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Abstract
In this paper we give a new refinement of discrete Jensen’s inequality, which
generalizes a former result. The introduced sequences depend on parameters. The
strict monotonicity and the convergence are investigated. We also study the behavior
of the sequences when the parameters vary. One of the proofs requires an interesting
convergence theorem with probability theoretical background. This result is an
extension of a former result, but its proof is simpler. The results are applied to define
and study some new quasi-arithmetic means.
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1 Introduction
We begin with discrete Jensen’s inequality which is a useful tool in different parts of math-
ematics. The set of nonnegative integers and that of positive integers will be denoted by
N and N+, respectively.

Theorem A (see []) Let C be a convex subset of a real vector space X , and let {x, . . . ,xn}
be a finite subset of C, where n ∈ N+ is fixed. Let p, . . . ,pn be nonnegative numbers with∑n

j= pj = . If f : C → R is either a convex or a mid-convex function and in the latter case
the numbers pj (≤ j ≤ n) are rational, then

f

( n∑
j=

pjxj

)
≤

n∑
j=

pjf (xj). ()

The function f : C → R is called convex if

f
(
αx + ( – α)y

) ≤ αf (x) + ( – α)f (y), x, y ∈ C,  ≤ α ≤ , ()

and mid-convex or Jensen-convex if

f
(
x + y


)
≤ 


f (x) +



f (y), x, y ∈ C.

f is strictly convex if strict inequality holds in () whenever x �= y and  < α < .
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In recent years, a number of papers have appeared in which the authors constructed
different refinements of discrete Jensen’s inequality. See, for example, [–] and []. These
papers also contain a lot of interesting applications. The following parameter-dependent
refinement can be found in [].

TheoremB Let C be a convex subset of a real vector space X , and let {x, . . . ,xn} be a finite
subset of C, where n ∈ N+ is fixed. Let p, . . . ,pn be nonnegative numbers with

∑n
j= pj = ,

and let λ ≥ . Suppose that f : C → R is either a convex or a mid-convex function and in
the latter case the numbers pj ( ≤ j ≤ n) and λ are rational. Introduce the sets

Sk :=

{
(i, . . . , in) ∈N

n
∣∣∣∣

n∑
j=

ij = k

}
, k ∈N, ()

and for k ∈N define the numbers

Ck(λ) = Ck(x, . . . ,xn;p, . . . ,pn;λ)

:=


(n + λ – )k
∑

(i,...,in)∈Sk

k!
i! · · · in!

( n∑
j=

λijpj

)
f
(∑n

j= λ
ijpjxj∑n

j= λ
ijpj

)
. ()

Then:
(a)

f

( n∑
j=

pjxj

)
= C(λ)≤ C(λ) ≤ · · · ≤ Ck(λ) ≤ · · · ≤

n∑
j=

pjf (xj), k ∈N.

(b) Suppose that X is a normed space and f is continuous. For every fixed λ > ,

lim
k→∞

Ck(λ) =
n∑
j=

pjf (xj). ()

Our aim is to present a generalization of the previous result.
The sequence (Ck(λ))∞k= depends on one parameter, but we allow the new sequence

(Dk(λ))∞k= (see ()) to depend on n parameters. We give conditions for the strict mono-
tonicity of (Dk(λ))∞k= in some cases.
The proof of limit assertion () uses a lemma (see Lemma  in []) with a rather difficult

probability theoretical proof. Essentially, a fundamental theorem from statistics, which is
based on the multidimensional central limit theorem, has been applied. In this work, we
obtain a convergence theorem extending () which will be deduced from another inter-
esting lemma analogous to Lemma  in []. The proof of this lemma is simpler than the
proof of Lemma  in [], although it also has probability theoretical background, namely
the strong law of large numbers is used.
The behavior of the sequence (Dk(λ))∞k= is studied when the parameters vary. Further

refinements of discrete Jensen’s inequality can be derived from these results.
As an application, some new quasi-arithmetic means are constructed, and the mono-

tonicity and convergence of these means are investigated.
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2 Themain results and some preliminary results
The main results are given by Theorem  and Theorem . In order to render the main
results as transparently as possible, we also give some preparatory lemmas and theorems.
The first result generalizes Theorem B.

Theorem  Let C be a convex subset of a real vector space X , and let {x, . . . ,xn} be a finite
subset of C, where n ∈ N+ is fixed. Let p, . . . ,pn be nonnegative numbers with

∑n
j= pj =

, and let λi >  ( ≤ i ≤ n). Suppose that f : C → R is either a convex or a mid-convex
function, and in the latter case, the numbers pi and λi (≤ i ≤ n) are rational.
For k ∈N, introduce

d(λ) = d(λ, . . . ,λn) :=
n∑
j=


λj – 

()

and define

Dk(λ) = Dk(x, . . . ,xn;p, . . . ,pn;λ, . . . ,λn)

:=


(d(λ) + )k

·
∑

(i,...,in)∈Sk

k!
i! · · · in!

n∏
j=


(λj – )ij

( n∑
j=

λ
ij
j pj

)
f
(∑n

j= λ
ij
j pjxj∑n

j= λ
ij
j pj

)
, ()

where Sk means the set in ().
Then:
(a)

f

( n∑
j=

pjxj

)
=D(λ)≤D(λ)≤ · · · ≤Dk(λ)≤ · · · ≤

n∑
j=

pjf (xj), k ∈N. ()

(b) Assuming X is a normed space and f is continuous, we have

lim
k→∞

Dk(λ) =
n∑
j=

pjf (xj). ()

The result contains Theorem B as a special case (λ = λ = · · · = λn). Since f is continuous
in part (b) of the previous result, f is necessarily convex in this case.
The clue of the proof of Theorem (b) is the following decisive assertion, which is de-

duced from the strong law of large numbers. This result extends Lemma  in [] with a
less complicated proof.

Theorem  Let C be a convex subset of a real normed space X , and let {x, . . . ,xn} be a
finite subset of C, where n ∈N+ is fixed. Let p, . . . ,pn be positive numbers with

∑n
j= pj = ,

and let λi >  ( ≤ i ≤ n). Suppose f : C → R is a convex and continuous function. Define,
for l = , . . . ,n,

Dlk :=


(d(λ) + )k
∑

(i,...,in)∈Sk

k!
i! · · · in!λ

il
l

n∏
j=


(λj – )ij

f
(∑n

j= λ
ij
j pjxj∑n

j= λ
ij
j pj

)
.
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Then we have

lim
k→∞

Dlk = f (xl),  ≤ l ≤ n.

Next, we determine some of the cases of strict inequality in ().

Theorem  Let C be a convex subset of a real vector space X , and let x, . . . ,xn be points of
C with at least two different elements, where either n =  or n = . Let p, . . . ,pn be positive
numbers with

∑n
j= pj = , and let λi >  ( ≤ i ≤ n). If f : C → R is strictly convex, then

every inequality is strict in ().

Probably, the result remains true if n > , but the method applied in the proof of Theo-
rem  is getting more and more chaotic. Another treatment of the problem may be suc-
cessful.
In the proof of Theorem , we shall use the following well-known result (see []).

TheoremC Let C be a convex subset of a real vector space X , and let x, . . . ,xn be points of
C with at least two different elements,where n≥  is a fixed integer. Let p, . . . ,pn be positive
numbers with

∑n
j= pj = . If f : C →R is strictly convex, then the inequality is strict in ().

The following notations and observations may help to understand the next results, and
they will be used in their proofs.Wemotivate proceeding in this direction as follows: con-
sider Theorem , and let I := {i ∈ {, . . . ,n} | pi �= }. It is easy to see that only the restriction
of f to the convex hull of {xi | i ∈ I} has significance.
Let C be a convex subset of a real vector space X, and let {x, . . . ,xn} be a finite subset of

C, where n≥  is a fixed integer. Suppose that f : C →R is a convex function. Choose the
integers l ∈ {, . . . ,n} and  ≤ l < l < · · · < lm ≤ n, where m ≤ n –  and li �= l (i = , . . . ,m).
Define the convex set

Gm :=

{
(t, . . . , tm) ∈ R

m
∣∣∣∣ ti ≥  (i = , . . . ,m),

m∑
i=

ti ≤ 

}
,

and the function hl,...,lm on Gm by

hl,...,lm (t, . . . , tm) := f

( m∑
i=

tixli +

(
 –

m∑
i=

ti

)
xl

)
. ()

Then hl,...,lm is well defined since the set

{ m∑
i=

tixli +

(
 –

m∑
i=

ti

)
xl ∈ X

∣∣∣∣ (t, . . . , tm) ∈Gm

}

is the convex hull of {xl , . . . ,xlm ,xl}, and hence it is a subset of C. A consequence of the
convexity of f is that hl,...,lm is also convex. Further properties of the function hl,...,lm are
studied in the following lemma.

Lemma  Let C be a convex subset of a real vector space X , and let {x, . . . ,xn} be a finite
subset of C, where n ≥  is a fixed integer. Suppose that f : C → R is a convex function.

http://www.journalofinequalitiesandapplications.com/content/2013/1/551
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Choose the integers l ∈ {, . . . ,n} and  ≤ l < l < · · · < lm ≤ n, where m ≤ n –  and li �= l
(i = , . . . ,m). Then:
(a) hl,...,lm is continuous on the interior int(Gm) of Gm.
(b) hl,...,lm is bounded.
(c) The restriction of hl,...,lm to int(Gm) has a unique continuous (and also convex)

extension h̄l,...,lm to Gm.

There are some trivial cases of Theorem : if pl =  for an l ∈ {, . . . ,n}, then

Dk(λ) = f (xl), k ∈N,

and therefore  ≤ pj <  ( ≤ j ≤ n) (thus n ≥ ) will be supposed in the next main result,
in which the parameter λ = (λ, . . . ,λn) varies.

Theorem  Let C be a convex subset of a real vector space X, and let {x, . . . ,xn} be a finite
subset of C, where n ≥  is a fixed integer. Let p, . . . ,pn be nonnegative numbers such that
pj <  ( ≤ j ≤ n) and

∑n
j= pj = , and let λi >  ( ≤ i ≤ n). Suppose that f : C → R is a

convex function. Choose l ∈ {, . . . ,n}. Then, for every fixed λi (≤ i ≤ n, i �= l) and for each
fixed k ∈ N+:
(a)

lim
λl→+

Dk(λ) = f

( n∑
j=

pjxj

)
.

(b) In the case pl = ,

lim
λl→∞Dk(λ) =


(
∑n

j=
j �=l


λj–

+ )k

·
∑

(i,...,in)∈Sk
il=

k!
i! · · · in!

n∏
j=


(λj – )ij

( n∑
j=

λ
ij
j pj

)
f
(∑n

j= λ
ij
j pjxj∑n

j= λ
ij
j pj

)
. ()

(b) In the case  < pl (< ), there exists an integer ≤ m ≤ n –  such that m elements of
the sequence p, . . . ,pl–,pl+, . . . ,pn belong to the open interval ], [, and n––mmembers
are .We can assume that pl , . . . ,plm ∈ ], [ (≤ l < l < · · · < lm ≤ n and they are different
from l) and the others are . By using the function h̄l,...,lm (see () and Lemma (c)), we
have

lim
λl→∞Dk(λ) =


(
∑n

j=
j �=l


λj–

+ )k
()

·
( ∑
(i,...,in)∈Sk

il=

k!
i! · · · in!

n∏
j=


(λj – )ij

( n∑
j=

λ
ij
j pj

)
f
(∑n

j= λ
ij
j pjxj∑n

j= λ
ij
j pj

)
()

+ plh̄l,...,lm (, . . . , )

(( n∑
j=
j �=l


λj – 

+ 

)k

–

( n∑
j=
j �=l


λj – 

)k))
.
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By (), the limits in () and () also refine discrete Jensen’s inequality. It should be
mentioned that in Theorem  the topology on X is needed in showing (b), but Theorem 
is true without any topology on X.

3 Applications
As an application we can now extend the quasi-arithmetic means introduced in [] (about
means, see []).

Definition  Let I ⊂R be an interval, xj ∈ I (≤ j ≤ n), p, . . . ,pn be nonnegative numbers
such that

∑n
j= pj = , and let λj >  ( ≤ j ≤ n). Let ϕ,ψ : I → R be continuous and strictly

monotone functions. We define the quasi-arithmetic means with respect to () by

Mλ
ψ ,ϕ(k) := ψ–

(


(d(λ) + )k
∑

(i,...,in)∈Sk

k!
i! · · · in!

n∏
j=


(λj – )ij

( n∑
j=

λ
ij
j pj

)

· (ψ ◦ ϕ–)(∑n
j= λ

ij
j pjϕ(xj)∑n

j= λ
ij
j pj

))
, k ∈N. ()

We study the monotonicity and convergence of the new means. For this, the next mean
is also needed.

Definition  Let I ⊂ R be an interval, xj ∈ I ( ≤ j ≤ n), p, . . . ,pn be nonnegative num-
bers such that

∑n
j= pj = . For a continuous and strictly monotone function z : I → R, we

introduce the following mean:

Mz := z–
( n∑

j=

pjz(xj)

)
. ()

We now prove the monotonicity of the means () and give limit formulas.

Proposition  Let I ⊂ R be an interval, xj ∈ I ( ≤ j ≤ n), p, . . . ,pn be nonnegative num-
bers such that

∑n
j= pj = , and let λj >  ( ≤ j ≤ n). Let ϕ,ψ : I → R be continuous and

strictly monotone functions. Then:
(a)

Mϕ =Mλ
ψ ,ϕ() ≤ · · · ≤Mλ

ψ ,ϕ(k)≤ · · · ≤Mψ , k ∈N,

if either ψ ◦ ϕ– is convex and ψ is increasing or ψ ◦ ϕ– is concave and ψ is
decreasing.

(b)

Mϕ =Mλ
ψ ,ϕ() ≥ · · · ≥Mλ

ψ ,ϕ(k)≥ · · · ≥Mψ , k ∈N,

if either ψ ◦ ϕ– is convex and ψ is decreasing or ψ ◦ ϕ– is concave and ψ is
increasing.

(c) Moreover, in both cases

lim
k→∞

Mλ
ψ ,ϕ(k) =Mψ .

http://www.journalofinequalitiesandapplications.com/content/2013/1/551
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Proof Theorem (a) can be applied to the function ψ ◦ ϕ– if it is convex (–ψ ◦ ϕ– if it is
concave) and to the n-tuples (ϕ(x), . . . ,ϕ(xn)), then upon taking ψ–, we get (a) and (b).
(c) Comes from Theorem (b). �

As an illustration, we consider the following special case.

Example  If I := ],∞[, ψ := ln and ϕ(x) := x (x ∈ ],∞[), then by Proposition (b), we
have the following sharpened version of the weighted arithmetic mean - geometric mean
inequality: for every xj >  (≤ j ≤ n), λj >  ( ≤ j ≤ n) and k ∈N+,

n∑
j=

pjxj ≥
∏

(i,...,in)∈Sk

(∑n
j= λ

ijpjxj∑n
j= λ

ijpj

) 
(d(λ)+)k

k!
i!···in !

∏n
j=


(λj–)

ij
(
∑n

j= λ
ij
j pj)

≥
n∏
j=

xpjj .

4 Proofs and some auxiliary results
Before giving the proof of the main result, we introduce some preliminary lemmas. First,
a simple inequality is established.

Lemma  If x, y > , then

ln(y)
y – 

–
x ln(x)
x – 

< .

Proof We shall show that

ln(y)
y – 

<  <
x ln(x)
x – 

, x, y > .

The left inequality is well known, and the right inequality is equivalent to

u(x) = ln(x) –  +

x
> , x > .

Since

u′(x) =
x – 
x

> , x > ,

u is strictly increasing on [,∞), hence u(x) > u() =  (x > ). �

In the second lemma, the measurability of some functions is studied.

Lemma  Let (�,A) be a measurable space, and let X be a real normed space. B denotes
the σ -algebra of Borel sets in X. If A ∈A, v : A→R is measurable, and x ∈ X is fixed, then
the function

ω → v(ω)x, ω ∈ A ()

is A –B measurable.

http://www.journalofinequalitiesandapplications.com/content/2013/1/551
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Proof Since X is a normed space, the mapping p : R → X, p(c) = cx is continuous. Now
the result follows from the fact that function () can be written as p ◦ v. �

After these preparations, we can now prove Theorem .

Proof of Theorem  We can obviously suppose that n ≥  and l = .
Let

q :=
λ

(d(λ) + )(λ – )
, qj :=


(d(λ) + )(λj – )

,  ≤ j ≤ n.

Then qj >  (≤ j ≤ n) and
∑n

j= qj = , that is, we have a discrete distribution.
Let (�,A,P) be a probability space, and let

χk :� →R, k ∈N+

be identically distributed and independent random variables such that

P(χk = j) = qj, ≤ j ≤ n,k ∈N+.

Define the random variables

Yjk :=
k∑
t=

{χt=j}, ≤ j ≤ n,k ∈N+,

where A : � → R means the characteristic function of the set A ⊂ �. The joint distribu-
tion of the vector random variable (Yk , . . . ,Ynk) is a multinomial distribution

P(Yk = i, . . . ,Ynk = in) =
k!

i! · · · in!q
i
 · · ·qinn , (i, . . . , in) ∈ Sk ()

for every k ∈N+.
Lemma  and the continuity of f imply that the function Zk :� →R,

Zk := f ◦
(∑n

j= λ
Yjk
j pjxj∑n

j= λ
Yjk
j pj

)
, k ∈N+

is measurable, and therefore it is also a random variable. By applying Lemma  with li := i
(≤ i ≤ n– ), f is bounded on the convex hull of the set {x, . . . ,xn}. It follows that (Zk)∞k=
is also bounded, and thus Zk (k ∈N+) is P-integrable. By (),

E(Zk) =
∫

�

Zk dP =Dk , k ∈N+.

It is a consequence of Lebesgue’s convergence theorem that

lim
k→∞

Dk =
∫

�

lim
k→∞

Zk dP. ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/551
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By the strong law of large numbers,

lim
k→∞

Yjk

k
= qj P-a.e., ≤ j ≤ n.

Therefore, by Lemma ,

lim
k→∞

(
Yjk

k
ln(λj) –

Yk

k
ln(λ)

)

= qj ln(λj) – q ln(λ) <  P-a.e., ≤ j ≤ n,

and this leads to

lim
k→∞

λ
Yjk
j pj

λ
Yk
 p

= lim
k→∞

pj
p

exp

(
k
(
Yjk

k
ln(λj) –

Yk

k
ln(λ)

))

=  P-a.e., ≤ j ≤ n.

Consequently, we get from () that

lim
k→∞

Dk = f (x).

The proof is now complete. �

The following lemma extends Lemma  in [].

Lemma  Let k ∈N and (i, . . . , in) ∈ Sk+ be fixed. If we set

z(i, . . . , in) :=
{
l ∈ {, . . . ,n} | il �= 

}
,

then

∑
l∈z(i,...,in)

(
k!

i! · · · il–!(il – )!il+! · · · in!


(λ – )i
· · · 

(λl– – )il–

· 
(λl – )il–


(λl+ – )il+

· · · 
(λn – )in


λl – 

)
=

(k + )!
i! · · · in!

n∏
j=


(λj – )ij

.

Proof The lowest common denominator is i! · · · in!. Combined with
∑n

j= ij = k + , the
result follows. �

We can now prove the first main result.

Proof of Theorem  (a) The proof is divided into three steps.
I. Since S = {(, . . . , )},

D(λ) =

( n∑
j=

λ
j pj

)
f
(∑n

j= λ

j pjxj∑n

j= λ

j pj

)
= f

( n∑
j=

pjxj

)
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/551
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II. Next, we prove that Dk(λ)≤Dk+(λ) (k ∈N).
It is not hard to see that for every (i, . . . , in) ∈ Sk ,

∑n
j= λ

ij
j pjxj∑n

j= λ
ij
j pj

=


d(λ) + 
·

n∑
l=

(


λl – 
·
∑n

j= λ
ij
j pjxj + (λl – )λil

l plxl∑n
j= λ

ij
j pj + (λl – )λil

l pl

·
∑n

j= λ
ij
j pj + (λl – )λil

l pl∑n
j= λ

ij
j pj

)
. ()

According to Theorem A, this yields that

f
(∑n

j= λ
ij
j pjxj∑n

j= λ
ij
j pj

)
≤ 

d(λ) + 

n∑
l=

(


λl – 
·
∑n

j= λ
ij
j pj + (λl – )λil

l pl∑n
j= λ

ij
j pj

· f
(∑n

j= λ
ij
j pjxj + (λl – )λil

l plxl∑n
j= λ

ij
j pj + (λl – )λil

l pl

))
. ()

Consequently,

Dk(λ) ≤ 
(d(λ) + )k+

∑
(i,...,in)∈Sk

(
k!

i! · · · in!
n∏
j=


(λj – )ij

n∑
l=

(


λl – 

·
( n∑

j=

λ
ij
j pj + (λl – )λil

l pl

)
f
(∑n

j= λ
ij
j pjxj + (λl – )λil

l plxl∑n
j= λ

ij
j pj + (λl – )λil

l pl

)))
. ()

Bringing in Lemma , we find that the right-hand side of () can be written in the form


(d(λ) + )k+

·
∑

(i,...,in)∈Sk+

(
(k + )!
i! · · · in!

n∏
j=


(λj – )ij

( n∑
j=

λ
ij
j pj

)
f
(∑n

j= λ
ij
j pjxj∑n

j= λ
ij
j pj

))
,

which is just Dk+(λ).
III. Finally, we prove that

Dk(λ)≤
n∑
j=

pjf (xj), k ∈N+. ()

It follows from Theorem A that

Dk(λ) ≤ 
(d(λ) + )k

∑
(i,...,in)∈Sk

(
k!

i! · · · in!
n∏
j=


(λj – )ij

n∑
j=

λ
ij
j pjf (xj)

)
()

=


(d(λ) + )k

n∑
j=

( ∑
(i,...,in)∈Sk

k!
i! · · · in!


(λ – )i

· · · 
(λj– – )ij–

· λ
ij
j

(λj – )ij


(λj+ – )ij+
· · · 

(λn – )in

)
pjf (xj), k ∈N+. ()
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The multinomial theorem shows that

∑
(i,...,in)∈Sk

k!
i! · · · in!


(λ – )i

· · · 
(λj– – )ij–

· λ
ij
j

(λj – )ij


(λj+ – )ij+
· · · 

(λn – )in
=

(
d(λ) + 

)k , ≤ j ≤ n,

hence () implies ().
(b) It is enough to confirm that for l = , . . . ,n,

lim
k→∞

pl


(d(λ) + )k

·
∑

(i,...,in)∈Sk

k!
i! · · · in!λ

il
l

n∏
j=


(λj – )ij

f
(∑n

j= λ
ij
j pjxj∑n

j= λ
ij
j pj

)
= plf (xl).

This is evident if pl = . If pl > , then we have it from Theorem .
The proof is complete. �

Proof of Theorem  It is enough to prove that there is strict inequality for a fixed
(i, . . . , in) ∈ Sk (k ∈N) in () and in (), respectively.
The treatment of inequality () is pretty immediate. Under the conditions of the theo-

rem,

f
(∑n

j= λ
ij
j pjxj∑n

j= λ
ij
j pj

)
<

∑n
j= λ

ij
j pj

n∑
j=

λ
ij
j pjf (xj), (i, . . . , in) ∈ Sk (k ∈N)

by TheoremC. It follows that the last inequality in () is strict (this is true for every n≥ ).
It remains to study (). Let k ∈ N be fixed, and let

(i, . . . , in) = (k, , . . . , ) ∈ Sk .

Under the hypotheses, the coefficients of the vectors

∑n
j= λ

ij
j pjxj + (λl – )λil

l plxl∑n
j= λ

ij
j pj + (λl – )λil

l pl
, ≤ l ≤ n ()

are positive in (), and therefore by Theorem C, it is enough to prove that there exist two
different vectors in ().
We begin with the case n = . Then x �= x, and () consists of two vectors, namely

v :=
λk+
 px + px
λk+
 p + p

, v :=
λk
px + λpx
λk
p + λp

.

Elementary considerations show that v = v implies that

λk
pp( – λλ)x = λk

pp( – λλ)x,

and thus x = x, which is a contradiction.
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Now, we continue with the case n = . Then the following three vectors belong to ():

v :=
λk+
 px + px + px

λk+
 p + p + p

, v :=
λk
px + λpx + px

λk
p + λp + p

,

v :=
λk
px + px + λpx
λk
p + λp + λp

.

Suppose v = v = v. A simple but troublesome calculation confirms that

λk
pp(λ – )(x – x) + λk

pp(λλ – )(x – x)

+ pp(λ – )(x – x) = 

and

λk
pp(λλ – )(x – x) + λk

pp(λ – )(x – x)

+ pp( – λ)(x – x) = .

Therefore, recalling that

x – x = (x – x) + (x – x),

we have a homogeneous system of two linear equations with solutions x – x and x – x.
A few easy calculations yield that the determinant of the matrix of this system is

λk
ppp

(
λk+
 p + p + p

)
(λ + λ + λ – λλλ – ). ()

λi >  (i = , , ) implies that

λ + λ + λ – λλλ –  < ,

and hence () is negative (it is only important that different from ). From this we get

x – x = x – x = ,

that is, x = x = x, which is also a contradiction.
The proof is complete. �

Proof of Lemma  (a) It is well known (see []) that a convex function on an open convex
set in R

m is continuous.
(b) hl,...,lm is bounded above since discrete Jensen’s inequality shows

hl,...,lm (t, . . . , tm) = f

( m∑
i=

tixli +

(
 –

m∑
i=

ti

)
xl

)

≤
m∑
i=

tif (xli ) +

(
 –

m∑
i=

ti

)
f (xl)

≤max
(
f (xl ), . . . , f (xlm ), f (xl)

)
, (t, . . . , tm) ∈Gm.
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Let (s, . . . , sm) ∈ int(Gm) be fixed. Since hl,...,lm is convex, there is a linear functional L on
R

m (a support of f at (s, . . . , sm)) such that

hl,...,lm (t, . . . , tm) ≥ hl,...,lm (s, . . . , sm)

+ L(t – s, . . . , tm – sm), (t, . . . , tm) ∈ int(Gm), ()

and therefore the continuity of L on the compact set (s, . . . , sm) +Gm yields that hl,...,lm is
bounded below on int(Gm). It is easy to check that inequality () holds for every boundary
point of Gm, too.
(c) Because Gm is a polytope, this follows from (b) (see []).
The proof is complete. �

Proof of Theorem  (a) We can obviously suppose that l = n.
An elementary calculation gives

lim
λn→+


(d(λ) + )k

n∏
j=


(λj – )ij

= lim
λ→+

n∏
j=



(λj +
∑n

p=
p�=j

λj–
λp– )

ij

=

⎧⎨
⎩ if in = k,

 if in ∈ {, . . . ,k – },
(i, . . . , in) ∈ Sk . ()

If pn = , then for every (i, . . . , in) ∈ Sk ,

lim
λn→+

( n∑
j=

λ
ij
j pj

)
f
(∑n

j= λ
ij
j pjxj∑n

j= λ
ij
j pj

)
=

( n–∑
j=

λ
ij
j pj

)
f
(∑n–

j= λ
ij
j pjxj∑n–

j= λ
ij
j pj

)
,

and therefore, by ()

lim
λn→+

Dk(λ) = f

( n–∑
j=

pjxj

)
,

which we wanted.
In the rest of the proof,  < pn < . From this, the existence of an integer  ≤ m ≤ n – 

such that m elements of the sequence p, . . . ,pn– belong to the open interval ], [ and
n –  –m members are  follows. We can assume that p, . . . ,pm ∈ ], [ and pm+ = · · · =
pn– = .
Consider the function h,...,m defined in ().
Fix (i, . . . , in) ∈ Sk . Then

lim
λn→+

λ
ij
j pj∑n

j= λ
ij
j pj

= lim
λn→+

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ
ij
j pj∑m

j= λ
ij
j pj+pn

>  if  ≤ j ≤m,

pn∑m
j= λ

ij
j pj+pn

>  if j = n,
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which shows that

lim
λn→+

(
λ
i
 p∑n

j= λ
ij
j pj

, . . . ,
λim
m pm∑n
j= λ

ij
j pj

)
=

(
λ
i
 p∑m

j= λ
ij
j pj + pn

, . . . ,
λim
m pm∑m

j= λ
ij
j pj + pn

)

is an interior point of Gm. In light of the continuity of h,...,m on int(Gm) (see Lemma ),
this implies that

lim
λn→+

( n∑
j=

λ
ij
j pj

)
f
(∑n

j= λ
ij
j pjxj∑n

j= λ
ij
j pj

)

= lim
λn→+

( m∑
j=

λ
ij
j pj + λin

n pn

)
h
(

λ
i
 p∑n

j= λ
ij
j pj

, . . . ,
λim
m pm∑n
j= λ

ij
j pj

)

=

( m∑
j=

λ
ij
j pj + pn

)
h
(

λ
i
 p∑m

j= λ
ij
j pj + pn

, . . . ,
λim
m pm∑m

j= λ
ij
j pj + pn

)
. ()

The limit relations () and () entail

lim
λn→+


(d(λ) + )k

n∏
j=


(λj – )ij

( n∑
j=

λ
ij
j pj

)
f
(∑n

j= λ
ij
j pjxj∑n

j= λ
ij
j pj

)

=

⎧⎨
⎩f (

∑m
j= pjxj + pnxn) if in = k,

 if in ∈ {, . . . ,k – },
(i, . . . , in) ∈ Sk ,

which gives the result.
We begin the proof of the second part of the result with some limit formulas.
It is obvious that

lim
λl→∞


(d(λ) + )k

=


(
∑n

j=
j �=l


λj–

+ )k
. ()

It is also easy to calculate that for each (i, . . . , in) ∈ Sk ,

lim
λl→∞

n∏
j=


(λj – )ij

( n∑
j=

λ
ij
j pj

)
=

⎧⎪⎪⎨
⎪⎪⎩

∏n
j=


(λj–)

ij (
∑n

j= λ
ij
j pj), il = ,

pl∏n
j=
j �=l

(λj–)
ij , il �= . ()

(b) The expression

f
(∑n

j= λ
ij
j pjxj∑n

j= λ
ij
j pj

)
()

does not depend on λl for each (i, . . . , in) ∈ Sk , from which we have () by () and ().
(b) If il = , then () is independent of λl , hence we can have the coefficient in () and

the first member in the sum () from () and ().
Suppose (i, . . . , in) ∈ Sk such that il �= .
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By using (), it remains to study the existence of the limit of () as λl → ∞. Under the
conditions on the zero elements of the sequence p, . . . ,pn, we have to consider

lim
λl→∞hl,...,lm

(
λ
il
l pl∑m

j= λ
ilj
lj plj + λ

il
l pl

, . . . ,
λ
ilm
lm plm∑m

j= λ
ilj
lj plj + λ

il
l pl

)
. ()

Since

lim
λl→∞

(
λ
il
l pl∑m

j= λ
ilj
lj plj + λ

il
l pl

, . . . ,
λ
ilm
lm plm∑m

j= λ
ilj
lj plj + λ

il
l pl

)
= (, . . . , )

and

(
λ
il
l pl∑m

j= λ
ilj
lj plj + λ

il
l pl

, . . . ,
λ
ilm
lm plm∑m

j= λ
ilj
lj plj + λ

il
l pl

)

is an interior point of the domain Gm of hl,...,lm for every λl > , Lemma (c) implies that
the limit () exists and it is h̄l,...,lm (, . . . , ). According to this and ()

lim
λl→∞

n∏
j=


(λj – )ij

( n∑
j=

λ
ij
j pj

)
f
(∑n

j= λ
ij
j pjxj∑n

j= λ
ij
j pj

)
=
plh̄l,...,lm (, . . . , )∏n

j=
j �=l
(λj – )ij

,

showing that

lim
λl→∞

∑
(i,...,in)∈Sk

il �=

k!
i! · · · in!

n∏
j=


(λj – )ij

( n∑
j=

λ
ij
j pj

)
f
(∑n

j= λ
ij
j pjxj∑n

j= λ
ij
j pj

)

= plh̄l,...,lm (, . . . , )
∑

(i,...,in)∈Sk
il �=

k!
i! · · · in!

∏n
j=
j �=l
(λj – )ij

= plh̄l,...,lm (, . . . , ) ·
k∑

il=

(
(k – il + ) · · ·k

il!

·
∑

i+···+il–+il++···+in=k–il

(k – il)!
i! · · · il–!il+! · · · in!

∏n
j=
j �=l
(λj – )ij

)

= plh̄l,...,lm (, . . . , )
k∑

il=

(
k

k – il

)(∑
j=
j �=l


λj – 

)k–il

= plh̄l,...,lm (, . . . , )

(( n∑
j=
j �=l


λj – 

+ 

)k

–

( n∑
j=
j �=l


λj – 

)k)
.

We have got the second sum in ().
The proof is complete. �
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