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1 Introduction and preliminaries
The concept of statistical convergence for sequences of real numbers was introduced by
Fast [] and Steinhaus [] independently, and since then several generalizations and appli-
cations of this notion have been investigated by various authors (see [–]). This notion
was defined in normed spaces by Kolk [].
We recall some basic facts concerning Fréchet spaces.

Definition . [] Let X be a vector space. A paranorm P(·) : X → [,∞) is a function on
X such that
() P() = ;
() P(–x) = P(x);
() P(x + y) ≤ P(x) + P(y) (triangle inequality);
() If {tn} is a sequence of scalars with tn → t and {xn} ⊂ X with P(xn – x)→ , then

P(tnxn – tx) →  (continuity of multiplication).
The pair (X,P(·)) is called a paranormed space if P(·) is a paranorm on X.
The paranorm is called total if, in addition, we have
() P(x) =  implies x = .
A Fréchet space is a total and complete paranormed space.

The stability problem of functional equations originated from the question of Ulam []
concerning the stability of group homomorphisms.
The functional equation

f (x + y) = f (x) + f (y)

is called the Cauchy additive functional equation. In particular, every solution of the
Cauchy additive functional equation is said to be an additive mapping. Hyers [] gave the
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first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ theorem
was generalized by Aoki [] for additivemappings and by Rassias [] for linearmappings
by considering an unbounded Cauchy difference. A generalization of the Rassias theorem
was obtained by Găvruta [] by replacing the unbounded Cauchy difference by a general
control function in the spirit of Rassias’ approach.
In , during the th International Symposium on Functional Equations, Rassias []

asked the question whether such a theorem can also be proved for p ≥ . In , Gajda
[], following the same approach as in Rassias [], gave an affirmative solution to this
question for p > . It was shown by Gajda [], as well as by Rassias and Šemrl [], that
one cannot prove a Rassias-type theorem when p =  (cf. the books of Czerwik [] and
Hyers et al. []).
The functional equation

f (x + y) + f (x – y) = f (x) + f (y)

is called a quadratic functional equation. In particular, every solution of the quadratic
functional equation is said to be a quadratic mapping. A Hyers-Ulam stability problem for
the quadratic functional equation was proved by Skof [] for mappings f : X → Y , where
X is a normed space and Y is a Banach space. Cholewa [] noticed that the theorem
of Skof is still true if the relevant domain X is replaced by an Abelian group. Czerwik
[] proved the Hyers-Ulam stability of the quadratic functional equation. The stability
problems of several functional equations have been extensively investigated by a number
of authors, and there are many interesting results concerning this problem (see [–]).
In [], Gilányi showed that if f satisfies the functional inequality

∥∥f (x) + f (y) – f
(
xy–

)∥∥ ≤ ∥∥f (xy)∥∥, (.)

then f satisfies the Jordan-von Neumann functional equation

f (x) + f (y) = f (xy) + f
(
xy–

)
.

See also []. Gilányi [] and Fechner [] proved the Hyers-Ulam stability of functional
inequality (.).
Park et al. [] proved the Hyers-Ulam stability of the following functional inequality:

∥∥f (x) + f (y) + f (z)
∥∥ ≤ ∥∥f (x + y + z)

∥∥. (.)

The abstract characterization given for linear spaces of bounded Hilbert space opera-
tors in terms ofmatricially normed spaces [] implies that quotients, mapping spaces and
various tensor products of operator spacesmay again be regarded as operator spaces. Ow-
ing in part to this result, the theory of operator spaces is having an increasingly significant
effect on operator algebra theory (see []).
The proof given in [] appealed to the theory of ordered operator spaces []. Effros

and Ruan [] showed that one can give a purely metric proof of this important theorem
by using the technique of Pisier [] and Haagerup [] (as modified in []).
We will use the following notations:
Mn(X) is the set of all n× n-matrices in X ;
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ej ∈M,n(C) is that jth component is  and the other components are zero;
Eij ∈Mn(C) is that (i, j)-component is  and the other components are zero;
Eij ⊗ x ∈Mn(X) is that (i, j)-component is x and the other components are zero.

For x ∈ Mn(X), y ∈Mk(X),

x⊕ y =

(
x 
 y

)
.

Note that (X, {‖ · ‖n}) is a matrix normed space if and only if (Mn(X),‖ · ‖n) is a normed
space for each positive integer n and ‖AxB‖k ≤ ‖A‖‖B‖‖x‖n holds for A ∈ Mk,n, x = [xij] ∈
Mn(X) and B ∈ Mn,k , and that (X, {‖ · ‖n}) is a matrix Banach space if and only if X is a
Banach space and (X, {‖ · ‖n}) is a matrix normed space.

Definition . Let (X,P(·)) be a paranormed space.
() (X, {Pn(·)}) is amatrix paranormed space if (Mn(X),Pn(·)) is a paranormed space for

each positive integer n, Pn(Ekl ⊗ x) = P(x) for x ∈ X , and P(xkl)≤ Pn([xij]) for
[xij] ∈Mn(X).

() (X, {Pn(·)}) is amatrix Fréchet space if X is a Fréchet space and (X, {Pn(·)}) is a
matrix paranormed space.

Let E, F be vector spaces. For a given mapping h : E → F and a given positive integer n,
define hn :Mn(E)→Mn(F) by

hn
(
[xij]

)
=

[
h(xij)

]
for all [xij] ∈Mn(E).
In Section , we prove the Hyers-Ulam stability of Cauchy additive functional inequality

(.) in matrix paranormed spaces. In Section , we prove the Hyers-Ulam stability of
the Cauchy additive functional equation in matrix paranormed spaces. In Section , we
prove theHyers-Ulam stability of the quadratic functional equation inmatrix paranormed
spaces.
Throughout this paper, let (X, {‖ · ‖n}) be a matrix Banach space and (Y , {Pn(·)}) be a

matrix Fréchet space.

2 Hyers-Ulam stability of additive functional inequality (1.2) in matrix
paranormed spaces

In this section, we prove the Hyers-Ulam stability of additive functional inequality (.) in
matrix paranormed spaces.

Lemma . Let (X, {Pn(·)}) be a matrix paranormed space. Then
() P(xkl) ≤ Pn([xij])≤ ∑n

i,j= P(xij) for [xij] ∈Mn(X);
() lims→∞ xs = x if and only if lims→∞ xsij = xij for xs = [xsij],x = [xij] ∈Mk(X).

Proof () By Definition ., P(xkl) ≤ Pn([xij]).
Since [xij] =

∑n
i,j= Eij ⊗ xij,

Pn
(
[xij]

)
= Pn

( n∑
i,j=

Eij ⊗ xij

)
≤

n∑
i,j=

Pn(Eij ⊗ xij) =
n∑

i,j=

P(xij).
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() By (), we have

P(xskl – xkl) ≤ Pn
(
[xsij – xij]

)
= Pn

(
[xsij] – [xij]

) ≤
n∑

i,j=

P(xsij – xij).

So, we get the result. �

Lemma . Let (X, {‖ · ‖n}) be a matrix normed space. Then
() ‖Ekl ⊗ x‖n = ‖x‖ for x ∈ X ;
() ‖xkl‖ ≤ ‖[xij]‖n ≤ ∑n

i,j= ‖xij‖ for [xij] ∈Mn(X);
() limn→∞ xn = x if and only if limn→∞ xijn = xij for xn = [xijn],x = [xij] ∈Mk(X).

Proof () Since Ekl ⊗x = e∗
kxel and ‖e∗

k‖ = ‖el‖ = , ‖Ekl ⊗x‖n ≤ ‖x‖. Since ek(Ekl ⊗x)e∗
l = x,

‖x‖ ≤ ‖Ekl ⊗ x‖n. So, ‖Ekl ⊗ x‖n = ‖x‖.
() Since ekxe∗

l = xkl and ‖ek‖ = ‖e∗
l ‖ = , ‖xkl‖ ≤ ‖[xij]‖n. Since [xij] = ∑n

i,j= Eij ⊗ xij,

∥∥[xij]∥∥n =

∥∥∥∥∥
n∑

i,j=

Eij ⊗ xij

∥∥∥∥∥
n

≤
n∑

i,j=

‖Eij ⊗ xij‖n =
n∑

i,j=

‖xij‖.

() By

‖xkln – xkl‖ ≤ ∥∥[xijn – xij]
∥∥
n =

∥∥[xijn] – [xij]
∥∥
n ≤

n∑
i,j=

‖xijn – xij‖,

we get the result. �

We need the following result.

Lemma . Let f : X → Y be an odd mapping such that

P
(
f (a) + f (b) + f (c)

) ≤ P
(
f (a + b + c)

)
(.)

for all a,b, c ∈ X. Then f : X → Y is additive.

Proof Letting c = –a – b in (.), we get P(f (a) + f (b) + f (–a – b)) ≤ P(f ()) =  for all
a,b ∈ X. So,

f (a) + f (b) – f (a + b) = f (a) + f (b) + f (–a – b) = 

for all a,b ∈ X. Thus f : X → Y is additive. �

Note that P(x) ≤ P(x) for all x ∈ Y .

Theorem. Let r, θ be positive real numbers with r > . Let f : X → Y be an oddmapping
such that

Pn
(
fn

(
[xij]

)
+ fn

(
[yij]

)
+ fn

(
[zij]

)) ≤ Pn
(
fn

(
[xij] + [yij] + [zij]

))
+

n∑
i,j=

θ
(‖xij‖r + ‖yij‖r + ‖zij‖r

)
(.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/547
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for all x = [xij], y = [yij], z = [zij] ∈ Mn(X). Then there exists a unique additive mapping A :
X → Y such that

Pn
(
fn

(
[xij]

)
–An

(
[xij]

)) ≤
n∑

i,j=

r + 
r – 

θ‖xij‖r (.)

for all x = [xij] ∈Mn(X).

Proof When n = , (.) is equivalent to

P
(
f (a) + f (b) + f (c)

) ≤ P
(
f (a + b + c)

)
+ θ

(‖a‖r + ‖b‖r + ‖c‖r) (.)

for all a,b, c ∈ X.
Letting b = a and c = –a in (.), we get

P
(
f (a) – f (a)

) ≤ (
 + r

)
θ‖a‖r ,

and so

P
(
f (a) – f

(
a


))
≤  + r

r
θ‖a‖r

for all a,b ∈ X.
One can easily show that

P
(
pf

(
a
p

)
– qf

(
a
q

))
≤

q–∑
l=p

( + r)l

(l+)r
θ‖a‖r (.)

for all a,b ∈ X and nonnegative integers p, q with p < q. It follows from (.) that the
sequence {lf ( al )} is Cauchy for all a ∈ X. Since Y is complete, the sequence {lf ( al )}
converges. So, one can define the mapping A : X → Y by

A(a) = lim
l→∞

lf
(
a
l

)

for all a ∈ X.
Moreover, letting p =  and passing the limit q → ∞ in (.), we get

P
(
f (a) –A(a)

) ≤ r + 
r – 

θ‖a‖r (.)

for all a ∈ X.
It follows from (.) that

P
(
l

(
f
(
a
l

)
+ f

(
b
l

)
+ f

(
c
l

)))

≤ lP
(
f
(
a + b + c

l

))
+

l

lr
θ
(‖a‖r + ‖b‖r + ‖c‖r)
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for all a,b, c ∈ X. Passing the limit l → ∞ in the above inequality, we get

P
(
A(a) +A(b) +A(c)

) ≤ P
(
A(a + b + c)

)
for all a,b, c ∈ X. Since f : X → Y is an odd mapping, the mapping A : X → Y is odd. By
Lemma ., A : X → Y is additive.
Now, let T : X → Y be another additive mapping satisfying (.). Then we have

P
(
A(a) – T(a)

)
= P

(
qA

(
a
q

)
– qT

(
a
q

))

≤ P
(
q

(
A

(
a
q

)
– g

(
a
q

)))
+ P

(
q

(
T

(
a
q

)
– g

(
a
q

)))

≤ 
r + 
r – 

q

qr
θ‖a‖r ,

which tends to zero as q → ∞ for all a ∈ X. So, we can conclude that A(a) = T(a) for all
a ∈ X. This proves the uniqueness of A.
By Lemma . and (.),

Pn
(
fn

(
[xij]

)
–An

(
[xij]

)) ≤
n∑

i,j=

P
(
f (xij) –A(xij)

) ≤
n∑

i,j=

( + r)
r – 

θ‖xij‖r

for all x = [xij] ∈ Mn(X). Thus A : X → Y is a unique additive mapping satisfying (.), as
desired. �

Theorem. Let r, θ be positive real numbers with r < . Let f : Y → X be an oddmapping
such that

∥∥fn([xij]) + fn
(
[yij]

)
+ fn

(
[zij]

)∥∥
n ≤ ∥∥fn([xij] + [yij] + [zij]

)∥∥
n

+
n∑

i,j=

θ
(
P(xij)r + P(yij)r + P(zij)r

)
(.)

for all x = [xij], y = [yij], z = [zij] ∈ Mn(Y ). Then there exists a unique additive mapping A :
Y → X such that

∥∥fn([xij]) –An
(
[xij]

)∥∥
n ≤

n∑
i,j=

 + r

 – r
θP(xij)r (.)

for all x = [xij] ∈Mn(Y ).

Proof Let n =  in (.). Then (.) is equivalent to

∥∥f (a) + f (b) + f (c)
∥∥ ≤ ∥∥f (a + b + c)

∥∥ + θ
(
P(a)r + P(b)r + P(c)r

)
(.)

for all a,b, c ∈ Y .
Letting b = a and c = –a in (.), we get

∥∥f (a) – f (a)
∥∥ ≤ (

 + r
)
θP(a)r ,

http://www.journalofinequalitiesandapplications.com/content/2013/1/547
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and so∥∥∥∥f (a) – 

f (a)

∥∥∥∥ ≤  + r


θP(a)r

for all a ∈ Y .
One can easily show that

∥∥∥∥ 
p

f
(
pa

)
–


q

f
(
qa

)∥∥∥∥ ≤
q–∑
l=p

lr

l
 + r


θP(a)r (.)

for all a ∈ Y and nonnegative integers p, q with p < q. It follows from (.) that the se-
quence { 

l f (
la)} is Cauchy for all a ∈ Y . Since X is complete, the sequence { 

l f (
la)}

converges. So, one can define the mapping A : Y → X by

A(a) = lim
l→∞


l
f
(
la

)
for all a ∈ Y .
Moreover, letting p =  and passing the limit q → ∞ in (.), we get

∥∥f (a) –A(a)
∥∥ ≤  + r

 – r
θP(a)r (.)

for all a ∈ Y .
It follows from (.) that

∥∥∥∥ 
l

(
f
(
la

)
+ f

(
lb

)
+ f

(
lc

))∥∥∥∥ ≤
∥∥∥∥ 
l
f
(
l(a + b + c)

)∥∥∥∥ +
lr

l
θ
(‖a‖r + ‖b‖r + ‖c‖r)

for all a,b, c ∈ Y . Passing the limit l → ∞ in the above inequality, we get

∥∥A(a) +A(b) +A(c)
∥∥ ≤ ∥∥A(a + b + c)

∥∥
for all a,b, c ∈ Y . By [, Lemma .], the mapping A : Y → X is additive.
Now, let T : Y → X be another additive mapping satisfying (.). Let n = . Then we

have

∥∥A(a) – T(a)
∥∥ =

∥∥∥∥ 
q

A
(
qa

)
–


q

T
(
qa

)∥∥∥∥
≤

∥∥∥∥ 
q

(
A

(
qa

)
– g

(
qa

))∥∥∥∥ +
∥∥∥∥ 
q

(
T

(
qa

)
– g

(
qa

))∥∥∥∥
≤ 

 + r

 – r
qr

q
θP(a)r ,

which tends to zero as q → ∞ for all a ∈ Y . So, we can conclude that A(a) = T(a) for all
a ∈ Y . This proves the uniqueness of A.
By Lemma . and (.),

∥∥fn([xij]) –An
(
[xij]

)∥∥
n ≤

n∑
i,j=

∥∥f (xij) –A(xij)
∥∥ ≤

n∑
i,j=

 + r

r – 
θP(xij)r
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for all x = [xij] ∈ Mn(Y ). Thus A : Y → X is a unique additive mapping satisfying (.), as
desired. �

3 Hyers-Ulam stability of the Cauchy additive functional equation inmatrix
paranormed spaces

In this section, we prove the Hyers-Ulam stability of the Cauchy additive functional equa-
tion in matrix paranormed spaces.
For a mapping f : X → Y , define Df : X → Y and Dfn :Mn(X) →Mn(Y ) by

Df (a,b) = f (a + b) – f (a) – f (b),

Dfn
(
[xij], [yij]

)
:= fn

(
[xij + yij]

)
– fn

(
[xij]

)
– fn

(
[yij]

)
for all a,b ∈ X and all x = [xij], y = [yij] ∈ Mn(X).

Theorem . Let r, θ be positive real numbers with r > . Let f : X → Y be amapping such
that

Pn
(
Dfn

(
[xij], [yij]

)) ≤
n∑

i,j=

θ
(‖xij‖r + ‖yij‖r

)
(.)

for all x = [xij], y = [yij] ∈ Mn(X). Then there exists a unique additive mapping A : X → Y
such that

Pn
(
fn

(
[xij]

)
–An

(
[xij]

)) ≤
n∑

i,j=

θ
r – 

‖xij‖r (.)

for all x = [xij] ∈Mn(X).

Proof Let n =  in (.). Then (.) is equivalent to

P
(
f (a + b) – f (a) – f (b)

) ≤ θ
(‖a‖r + ‖b‖r) (.)

for all a,b ∈ X.
Letting b = a in (.), we get

P
(
f (a) – f (a)

) ≤ θ‖a‖r ,

and so

P
(
f (a) – f

(
a


))
≤ 

r
θ‖a‖r

for all a,b ∈ X.
One can easily show that

P
(
pf

(
a
p

)
– qf

(
a
q

))
≤

q–∑
l=p

 · l
(l+)r

θ‖a‖r (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/547
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for all a,b ∈ X and nonnegative integers p, q with p < q. It follows from (.) that the
sequence {lf ( al )} is Cauchy for all a ∈ X. Since Y is complete, the sequence {lf ( al )}
converges. So, one can define the mapping A : X → Y by

A(a) = lim
l→∞

lf
(
a
l

)

for all a ∈ X.
Moreover, letting p =  and passing the limit q → ∞ in (.), we get

P
(
f (a) –A(a)

) ≤ θ
r – 

‖a‖r (.)

for all a ∈ X.
It follows from (.) that

P
(
l

(
f
(
a + b
l

)
– f

(
a
l

)
– f

(
b
l

)))
≤ lP

(
f
(
a + b
l

)
– f

(
a
l

)
– f

(
b
l

))

≤ l

lr
θ
(‖a‖r + ‖b‖r),

which tends to zero as l → ∞. So, P(A(a+ b) –A(a) –A(b)) = , i.e., A(a+ b) = A(a) +A(b)
for all a,b ∈ X. Hence A : X → Y is additive.
The proof of the uniqueness of A is similar to the proof of Theorem ..
By Lemma . and (.),

Pn
(
fn

(
[xij]

)
–An

(
[xij]

)) ≤
n∑

i,j=

P
(
f (xij) –A(xij)

) ≤
n∑

i,j=

θ
r – 

‖xij‖r

for all x = [xij] ∈ Mn(X). Thus A : X → Y is a unique additive mapping satisfying (.), as
desired. �

Theorem. Let r, θ be positive real numbers with r < . Let f : Y → X be amapping such
that

∥∥Dfn([xij], [yij])∥∥n ≤
n∑

i,j=

θ
(
P(xij)r + P(yij)r

)
(.)

for all x = [xij], y = [yij] ∈ Mn(Y ). Then there exists a unique additive mapping A : Y → X
such that

∥∥fn([xij]) –An
(
[xij]

)∥∥
n ≤

n∑
i,j=

θ
 – r

P(xij)r (.)

for all x = [xij] ∈Mn(Y ).

Proof Let n =  in (.). Then (.) is equivalent to

∥∥f (a + b) – f (a) – f (b)
∥∥ ≤ θ

(
P(a)r + P(b)r

)
(.)

for all a,b ∈ Y .

http://www.journalofinequalitiesandapplications.com/content/2013/1/547
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Letting b = a in (.), we get

∥∥f (a) – f (a)
∥∥ ≤ θP(a)r ,

and so
∥∥∥∥f (a) – 


f (a)

∥∥∥∥ ≤ θP(a)r

for all a ∈ Y .
One can easily show that

∥∥∥∥ 
p

f
(
pa

)
–


q

f
(
qa

)∥∥∥∥ ≤
q–∑
l=p

lr

l
θP(a)r (.)

for all a ∈ Y andnonnegative integers p, qwith p < q. It follows from (.) that the sequence
{ 
l f (

la)} is Cauchy for all a ∈ Y . Since X is complete, the sequence { 
l f (

la)} converges.
So, one can define the mapping A : Y → X by

A(a) = lim
l→∞


l
f
(
la

)

for all a ∈ Y .
Moreover, letting p =  and passing the limit q → ∞ in (.), we get

∥∥f (a) –A(a)
∥∥ ≤ θ

 – r
P(a)r (.)

for all a ∈ Y .
It follows from (.) that

∥∥∥∥ 
l

(
f
(
l(a + b)

)
– f

(
la

)
– f

(
lb

))∥∥∥∥ ≤ lr

l
θ
(‖a‖r + ‖b‖r),

which tends to zero as l → ∞. So, ‖A(a + b) –A(a) –A(b)‖ = , i.e., A(a + b) = A(a) +A(b)
for all a,b ∈ Y . Hence A : Y → X is additive.
The proof of the uniqueness of A is similar to the proof of Theorem ..
By Lemma . and (.),

∥∥fn([xij]) –An
(
[xij]

)∥∥
n ≤

n∑
i,j=

∥∥f (xij) –A(xij)
∥∥ ≤

n∑
i,j=

θ
r – 

P(xij)r

for all x = [xij] ∈ Mn(Y ). Thus A : Y → X is a unique additive mapping satisfying (.), as
desired. �

4 Hyers-Ulam stability of the quadratic functional equation inmatrix
paranormed spaces

In this section, we prove the Hyers-Ulam stability of the quadratic functional equation in
matrix paranormed spaces.
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For a mapping f : X → Y , define Df : X → Y and Dfn :Mn(X) →Mn(Y ) by

Df (a,b) = f (a + b) + f (a – b) – f (a) – f (b),

Dfn
(
[xij], [yij]

)
:= fn

(
[xij + yij]

)
+ fn

(
[xij – yij]

)
– fn

(
[xij]

)
– fn

(
[yij]

)
for all a,b ∈ X and all x = [xij], y = [yij] ∈ Mn(X).

Theorem. Let r, θ be positive real numbers with r > . Let f : X → Y be amapping such
that

Pn
(
Dfn

(
[xij], [yij]

)) ≤
n∑

i,j=

θ
(‖xij‖r + ‖yij‖r

)
(.)

for all x = [xij], y = [yij] ∈Mn(X). Then there exists a unique quadratic mapping Q : X → Y
such that

Pn
(
fn

(
[xij]

)
–Qn

(
[xij]

)) ≤
n∑

i,j=

θ
r – 

‖xij‖r

for all x = [xij] ∈Mn(X).

Proof Let n =  in (.). Then (.) is equivalent to

P
(
f (a + b) + f (a – b) – f (a) – f (b)

) ≤ θ
(‖a‖r + ‖b‖r) (.)

for all a,b ∈ X.
Letting a = b =  in (.), we get P(f ())≤  and so f () = .
Letting b = a in (.), we get

P
(
f (a) – f (a)

) ≤ θ‖a‖r ,

and so

P
(
f (a) – f

(
a


))
≤ 

r
θ‖a‖r

for all a,b ∈ X.
The rest of the proof is similar to the proof of Theorem .. �

Theorem . Let r, θ be positive real numbers with r < . Let f : Y → X be a mapping
such that

∥∥Dfn([xij], [yij])∥∥n ≤
n∑

i,j=

θ
(
P(xij)r + P(yij)r

)
(.)

for all x = [xij], y = [yij] ∈Mn(Y ). Then there exists a unique quadratic mapping Q : Y → X
such that

∥∥fn([xij]) –Qn
(
[xij]

)∥∥
n ≤

n∑
i,j=

θ
 – r

P(xij)r

for all x = [xij] ∈Mn(Y ).
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Proof Let n =  in (.). Then (.) is equivalent to

∥∥f (a + b) + f (a – b) – f (a) – f (b)
∥∥ ≤ θ

(
P(a)r + P(b)r

)
(.)

for all a,b ∈ Y .
Letting a = b =  in (.), we get ‖f ()‖ ≤  and so f () = .
Letting b = a in (.), we get

∥∥f (a) – f (a)
∥∥ ≤ θP(a)r ,

and so
∥∥∥∥f (a) – 


f (a)

∥∥∥∥ ≤ θ


P(a)r

for all a,b ∈ Y .
The rest of the proof is similar to the proof of Theorem .. �
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