then f
is Lθ -convex of order  on S if and only if tan θ ≥  and f is convex on J .

Proof The necessity is clear from Theorem .. For sufficiency, note that in () μ = 
since x̄ =± in this case. Hence, () takes the form of

(
tan θ – 

)
f ′′(λ(x)

)
μ
 + 

(
tan θ + 

)
f ′′(λ(x)

)
f ′′(λ(x)

)
μ
μ


 ≥ 

for all μ and μ, which is equivalent to verifying

tan θ ≥  and f ′′(λ(x)
)
f ′′(λ(x)

) ≥ .

This is ensued by the conditions that tan θ ≥  and f is convex on J . Thus, the proof is
complete. �

If, in particular, θ = ◦, then () and () reduce to [, () in Proposition .]; () re-
duces to [, () in Proposition .]. In addition, due to (), () holds automatically in this
case. The above results indicate that the Lθ -convexity is dependent on the properties of f
and the angle θ together.

3 Inequalities associated with circular cone
In this section, we establish some inequalities associated with circular cone, which we be-
lieve will be useful for further analyzing the properties of f Lθ and proving the convergence
of interior point methods for optimization problems involved in circular cones.
In [], the author establishes the following results in the framework of second-order

cone. More specifically, for x�L◦  and y �L◦ , then
(a) det(e + x)/ ≥  + det(x)/,
(b) det(x + y) ≥ det(x) + det(y),
(c) det(αx + ( – α)y) ≥ α det(x) + ( – α) det(y), ∀α ∈ [, ],
(d) det(e + x + y) ≤ det(e + x)det(e + y),
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(e) If x�L◦ y �L◦ , then det(x)≥ det(y), tr(x)≥ tr(y), and λi(x)≥ λi(y) for i = , ,
(f ) tr(x + y) = tr(x) + tr(y) and det(γ x) = γ  det(x) for all γ ∈ R.
In the following, we show that, in the framework of circular cone, the above inequalities

can be classified into three categories. The first class holds independent of the angle, e.g.,
(a); the second class holds dependent on the angle, e.g., (b)-(e); the third class fails no
matter what value of the angle is chosen, e.g., (f ).

Theorem . Let x = (x,x) ∈R×R
n– possess spectral factorization associated with cir-

cular cone given as in (). Then
(a) [det(e + x)]/ ≥  + det(x)/ for all x ∈Lθ ;
(b) If x�Lθ

y, then λ(x)≥ λ(y).

Proof (a) Note that det(x)≥  and det(e + x)≥  since x,x + e ∈Lθ . Therefore,

[
det(e + x)

]/ ≥  + det(x)/

⇐⇒ det(e + x)≥  + det(x)/ + det(x)

⇐⇒ λ(e + x)λ(e + x) ≥  + 
√

λ(x)λ(x) + λ(x)λ(x)

⇐⇒ (
x +  – ‖x‖ cot θ

)(
x +  + ‖x‖ tan θ

) ≥  + 
√

λ(x)λ(x) + λ(x)λ(x)

⇐⇒ (
λ(x) + 

)(
λ(x) + 

) ≥  + 
√

λ(x)λ(x) + λ(x)λ(x)

⇐⇒ λ(x)λ(x) + λ(x) + λ(x) +  ≥  + 
√

λ(x)λ(x) + λ(x)λ(x)

⇐⇒ λ(x) + λ(x)≥ 
√

λ(x)λ(x)

⇐⇒ λ(x) + λ(x)


≥ √
λ(x)λ(x).

Hence, to prove the desired result, it suffices to show that

λ(x) + λ(x)


≥ √
λ(x)λ(x),

which is clearly true by the arithmetic mean-geometric mean (AM-GM) inequality.
(b) Since x – y ∈Lθ , we know

x – y ≥ ‖x – y‖ cot θ ≥ [‖x‖ – ‖y‖
]
cot θ ,

i.e., λ(x) = x – ‖x‖ cot θ ≥ y – ‖y‖ cot θ = λ(y). �

Theorem . Let x = (x,x) ∈R×R
n– possess spectral factorization associated with cir-

cular cone given as in (). Then the following hold.
(a) For all x, y ∈Lθ ,

det(x + y) ≥ det(x) + det(y) +
(‖x‖ + ‖y‖

)
csc θ –

(
x + y

)
sec θ .

In particular, when θ ∈ (, ◦], we have

det(x + y) ≥ det(x) + det(y). ()
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(b) For all x, y ∈Lθ and α ∈ [, ],

det
(
αx + ( – α)y

)
≥ α det(x) + ( – α) det(y) +

(
α‖x‖ + ( – α)‖y‖

)
csc θ

–
(
αx + ( – α)y

)
sec θ .

In particular, when θ ∈ (, ◦], we have

det
(
αx + ( – α)y

) ≥ α det(x) + ( – α) det(y).

(c) If x, y ∈Lθ and θ ∈ [◦, ◦), then

det(e + x + y) ≤ det(e + x)det(e + y). ()

(d) If x�Lθ
y �Lθ

 and θ ∈ (, ◦], then

λ(x)≥ λ(y), det(x)≥ det(y), and tr(x)≥ tr(y). ()

Proof (a) Notice that

det(x + y)

= λ(x + y) · λ(x + y)

=
(
x + y – ‖x + y‖ cot θ

)(
x + y + ‖x + y‖ tan θ

)
= (x + y) + (x + y)‖x + y‖ tan θ – (x + y)‖x + y‖ cot θ – ‖x + y‖

and

det(x) + det(y)

= λ(x)λ(x) + λ(y)λ(y)

=
(
x – ‖x‖ cot θ

)(
x + ‖x‖ tan θ

)
+

(
y – ‖y‖ cot θ

)(
y + ‖y‖ tan θ

)
= x + x‖x‖ tan θ – x‖x‖ cot θ – ‖x‖ + y + y‖y‖ tan θ – y‖y‖ cot θ – ‖y‖

= x + y + x‖x‖ tan θ + y‖y‖ tan θ – x‖x‖ cot θ – y‖y‖ cot θ – ‖x‖ – ‖y‖.

Then we have

det(x + y) – det(x) – det(y)

= xy – xT y +
(
x‖x + y‖ + y‖x + y‖ – x‖x‖ – y‖y‖

)
tan θ

–
(
x‖x + y‖ + y‖x + y‖ – x‖x‖ – y‖y‖

)
cot θ .

Using x, y ∈Lθ (and hence x + y ∈Lθ ) gives

x tan θ ≥ ‖x‖, –x tan θ ≤ –‖x‖, x ≥ ‖x‖ cot θ , –x ≤ –‖x‖ cot θ ,
–(x + y) ≤ –‖x + y‖ cot θ .
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Thus,

det(x + y) – det(x) – det(y)

≥ xy – xT y + ‖x‖‖x + y‖ + ‖y‖‖x + y‖ – x tan
 θ – y tan

 θ

– x(x + y) – y(x + y) + ‖x‖ cot θ + ‖y‖ cot θ

= xy – xT y + ‖x + y‖
(‖x‖ + ‖y‖

)
–

(
x + y

)
tan θ

– (x + y) +
(‖x‖ + ‖y‖

)
cot θ

≥ ‖x + y‖ –
(
x + y

)
tan θ – x – y – xT y +

(‖x‖ + ‖y‖
)
cot θ

= ‖x‖ + ‖y‖ –
(
x + y

)
tan θ – x – y +

(‖x‖ + ‖y‖
)
cot θ

=
(‖x‖ + ‖y‖

)(
 + cot θ

)
–

(
x + y

)(
 + tan θ

)
=

(‖x‖ + ‖y‖
)
csc θ –

(
x + y

)
sec θ ,

which is the desired result.
When θ ∈ (, ◦], we know tan θ ≤ cot θ . Since x, y ∈ Lθ , i.e., x ≥ ‖x‖ cot θ and

y ≥ ‖y‖ cot θ , there exist a,b ≥  such that x = ‖x‖ cot θ + a and y = ‖y‖ cot θ + b.
Hence,

det(x + y) – det(x) – det(y)

= xy – xT y +
(
x‖x + y‖ + y‖x + y‖ – x‖x‖ – y‖y‖

)
tan θ

–
(
x‖x + y‖ + y‖x + y‖ – x‖x‖ – y‖y‖

)
cot θ

=
(‖x‖ + ‖y‖

)[‖x‖ + ‖y‖ – ‖x + y‖
]
cot θ

+ ‖x + y‖
(‖x‖ + ‖y‖ – ‖x + y‖

)
+ ab

+ a cot θ
(‖y‖ + ‖x‖ – ‖x + y‖

)
+ a tan θ

(‖y‖ cot θ + ‖x + y‖ – ‖x‖
)

+ b cot θ
(‖y‖ + ‖x‖ – ‖x + y‖

)
+ b tan θ

(‖x‖ cot θ + ‖x + y‖ – ‖y‖
)

≥ ,

where the last step is due to ‖x‖ + ‖y‖ ≥ ‖x + y‖, ‖x‖ cot θ + ‖x + y‖ – ‖y‖ ≥
‖x‖+ ‖x + y‖– ‖y‖ ≥ , and ‖y‖ cot θ + ‖x + y‖– ‖x‖ ≥ ‖y‖+ ‖x + y‖– ‖x‖ ≥ 
since cot θ ≥ , due to θ ∈ (, ◦].
(b) The result follows from the fact that det(γ x) = γ  det(x) for all γ ≥ .
(c) Since θ ∈ [◦, ◦), cot θ ≤ . For x, y ∈ Lθ , there exist two nonnegative scalars

a,b≥  such that x = ‖x‖ cot θ + a and y = ‖y‖ cot θ + b. This implies

det(e + x) =
(
x +  – ‖x‖ cot θ

)(
x +  + ‖x‖ tan θ

)
= (a + )(cot θ + tan θ )‖x‖ + (a + ),

det(e + y) =
(
y +  – ‖y‖ cot θ

)(
y +  + ‖y‖ tan θ

)
= (b + )(cot θ + tan θ )‖y‖ + (b + ).
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Thus, we obtain

det(e + x)det(e + y)

= (a + )(b + )(cot θ + tan θ )‖x‖‖y‖ + (a + )(b + )(cot θ + tan θ )‖x‖
+ (a + )(b + )(cot θ + tan θ )‖y‖ + (a + )(b + ). ()

On the other hand,

det(e + x + y)

=
(
x + y +  – ‖x + y‖ cot θ

)(
x + y +  + ‖x + y‖ tan θ

)
=

([‖x‖ + ‖y‖ – ‖x + y‖
]
cot θ + (a + b + )

)
× ([‖x‖ + ‖y‖

]
cot θ + ‖x + y‖ tan θ + (a + b + )

)
=

(‖x‖ + ‖y‖ – ‖x + y‖
)(‖x‖ + ‖y‖

)
cot θ

+
(‖x‖ + ‖y‖ – ‖x + y‖

)‖x + y‖ + (a + b + )
(‖x‖ + ‖y‖ – ‖x + y‖

)
cot θ

+ (a + b + )
(‖x‖ + ‖y‖

)
cot θ + (a + b + )‖x + y‖ tan θ + (a + b + )

=  cot θ‖x‖‖y‖ + (a + b + ) cot θ‖x‖ + (a + b + ) cot θ‖y‖ + (a + b + )

+
[‖x‖ + ‖y‖

]
cot θ +

(
 – cot θ

)‖x + y‖
(‖x‖ + ‖y‖

)
+ (a + b + )(tan θ – cot θ )‖x + y‖ – ‖x + y‖

≤  cot θ‖x‖‖y‖ + (a + b + ) cot θ‖x‖ + (a + b + ) cot θ‖y‖ + (a + b + )

+
[‖x‖ + ‖y‖

]
cot θ +

(
 – cot θ

)(‖x‖ + ‖y‖
)

+ (a + b + )(tan θ – cot θ )
(‖x‖ + ‖y‖

)
–

(‖x‖ + ‖y‖
)
+ ‖x‖‖y‖

=  cot θ‖x‖‖y‖ + (a + b + )(cot θ + tan θ )‖x‖ + (a + b + )(cot θ + tan θ )‖y‖
+ (a + b + ) +

(
 – cot θ

)[(‖x‖ + ‖y‖
) – (‖x‖ + ‖y‖

)]
+ ‖x‖‖y‖

= ‖x‖‖y‖ + (a + b + )(cot θ + tan θ )‖x‖ + (a + b + )(ctan θ + tan θ )‖y‖
+ (a + b + ). ()

Note that (a + )(b + )(cot θ + tan θ ) ≥ (cot θ + tan θ ) ≥  and

(a + )(b + ) ≥ a + b + ,

(a + )(b + )≥ a + b + ,

(a + )(b + ) ≥ (a + b + ).

Hence, comparing () and () yields

det(e + x + y) ≤ det(e + x)det(e + y).

(d) For θ ∈ (, ◦], since cot θ ≥ tan θ and x – y ∈Lθ , we know

x – y ≥ ‖x – y‖ cot θ ≥ ‖x – y‖ tan θ ≥ [‖y‖ – ‖x‖
]
tan θ ,
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which means

λ(x) = x + ‖x‖ tan θ ≥ y + ‖y‖ tan θ = λ(y).

This together with the fact λ(x) ≥ λ(y) by Part (b) in Theorem . and λi(x),λi(y) ≥  for
i = ,  (due to x, y ∈Lθ ) further yields

det(x) = λ(x)λ(x) ≥ λ(y)λ(y) = det(y).

Meanwhile, we obtain

tr(x) = λ(x) + λ(x)≥ λ(y) + λ(y) = tr(y). �

Here are some remarks for Theorem ..
(i) Inequality () fails when θ ∈ (◦, ◦). For example, let x = (, , ), y = (,–,–),

and cot θ = .. Then det(x) = det(y) = / and det(x + y) = , which says
det(x + y) =  <  = det(x) + det(y).

(ii) Inequality () fails when θ ∈ (, ◦). For example, let x = (/, /),
y = (/,–/), and cot θ = . Then
det(e + x + y) = (.) > (.) = det(e + x)det(e + y).

(iii) Inequality () fails when θ ∈ (◦, ◦). For example, for x = (., ), y = (, ), and
cot θ = .. Then x �Lθ

y, λ(x) = . <  = λ(y),
det(x) = (. – .)(. + ) = . < . = ( – .)( + ) = det(y), and
tr(x) = . < . = tr(y).

Next, let usmove from inequalities to equalities. In particular, we focus on two identities
in the framework of second-order cone as below

tr(x + y) = tr(x) + tr(y) and det(γ x) = γ  det(x), ∀γ ∈R. ()

But these two identities fail to hold in the circular cone setting no matter what value of
the angle is chosen. In fact, in the second-order cone case,

tr(x) = x and det(x) = x – ‖x‖.

Hence, () holds trivially. For the circular cone setting, we have

tr(x) = x + ‖x‖(tan θ – cot θ ) and det(x) =
(
x – ‖x‖ cot θ

)(
x + ‖x‖ tan θ

)
.

Thus, tr(x) is not linear anymore, i.e., tr(x+y) �= tr(x)+ tr(y); e.g., for x = (, ) and y = (,–),
and cot θ = / (or cot θ = ). Then

tr(x + y) =  �=  = tr(x) + tr(y)
(
or tr(x + y) =  �= – = tr(x) + tr(y)

)
.

In addition, det(γ x) = γ  det(x) holds as γ ≥  but not true as γ < ; e.g., for x = (, ),
γ = –, and cot θ = / (or cot θ = ), then

det(–x) = – �=  = (–) det(x)
(
or det(–x) =  �= – = (–) det(x)

)
.
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The precise relationship between tr(x + y) and tr(x) + tr(y) is provided as below.

Theorem .

tr(x + y)

⎧⎨
⎩≥ tr(x) + tr(y) as θ ∈ (, ◦],

≤ tr(x) + tr(y) as θ ∈ [◦, ◦).

Proof The result follows from the fact that

tr(x + y) – tr(x) – tr(y) =
[‖x‖ + ‖y‖ – ‖x + y‖

]
(cot θ – tan θ ). �

Note that tr(x) is positively homogeneous, i.e., tr(γ x) = γ tr(x) for all γ ≥ . This together
with Theorem . yields the following result.

Corollary . The trace tr(x) is concave as θ ∈ (, ◦] and is convex as θ ∈ [◦, ◦).

These results further indicate that the angle plays an essential role for a circular cone.
As in symmetric cone optimization, we believe that these inequalities about det(x) and
tr(x) are key ingredients in penalty and barrier functions which can be adapted in design-
ing barrier and penalty algorithms (including interior point algorithm) for circular cone
optimization. This merits our further research.
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