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Abstract
In this paper, a new concept of weighted integrability is introduced for an array of
random variables concerning an array of constants, which is weaker than other
previous related notions of integrability. Mean convergence theorems for weighted
sums of an array of dependent random variables satisfying this condition of
integrability are obtained. Our results extend and sharpen the known results in the
literature.
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1 Introduction
The notion of uniform integrability plays the central role in establishing weak laws of large
numbers. In this paper, we introduce a new notion of weighted integrability and prove
some weak laws of large numbers under this condition.

Definition . A sequence {Xn,n ≥ } of integrable random variables is said to be uni-
formly integrable if

lim
a→∞ sup

n≥
E|Xn|I

(|Xn| > a
)
= .

Landers and Rogge [] proved the weak law of large numbers under the sequence of
pairwise independent uniformly integrable random variables.
Chandra [] obtained the weak law of large numbers under a new condition which is

weaker than uniform integrability: Cesàro uniform integrability.

Definition . A sequence {Xn,n≥ } of integrable random variables is said to be Cesàro
uniformly integrable if

lim
a→∞ sup

n≥


n

n∑
i=

E|Xi|I
(|Xi| > a

)
= .
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In the following, let {un,n ≥ } and {vn,n ≥ } be two sequences of integers (not nec-
essary positive or finite) such that vn > un for all n ≥  and vn – un → ∞ as n → ∞. Let
{kn,n≥ } be a sequence of positive numbers such that kn → ∞ as n→ ∞.
Ordóñez Cabrera [] introduced the concept of uniform integrability concerning an ar-

ray of constant weights.

Definition . Let {Xni,un ≤ i ≤ vn,n≥ } be an array of random variables and {ani,un ≤
i≤ vn,n≥ } be an array of constants with

∑vn
i=un |ani| ≤ C for all n ∈N and some constant

C > . The array {Xni,un ≤ i≤ vn,n ≥ } is said to be {ani}-uniformly integrable if

lim
a→∞ sup

n≥

vn∑
i=un

|ani|E|Xni|I
(|Xni| > a

)
= .

Ordóñez Cabrera [] proved that the condition of uniform integrability concerning an
array of constantweights is weaker than uniform integrability, and leads toCesàro uniform
integrability as a special case. Under the condition of uniform integrability concerning
the weights, he obtained the weak law of large numbers for weighted sums of pairwise
independent random variables.
Sung [] introduced the concept of Cesàro-type uniform integrability with exponent r.

Definition . Let {Xni,un ≤ i ≤ vn,n≥ } be an array of random variables and r > . The
array {Xni,un ≤ i ≤ vn,n≥ } is said to be Cesàro-type uniformly integrable with exponent
r if

sup
n≥


kn

vn∑
i=un

E|Xni|r <∞ and lim
a→∞ sup

n≥


kn

vn∑
i=un

E|Xni|rI
(|Xni|r > a

)
= .

Note that the conditions of Cesàro uniform integrability and Cesàro-type uniform in-
tegrability with exponent r are equivalent when un = , vn = n, n ≥  and r = . Sung []
obtained the weak law of large numbers for an array {Xni} satisfying Cesàro-type uniform
integrability with exponent r for some  < r < .
Chandra and Goswami [] introduced the concept of Cesàro α-integrability (α > ) and

showed that Cesàro α-integrability, for any α > , is weaker than Cesàro uniform integra-
bility.

Definition . Let α > . A sequence {Xn,n≥ } of random variables is said to be Cesàro
α-integrable if

sup
n≥


n

n∑
i=

E|Xi| < ∞ and lim
n→∞


n

n∑
i=

E|Xi|I
(|Xi| > iα

)
= .

Under the Cesàro α-integrability condition for some α > 
 , Chandra and Goswami []

obtained the weak law of large numbers for a sequence of pairwise independent random
variables. They also proved that Cesàro α-integrability for appropriate α is also sufficient
for the weak law of large numbers to hold for certain special dependent sequences of ran-
dom variables.
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Ordóñez Cabrera and Volodin [] introduced the notion of h-integrability for an array
of random variables concerning an array of constant weights, and proved that this con-
cept is weaker than Cesàro uniform integrability, {ani}-uniform integrability and Cesàro
α-integrability.

Definition . Let {Xni,un ≤ i ≤ vn,n≥ } be an array of random variables and {ani,un ≤
i≤ vn,n≥ } be an array of constants with

∑vn
i=un |ani| ≤ C for all n ∈N and some constant

C > . Moreover, let {h(n),n ≥ } be an increasing sequence of positive constants with
h(n) ↑ ∞ as n ↑ ∞. The array {Xni,un ≤ i≤ vn,n≥ } is said to be h-integrablewith respect
to the array of constants {ani} if

sup
n≥

vn∑
i=un

|ani|E|Xni| < ∞ and lim
n→∞

vn∑
i=un

|ani|E|Xni|I
(|Xni| > h(n)

)
= .

Under appropriate conditions on the weights, Ordóñez Cabrera and Volodin [] proved
that h-integrability concerning the weights is sufficient for the weak law of large numbers
to hold for weighted sums of an array of random variables, when these random variables
are subject to some special kind of rowwise dependence.
Sung et al. [] introduced the notion of h-integrability with exponent r (r > ).

Definition . Let {Xni,un ≤ i ≤ vn,n ≥ } be an array of random variables and r > .
Moreover, let {h(n),n ≥ } be an increasing sequence of positive constants with h(n) ↑ ∞
as n ↑ ∞. The array {Xni} is said to be h-integrable with exponent r if

sup
n≥


kn

vn∑
i=un

E|Xni|r <∞ and lim
n→∞


kn

vn∑
i=un

E|Xni|rI
(|Xni|r > h(n)

)
= .

Sung et al. [] proved that h-integrability with exponent r (r > ) is weaker than Cesàro-
type uniform integrability with exponent r, and obtained weak law of large numbers for
an array of dependent random variables (martingale difference sequence or negatively as-
sociated random variables ) satisfying the condition of h-integrability with exponent r.
Chandra andGoswami [] introduced the concept of residual Cesàro (α,p)- integrability

(α > , p > ) and showed that residual Cesàro (α,p)-integrability for any α >  is strictly
weaker than Cesàro α-integrability.

Definition . Let α > , p > . A sequence {Xn,n ≥ } of random variables is said to be
residually Cesàro (α,p)-integrable if

sup
n≥


n

n∑
i=

E|Xi|p < ∞ and lim
n→∞


n

n∑
i=

E
(|Xi| – iα

)pI(|Xi| > iα
)
= .

Under the residual Cesàro (α,p)-integrability condition for some appropriate α and p,
Chandra and Goswami [] obtained L-convergence and the weak law of large numbers
for a sequence of dependent random variables.
We now introduce a new concept of integrability.
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Definition . Let r >  and {Xni,un ≤ i ≤ vn,n ≥ } be an array of random variables.
Moreover, let {ani,un ≤ i≤ vn,n≥ } be an array of constants and {h(n),n≥ } an increas-
ing sequence of positive constants with h(n) ↑ ∞ as n ↑ ∞. The array {Xni,un ≤ i≤ vn,n≥
} is said to be residually (r,h)-integrable with respect to the array of constants {ani} if

sup
n≥

vn∑
i=un

|ani|rE|Xni|r < ∞ and lim
n→∞

vn∑
i=un

|ani|rE
(|Xni| – h(n)

)rI(|Xni| > h(n)
)
= .

Remark . (i) The residual (,h)-integrability concerning the arrays of constants was
defined by Yuan and Tao [], who called it the residual h-integrability, and was extended
by Ordóñez Cabrera et al. [] to the conditionally residually h-integrability relative to a
sequence of σ -algebras.
(ii) If {Xni,un ≤ i≤ vn,n≥ } is h-integrable with exponent r, then it is residually (r,h/r)-

integrable with respect to the array of constants {ani} satisfying ani = k–/rn , un ≤ i ≤ vn,
n≥ .
(iii) Residually (r,h)-integrable with respect to the array of constants {ani} is weaker than

residually Cesàro (α,p)-integrable.
(iv) The concept of residually (r,h)-integrable concerning the array of constants {ani} is

strictly weaker than the concept of h-integrable concerning the array of constants {ani}
and h-integrable with exponent r.

Therefore, the concept of residually (r,h)-integrable concerning the array of constants
{ani} is weaker than the concept of all Definitions .-., and leads to residual Cesàro
(α,p)-integrability as a special case.
For the array {Xni,un ≤ i ≤ vn,n ≥ } of random variables, weak laws of large numbers

have been established by many authors (referring to: Sung et al. [, ]; Sung []; Ordóñez
Cabrera and Volodin []).
In this paper, we obtain weak laws of large numbers for the array of dependent random

variables satisfying the condition of residually (r,h)-integrable with respect to the array of
constants {ani}. Our results extend and sharpen the results of Sung et al. [], Sung et al.
[], Sung [], Ordóñez Cabrera and Volodin [].

2 Preliminary lemmas
In order to consider the mean convergence for an array of random variables satisfying
dependent conditions, we need the following definition.

Definition . Two random variables X and Y are said to be negatively quadrant depen-
dent (NQD) or lower case negatively dependent (LCND) if

P(X ≤ x,Y ≤ y) ≤ P(X ≤ x)P(Y ≤ y) ∀x, y ∈ R.

An infinite family of random variables {Xn,n ≥ } is said to be pairwise NQD if every
two random variables Xi and Xj (i 	= j) are NQD. The array {Xni, i ≥ ,n ≥ } is said to
be rowwise pairwise NQD if every positive integer n, the sequence of random variables
{Xni, i≥ } is pairwise NQD.
This definition was introduced by Alam and Saxena [] and carefully studied by Joag-

Dev and Proschan [].

http://www.journalofinequalitiesandapplications.com/content/2013/1/558
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Lemma. Let {Xn,n≥ } be a sequence of pairwiseNQD randomvariables.Let {fn,n≥ }
be a sequence of increasing functions. Then {fn(Xn),n ≥ } is a sequence of pairwise NQD
random variables.

If random variables X and Y are NQD, then E(XY )≤ EXEY , so we have the following.

Lemma . Let {Xn,n≥ } be a sequence of pairwise NQD random variables with EXn = 
and EX

n <∞, n≥ . Then

E

( n∑
i=

Xi

)

≤
n∑
i=

EX
i .

Using the above lemma, Chen et al. [] obtained the following inequality.

Lemma . Let {Xn,n≥ } be a sequence of pairwise NQD random variables with EXn = 
and E|Xn|p <∞, n≥ , where ≤ p≤ . Then

E

∣∣∣∣∣
n∑
i=

Xi

∣∣∣∣∣
p

≤ cp
n∑
i=

E|Xi|p, ∀n≥ ,

where cp >  depends only on p.

3 Main results and proofs
Theorem . Let  < r <  and {Xni,un ≤ i ≤ vn,n ≥ } be an array of random variables.
Let {ani,un ≤ i≤ vn,n≥ } be an array of constants and {h(n),n≥ } an increasing sequence
of positive constants with h(n) ↑ ∞ as n ↑ ∞. Assume that the following conditions hold:

(i) {Xni,un ≤ i ≤ vn,n≥ } is residually (r,h)-integrable concerning the array {ani};
(ii) h(n) supun≤i≤vn |ani| → .

Then

vn∑
i=un

ani(Xni – bni) → 

in Lr and, hence, in probability as n → ∞, where bni =  if  < r <  and bni = E(Xni|
n,i–)
if ≤ r < , where 
n,i = σ (Xni,un ≤ j ≤ i), un ≤ i≤ vn, n≥ , and 
n,un– = {∅,�}, n≥ .

Proof If un = –∞ and/or vn = +∞, by the Cr-inequality, Jensen’s inequality and  < r < ,
we have

sup
n≥

vn∑
i=un

|ani|rE|Xni – bni|r ≤  sup
n≥

vn∑
i=un

|ani|rE|Xni|r <∞.

Therefore, if  < r < , we have E(
∑vn

i=un |aniXni|)r ≤ ∑vn
i=un |ani|rE|Xni|r <∞, so

∑vn
i=un aniXni

a.s. converges for all n≥ . If ≤ r < , by Theorem . of Hall and Heyde [], we can get
that

∑vn
i=un ani(Xni –bni) a.s. converges for all n≥ . Thus

∑vn
i=un ani(Xni –bni) a.s. converges

for all n ≥  in the case of un = –∞ and/or vn = +∞.
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Let X ′
ni = XniI(|Xni| ≤ h(n)) – h(n)I(Xni < –h(n)) + h(n)I(Xni > h(n)) and X ′′

ni = Xni – X ′
ni =

(Xni + h(n))I(Xni < –h(n)) + (Xni – h(n))I(Xni > h(n)) for un ≤ i≤ un, n≥ .
Case  < r < . By the Cr-inequality, we obtain

E

∣∣∣∣∣
vn∑
i=un

aniXni

∣∣∣∣∣
r

≤ E

∣∣∣∣∣
vn∑
i=un

aniX ′
ni

∣∣∣∣∣
r

+ E

∣∣∣∣∣
vn∑
i=un

aniX ′′
ni

∣∣∣∣∣
r

.

Noting that |X ′′
ni| ≤ (|Xni| – h(n))I(|Xni| > h(n)) for all un ≤ i ≤ vn, n ≥ , by the Cr-

inequality, we obtain

E

∣∣∣∣∣
vn∑
i=un

aniX ′′
ni

∣∣∣∣∣
r

≤
vn∑
i=un

|ani|rE
∣∣X ′′

ni
∣∣r

≤
vn∑
i=un

|ani|rE
(|Xni| – h(n)

)rI(|Xni| > h(n)
) → .

Since |X ′
ni| ≤min{|Xni|,h(n)} and  < r < , we have

E

∣∣∣∣∣
vn∑
i=un

aniX ′
ni

∣∣∣∣∣ ≤
vn∑
i=un

|ani|E
∣∣X ′

ni
∣∣

≤ C
(
h(n) sup

un≤i≤vn
|ani|

)–r vn∑
i=un

|ani|rE|Xni|r → .

So,
∑vn

i=un aniX
′
ni →  in L and hence in Lr . Therefore, the proof is completed when  <

r < .
Case r = . Since

E

∣∣∣∣∣
vn∑
i=un

ani
[
Xni – E(Xni|
n,i–)

]∣∣∣∣∣
≤ E

∣∣∣∣∣
vn∑
i=un

ani
[
X ′
ni – E

(
X ′
ni|
n,i–

)]∣∣∣∣∣ + E

∣∣∣∣∣
vn∑
i=un

ani
[
X ′′
ni – E

(
X ′′
ni|
n,i–

)]∣∣∣∣∣
≤ E

∣∣∣∣∣
vn∑
i=un

ani
[
X ′
ni – E

(
X ′
ni|
n,i–

)]∣∣∣∣∣ + E
vn∑
i=un

∣∣aniX ′′
ni
∣∣.

But

E
vn∑
i=un

∣∣aniX ′′
ni
∣∣ ≤

vn∑
i=un

|ani|E
(|Xni| – h(n)

)
I
(|Xni| > h(n)

) → .

By Burkholder’s inequality (Theorem . of Hall and Heyde []), we have

E

∣∣∣∣∣
vn∑
i=un

ani
[
X ′
ni – E

(
X ′
ni|
n,i–

)]∣∣∣∣∣


≤ C
vn∑
i=un

aniE
[
X ′
ni – E

(
X ′
ni|
n,i–

)]

http://www.journalofinequalitiesandapplications.com/content/2013/1/558
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≤ CE
vn∑
i=un

aniE
∣∣X ′

ni
∣∣

≤ C
(
h(n) sup

un≤i≤vn
|ani|

) vn∑
i=un

|ani|E|Xni| → ,

hereinafter, C always stands for a positive constant not depending on n which may differ
from one place to another, thus

∑vn
i=un ani[X

′
ni – E(X ′

ni|
n,i–)] →  in L and hence in L.
Therefore, the proof is completed when r = .
Case  < r < . By Burkholder’s inequality, the Cr-inequality and Jensen’s inequality, we

have

E

∣∣∣∣∣
vn∑
i=un

ani
[
Xni – E(Xni|
n,i–)

]∣∣∣∣∣
r

≤ CE

∣∣∣∣∣
vn∑
i=un

ani
[
Xni – E(Xni|
n,i–)

]∣∣∣∣∣
r/

≤ CE

∣∣∣∣∣
vn∑
i=un

ani
[
X ′
ni – E

(
X ′
ni|
n,i–

)]∣∣∣∣∣
r/

+CE
vn∑
i=un

|ani|r
∣∣[X ′′

ni – E
(
X ′′
ni|
n,i–

)]∣∣r

≤ C

{ vn∑
i=un

aniE
∣∣X ′

ni
∣∣}r/

+C
vn∑
i=un

E
∣∣aniX ′′

ni
∣∣r .

But

vn∑
i=un

aniE
∣∣X ′

ni
∣∣ ≤

(
h(n) sup

un≤i≤vn
|ani|

)–r vn∑
i=un

|ani|rE|Xni|r → ,

and

vn∑
i=un

E
∣∣aniX ′′

ni
∣∣r ≤

vn∑
i=un

|ani|rE
(|Xni| – h(n)

)rI(|Xni| > h(n)
) → .

Therefore, the proof is completed when  < r < . �

Remark . (i) Putting ani = k–/rn , un ≤ i ≤ vn, n ≥ , if {Xni,un ≤ i ≤ vn,n ≥ } is an array
of h-integrability with exponent r ( < r < ), then it is residually (r,h/r)-integrable con-
cerning the array {ani}. Thus, Theorem . and Corollary . of Sung and Lisawadi and
Volodin [] can be obtained from Theorem ..
(ii) Let ani = /nr , un = , vn = n, n≥ , h(n) = nα , α ∈ (, /r), similar to that of Remark 

of Ordóñez Cabrera and Volodin [], Theorem . and . and Corollary . of Chandra
and Goswami [] can be obtained from Theorem ..

Theorem . Let  ≤ r <  and {Xni,un ≤ i ≤ vn,n ≥ } be an array of rowwise pairwise
NQD random variables. Let {ani,un ≤ i≤ vn,n≥ } be an array of constants and {h(n),n≥

http://www.journalofinequalitiesandapplications.com/content/2013/1/558
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} an increasing sequence of positive constants with h(n) ↑ ∞ as n ↑ ∞. Assume that the
following conditions hold:

(i) {Xni,un ≤ i ≤ vn,n≥ } is residually (r,h)-integrable concerning the array {ani}.
(ii) h(n) supun≤i≤vn |ani| → .

Then

vn∑
i=un

ani(Xni – EXni) → 

in Lr and hence in probability as n → ∞.

Proof The proof is similar to that of Theorem ., we can get
∑vn

i=un ani(Xni – EXni) a.s.
converges for all n ≥  in the case of un = –∞ and/or vn = +∞. Let X ′

ni and X ′′
ni as in The-

orem .. Without loss of generality, we can assume that ani >  for un ≤ i ≤ vn, n ≥ ,
then {aniX ′

ni,un ≤ i≤ vn,n ≥ } and {aniX ′′
ni,un ≤ i ≤ vn,n≥ } are arrays of rowwise NQD

random variables by Lemma .. Observe that

vn∑
i=un

ani(Xni – EXni) =
vn∑
i=un

ani
(
X ′
ni – EX ′

ni
)
+

vn∑
i=un

ani
(
X ′′
ni – EX ′′

ni
)

=: An + Bn.

By Lemma . and |X ′
ni| ≤min{|Xni|,h(n)}, we have

E(An) ≤ C
vn∑
i=un

aniE
(
X ′
ni – EX ′

ni
)

≤ C
vn∑
i=un

aniE
(
X ′
ni
)

≤ C
(
h(n) sup

un≤i≤vn
|ani|

)–r vn∑
i=un

|ani|rE|Xni|r → ,

then An →  in L and hence in Lr .
By Lemma . and |X ′′

ni| ≤ (|Xni| – h(n))I(|Xni| > h(n)), we have

E|Bn|r ≤ C
vn∑
i=un

|ani|rE
(
X ′′
ni – EX ′′

ni
)r

≤ C
vn∑
i=un

|ani|rE
∣∣X ′′

ni
∣∣r

≤ C
vn∑
i=un

|ani|rE
(|Xni| – h(n)

)rI(|Xni| > h(n)
) → .

Thus, the proof is completed. �

Remark . Theorem . extended the result in Chen [] who first obtained the r-the
moment convergence under the rth uniform integrability for pairwise NQD sequence.

http://www.journalofinequalitiesandapplications.com/content/2013/1/558
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Remark .
(i) Let r = , ani = k–n , un ≤ i≤ vn, n≥ , then Theorem ., Corollary . of Sung et al.

[] and Theorem . of Yuan and Tao [] can be obtained from Theorem ..
(ii) Theorem . of Chandra and Goswami [] can be obtained from Theorem ..
(iii) Theorem  and Corollary  of Ordóñez Cabrera and Volodin [] can be obtained

from Theorem ..

Remark . Putting ani = k–/rn , un ≤ i ≤ vn, n ≥ , if {Xni,un ≤ i ≤ vn,n ≥ } is an array
of h-integrability with exponent r ( < r < ), then {Xni,un ≤ i ≤ vn,n ≥ } is residually
(r,h/r)-integrable concerning the array {ani}. Theorem . and Corollary . of Sung et al.
[] can be obtained from Theorem . since an NA sequence is an NQD sequence.
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