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Abstract
We investigate multiple solutions for the Hamiltonian system with singular potential
nonlinearity and periodic condition. We get a theorem which shows the existence of
the nontrivial weak periodic solution for the Hamiltonian system with singular
potential nonlinearity. We obtain this result by using the variational method, critical
point theory for indefinite functional.
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1 Introduction
Let D be an open subset in Rn with a compact complement C = Rn\D, n≥ . Let p ∈ Rn,
q ∈ Rn, (p(t),q(t)) ∈ C([, π ],D) and G(t, (p(t),q(t))) ∈ C([, π ]×D,R). In this paper
we investigate the number of solutions (p(t),q(t)) ∈ C([, π ],D) with singular potential
nonlinearity and periodic condition

˙p(t) = –Gq
(
t,p(t),q(t)

)
,

˙q(t) =Gp
(
t,p(t),q(t)

)
,

p() = p(π ), q() = q(π ).

(.)

Let us set z = (p,q) and

J =

(
 –In
In 

)
.

Then (.) can be rewritten as

– J ż =Gz
(
t, z(t)

)
,

z() = z(π ),
(.)

where ż = dz
dt . We assume that G(t, z(t)) ∈ C([, π ]×D,R) satisfies the following condi-

tions:
(G) There exists R >  such that

sup
{∣∣G(

t, z(t)
)∣∣ + ∥∥gradz G(

t, z(t)
)∥∥

Rn | (t, z) ∈ [, π ]× (
Rn\BR

)}
< +∞.
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(G) There is a neighborhood Z of C in Rn such that

G(t, z) ≥ A
d(z,C)

for (t, z) ∈ [, π ]× Z,

where d(z,C) is the distance function to C and A >  is a constant.
Several authors ([–], etc.) studied the Hamiltonian system with nonsingular potential

nonlinearity. Jung and Choi [, ] considered (.) with nonsingular potential nonlinearity
or jumping nonlinearity crossing one eigenvalue, or two eigenvalues, or several eigenval-
ues. Chang [] proved that (.) has at least two nontrivial π-periodic weak solutions
under some asymptotic nonlinearity. Jung and Choi [] proved that (.) has at least m
weak solutions, which are geometrically distinct and nonconstant under some jumping
nonlinearity.
In this paper we are trying to find the weak solutions z ∈ C([, π ],D) of system (.)

such that∫ π


ż ·w – JGz

(
t, z(t)

) · Jwdt =  for all w ∈ E,

i.e.,
∫ π



[(
ṗ +Gq

(
t, z(t)

)) · ψ –
(
q̇ –Gp

(
t, z(t)

)) · φ]
dt =  for all ζ = (φ,ψ) ∈ E,

where E is introduced in Section .
Our main result is as follows.

Theorem . Assume that G satisfies conditions (G)-(G). Then system (.) has at least
one π -periodic solution.

For the proof of Theorem ., we introduce the perturbed operator Aε , such that A–
ε is

a compact operator and the associated functional I(z) corresponding to the operator Aε ,
and approach the variational method, the critical point theory. In Section , we investigate
the Fréchet differentiability of the associated functional I(z) and recall the critical point
theorem for indefinite functional. In Section , we show that the associated functional I(z)
satisfies the geometrical assumptions of the critical point theorem for indefinite functional
and prove Theorem ..

2 Variational method
Let L([, π ],Rn) denote the set of n-tuples of the square integrable π-periodic func-
tions and choose z ∈ L([, π ],Rn). Then it has a Fourier expansion z(t) =

∑k=+∞
k=–∞ akeikt ,

with ak = 
π

∫ π
 z(t)e–ikt dt ∈ Cn, a–k = āk and

∑
k∈Z |ak| < ∞. Let

A : z(t) �→ –J ż(t)

with the domain

D(A) =
{
z(t) ∈ H([, π ],Rn) | z() = z(π )

}
=

{
z(t) ∈ L

(
[, π ],Rn) ∣∣ ∑

k∈Z

(
ε + |k|)|ak| < +∞

}
,
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where ε is a positive small number. Then A is a self-adjoint operator. Let {Mλ} be the
spectral resolution of A, and let α be a positive number such that α /∈ σ (A) and [–α,α]
contains only one element  of σA. Let

P =
∫ α

–α

dMλ, P+ =
∫ +∞

α

dMλ, P– =
∫ –α

–∞
dMλ.

Let

L = PL
(
[, π ],Rn), L+ = P+L

(
[, π ],Rn), L– = P–L

(
[, π ],Rn).

For each u ∈ L([, π ],Rn), we have the composition

u = u + u+ + u–,

where u ∈ L, u+ ∈ L+, u– ∈ L–. According to A, there exists a small number ε >  such
that –ε /∈ σ (A). Let us define the space E as follows:

E =D
(|A|  ) = {

z ∈ L
(
[, π ],Rn) ∣∣ ∑

k∈Z

(
ε + |k|)|ak| < ∞

}

with the scalar product

(z,w)E = ε(z,w)L +
(|A|  z, |A| w)

L

and the norm

‖z‖ = (z, z)


E =

(∑
k∈Z

(
ε + |k|)|ak|

) 

.

The space E endowed with this norm is a real Hilbert space continuously embedded in
L([, π ],Rn). The scalar product in L naturally extends as the duality pairing between
E and E′ = W– 

 ,([, π ],Rn). We note that the operator (ε + |A|)– is a compact linear
operator from L([, π ],Rn) to E such that

((
ε + |A|)–w, z)E =

∫ π



(
w(t), z(t)

)
dt.

Let

Aε = εI +A.

Let

E = |Aε |– 
 L, E+ = |Aε |– 

 L+, E– = |Aε |– 
 L–.

Then E = E ⊕ E+ ⊕ E– and for z ∈ E, z has the decomposition z = z + z+ + z– ∈ E, where

z = |Aε |– 
 u, z+ = |Aε |– 

 u+, z– = |Aε |– 
 u–.
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Thus we have

‖z‖E = ‖u‖L , ‖z+‖E+ = ‖u+‖L+ , ‖z–‖E– = ‖u–‖L–

and that E, E+, E– are isomorphic to L, L+, L–, respectively.
For the sake of simplicity, from now on we shall denote the subset of C([, π ],D),

satisfying the π-periodic condition, by C(S,D).
Let us introduce an open set of the Hilbert space E as follows:

X =
{
z ∈ E | z(t) ∈D ⊂ Rn, t ∈ S

}
.

Let

X = E ∩X, X+ = E+ ∩X, X– = E– ∩X.

Then X = X ⊕X+ ⊕X– and for z ∈ X, z has the decomposition z = z + z+ + z– ∈ X, where

z ∈ X, z+ ∈ X+, z– ∈ X–.

The associated functional of (.) on X is as follows:

I(z) =


(∥∥A 


ε z+

∥∥
L +

∥∥A 

ε M+z

∥∥ –
∥∥(–Aε)


 z–

∥∥
L –

∥∥(–Aε)

M–z

∥∥) –ψε(z), (.)

where ψε(z) = ψ(z) + ε
‖z‖L , ψ(z) =

∫ π
 G(t, z(t))dt. Let

F(z) =Gz
(
t, z(t)

)
.

By G ∈ C, ψ(z) =
∫ π
 G(t, z(t)) ∈ C(S ×D,R). Let

Fε(z) = εI + F(z) = εI +Gz
(
t, z(t)

)
.

System (.) can be rewritten as

Aε(z) = Fε(z). (.)

The Euler equation of the functional I(z) is the system

u+ = |Aε |– 
 P+Fε(z), (.)

u– = –|Aε |– 
 P–Fε(z), (.)

M+u = |Aε |– 
M+PFε(z), M–u = –|Aε |– 

M–PFε(z). (.)

Thus z = z + z+ + z– is a solution of (.) if and only if u = u + u+ + u– is a critical point
of I . System (.)-(.) is reduced to

Aεz+ = P+Fε(z + z+ + z–) or z+ = (Aε)–P+Fε(z + z+ + z–), (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/545
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Aεz– = P–Fε(z + z+ + z–) or z– = (Aε)–P–Fε(z + z+ + z–), (.)

AεM+z =M+PFε(z + z+ + z–), AεM–z =M–PFε(z + z+ + z–). (.)

By the condition F(z) ∈ C(E,E) and (G),

∥∥Fε(z) – Fε(w)
∥∥
L ≤ (ε + β)‖u – v‖H ∀u, v ∈ E. (.)

By (G) and (G), there exists γ >min{j – α + ε,β – j + ε} such that

∥∥A–
ε |L+⊕L–

∥∥ ≤ 
γ
.

By the following lemma, the weak solutions of (.) coincide with the critical points of
the functional I(z).

Lemma . Assume that G satisfies conditions (G)-(G). Then I(z) is continuous and
Fréchet differentiable in X with the Fréchet derivative

DI(z)w =
∫ π



(
Aεz – Fε(z)

) ·wdt for all w ∈ X.

Moreover, DI ∈ C. That is, I ∈ C.

Proof First we prove that I(z) =
∫ π
 [ Aεz –G(t, z(t)) – ε

z
]dt is continuous and Fréchet

differentiable in X. For z,w ∈ X,

∣∣I(z +w) – I(z)
∣∣

=
∣∣∣∣
∫ π





Aε(z +w) · (z +w) –

∫ π



[
G(t, z +w) +

ε


(z +w)

]

–
∫ π





Aε(z) · z +

∫ π



[
G(t, z) +

ε


z

]∣∣∣∣
=

∣∣∣∣
∫ π





[
Aε(z) ·w +Aε(w) · z +Aε(w) ·w

]

–
∫ π



[
G(t, z +w) –G(t, z) +

ε


(
z ·w +w)]∣∣∣∣.

We have

∣∣∣∣
∫ π



[
G(t, z +w) –G(t, z)

]
dt

∣∣∣∣
≤

∣∣∣∣
∫ π



[
Gz

(
t, z(t)

) ·w +O
(‖w‖Rn

)]
dt

∣∣∣∣ =O
(‖w‖Rn

)
. (.)

Thus we have

∣∣I(z +w) – I(z)
∣∣ =O

(‖w‖Rn
)
.
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Next we shall prove that I(z) is Fréchet differentiable in X. For z,w ∈ X,

∣∣I(z +w) – I(z) –DI(z)w
∣∣

=
∣∣∣∣
∫ π





Aε(z +w) · (z +w) –

∫ π



[
G(t, z +w) +

ε


(z +w)

]

–
∫ π





Aε(z) · z +

∫ π



[
G(t, z) +

ε


z

]

–
∫ π


Aε(z) ·w +

∫ π



[
Gz(t, z) + εz ·w]∣∣∣∣

=
∣∣∣∣
∫ π





[
Aε(w) · z +Aε(w) ·w

]
–

∫ π



[
G(t, z +w) –G(t, z) –Gz(t, z) +

ε


w

]∣∣∣∣.
By (.), we have

∫ π



[
G(t, z +w) –G(t, z) –Gz(t, z)

]
dt =O

(‖w‖Rn
)
.

Thus

∣∣I(z +w) – I(z) –DI(z)w
∣∣ =O

(‖w‖Rn
)
. �

Lemma. Assume that G satisfies conditions (G)-(G). Let {zk} ⊂ X– and zk ⇀ z weakly
in X with z ∈ ∂X. Then I(zk) → –∞.

Proof To prove the conclusion, it suffices to prove that

∫ π


G

(
t, zk(t)

)
dt −→ +∞.

Since G(t, z(t)) is bounded from below, it suffices to prove that there is an interval [a,b]⊂
[, π ] such that

∫ b

a
G

(
t, zk(t)

)
dt −→ +∞.

By definition, z ∈ ∂X means that there exists t* ∈ [, π ] such that z(t*) ∈ ∂D. By G(),
there exists a constant B >  such that

G(x, t,U)≥ A
d(z,C)

– B.

Thus we have

∫ t*+δ

t*
G

(
t, z(t)

)
dt ≥

∫ t*+δ

t*

(
A

‖z(t) – z(t*)‖Rn
– B

)
dt

for all δ > . By Schwarz’s inequality, we have

∥∥z(t) – zk(t)
∥∥
Rn ≤ ∣∣t – t*

∣∣ 


(∫ π



∥∥ż(t)∥∥
Rn dt

) 

.
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Thus we have

∫ t*+δ

t*
G

(
t, z(t)

)
dt = +∞.

Since the embedding H(S,Rn) ↪→ C(S,Rn) is compact, we have

max
{∥∥z(t) – zk(t)

∥∥
Rn | t ∈ S

} −→  as k → ∞.

Thus by Fatou’s lemma, we have

lim inf
∫ t*+δ

t*
G

(
t, zk(t)

)
dt ≥

∫ t*+δ

t*
lim infG

(
t, zk(t)

)

=
∫ t*+δ

t*
G

(
t, z(t)

)
dt = +∞.

Thus

lim inf
∫ t*+δ

t*
G

(
t, zk(t)

)
= +∞.

Thus if {zk} ⊂ X–,

I(zk) =
∫ π



[


Aεzk(t) –ψε(zk)

]
dxdt

=


(∥∥A 


ε (zk)+

∥∥
L +

∥∥A 

ε M+(zk)

∥∥ –
∥∥(–Aε)


 (zk)–

∥∥
L

–
∥∥(–Aε)


M–(zk)

∥∥) –ψε(zk)

≤ –
∥∥(–Aε)


 (zk)–

∥∥
L –ψε(zk) −→ –∞,

so we prove the lemma. �

Now, we recall the critical point theorem for indefinite functional (cf. []).
Let

Br =
{
u ∈ X | ‖u‖ ≤ r

}
,

Sr =
{
u ∈ X | ‖u‖ = r

}
.

Theorem . (Critical point theorem for indefinite functional) Let X be a real Hilbert
space with X = X ⊕X and X = X⊥

 . Suppose that I ∈ C(X,R) satisfies (PS) and
(I) I(u) = 

 (Lu,u) + bu, where Lu = LPu + LPu and Li : Xi → Xi is bounded and
self-adjoint, i = , ,

(I) b′ is compact, and
(I) there exists a subspace X̃ ⊂ X and sets S ⊂ X , Q ⊂ X̃ and constants α > ω such that

(i) S ⊂ X and I|S ≥ α,
(ii) Q is bounded and I|∂Q ≤ ω,
(iii) S and ∂Q link.

Then I possesses a critical value c ≥ α.

http://www.journalofinequalitiesandapplications.com/content/2013/1/545
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3 Proof of Theorem 1.1
We shall show that the functional I(z) satisfies the geometric assumptions of the critical
point theorem for indefinite functional.

Lemma . (Palais-Smale condition) Assume that G satisfies conditions (G) and (G).
Then there exists a constant γ depending on the C norm of the function G on S ×
(Rn\BR ) such that I(z) satisfies the (P.S.)γ condition in X for γ < γ.

Proof We shall prove the lemmaby contradiction.We suppose that there exists a sequence
{zk} ⊂ X satisfying

I(zk) → γ (.)

and

DI(zk) = zk –A–
ε

(
Gz(t, zk) + εzk

) −→ θ , (.)

where A–
ε is a compact operator and θ = (, . . . , ). SinceG(t, z(t)) is bounded from below,

(.) implies that there exists a constant C >  such that

∫ π


Aεzk(t)dt ≥ C. (.)

We claim that {zk} has a convergent subsequence. It suffices to prove that the sequence
{zk} is bounded in X. By contradiction, we suppose that up to a subsequence, {zk} satisfies
‖zk‖Rn → ∞. Then, for large k, we have

‖zk‖Rn ≥ R. (.)

It follows from (.) that
∣∣∣∣
∫ π


G(t, zk)dt

∣∣∣∣ ≤ π sup
{∣∣G(t, zk)∣∣ | (t, zk) ∈ S × (

Rn\BR
)}
. (.)

By (.) and (.),

I(zk) =
∫ π



[


Aε(zk) –G

(
t, zk(t)

)
–

ε


zk

]
dt

≥ C


– π sup

{∣∣G(t, zk)∣∣ | (t, zk) ∈ S × (
Rn\BR

)}
–

ε


‖zk‖L .

Letting

γ =
C


– π sup

{∣∣G(t, zk)∣∣ | (t, zk) ∈ S × (
Rn\BR

)}
–

ε


‖zk‖L ,

we have I(zk) ≥ γ, which is a contradiction. �

Let

Q =
(
B̄r ∩X–) ⊕ {

re | e ∈ B ∩X+,  < r < R
}
.
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Lemma . Assume that G satisfies conditions (G) and (G). Then there exist sets Sρ ⊂
X+ with radius ρ > , Q ⊂ X and a constant α >  such that

(i) Sρ ⊂ X+ and I|Sρ ≥ α,
(ii) Q is bounded and I|∂Q ≤ ,
(iii) Sρ and ∂Q link.

Proof (i) Let us choose z ∈ X+ ⊂ X. Then z(t) ∈ D. By (G), G(t, z) is bounded above and
there exists a constant τ > 

I(z) =


(∥∥A 


ε z+

∥∥
L +

∥∥A 

ε M+z

∥∥ –
∥∥(–Aε)


 z–

∥∥
L –

∥∥(–Aε)

M–z

∥∥)

–
∫ π


G(t, z)dt –

ε


‖z‖L

≥ 

∥∥A 


ε z+

∥∥
L – τ –

ε


‖z‖L

for τ > . Then there exist constants ρ >  and α >  such that if z ∈ Sρ ∩X+, then I(z) ≥ α.
(ii) Let us choose e ∈ B ∩X+. Let z ∈ B̄r ∩X– ⊕ {re |  < r}. Then z = w + y, w ∈ B̄r ∩X–,

y = re. We note that

If w ∈ B̄r ∩X–, then
∫ π


Aε(z) · z dt = –

∥∥(–Aε)

 z–

∥∥
L ≤ .

By (G), G(t,w + re) is bounded from below. Thus, by Lemma ., there exists a constant
τ >  such that if z = w + re, then we have

I(z) =


r –

∥∥(–Aε)

 z–

∥∥
L –

∫ π


G(t,w + re)dt –

ε


‖z‖L

≤ 

r –

∥∥(–Aε)

 z–

∥∥
L –

∫
�

τ

d(V + re,C)
dxdt –

ε


‖z‖L .

We can choose a constant R > r such that if z = w+re ∈Q = (B̄r ∩X–)⊕{re | e ∈ B∩X+,  <
r < R}, then I(z) < . Thus we prove the lemma. �

Proof of Theorem . By Lemma ., I(z) is continuous and Fréchet differentiable in X and,
moreover, DI ∈ C. By Lemma ., if {zk} ⊂ X– and zk ⇀ z weakly in X with z ∈ ∂X, then
I(zk) → –∞. By Lemma ., I(z) satisfies the (P.S.)γ condition for γ < γ. By Lemma .,
there exist sets Sρ ⊂ X+ with radius ρ > ,Q ⊂ X and a constant α >  such that I|Sρ ≥ α,Q
is bounded and I|∂Q ≤ , and Sρ and ∂Q link. By the critical point theorem, I(z) possesses
a critical value c ≥ α. Thus (.) has at least one nontrivial weak solution. Thus we prove
Theorem .. �
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