
Yang Journal of Inequalities and Applications 2013, 2013:541
http://www.journalofinequalitiesandapplications.com/content/2013/1/541

RESEARCH Open Access

Three families of two-parameter means
constructed by trigonometric functions
Zhen-Hang Yang*

*Correspondence: yzhkm@163.com
Power Supply Service Center, ZPEPC
Electric Power Research Institute,
Jianguozhong Road 219, Hangzhou,
Zhejiang 310009, China

Abstract
In this paper, we establish three families of trigonometric functions with two
parameters and prove their monotonicity and bivariate log-convexity. Based on them,
three two-parameter families of means involving trigonometric functions, which
include Schwab-Borchardt mean, the first and second Seiffert means, Sándor’s mean
and many other new means, are defined. Their properties are given and some new
inequalities for these means are proved. Lastly, two families of two-parameter
hyperbolic means, which similarly contain many new means, are also presented
without proofs.
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1 Introduction
Let R+ denote the set of positive real numbers and a,b ∈ R+. A two-variable continuous
functionM :R

+ →R+ is called a mean on R+ if

min(a,b)≤M(a,b) ≤max(a,b)

holds. For convenience, however, we assume that a �= b in what follows unless otherwise
stated.
There exist many elementary means. They can be divided into three classes according

to main categories of basic elementary functions by their composition. The first class is
mainly constructed by power functions, like the Stolarsky means [] defined by

Sp,q(a,b) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

( q(a
p–bp)

p(aq–bq) )
/(p–q), p �= q,pq �= ,

( ap–bp
p(lna–lnb) )

/p, p �= ,q = ,
( aq–bq
q(lna–lnb) )

/q, p = ,q �= ,
exp( ap lna–bp lnbap–bp – 

p ), p = q �= ,√
ab, p = q = 

(.)

and Gini means [] defined by

Gp,q(a,b) =

{
( ap+bpaq+bq )

/(p–q), p �= q;
exp( ap lna+bp lnbap+bp ), p = q.

(.)
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It is well known that the Stolarsky andGinimeans are very important, they containmany
famous means, for instance, S,(a,b) = L(a,b) - the logarithmic mean, S,(a,b) = I(a,b)
- the identric (exponential) mean, S,(a,b) = G,(a,b) = A(a,b), Sp,p(a,b) = Gp,(a,b) =
A/p(ap,bp) = Ap - the p-order power mean, Sp,(a,b) = L/p(ap,bp) = Lp - the p-order
logarithmic mean, Sp,p(a,b) = I/p(ap,bp) = Ip - the p-order identric (exponential) mean;
G,(a,b) =Q(a,b) - the quadraticmean,G,(a,b) = Z(a,b) - the power-exponential mean,
Gp,p(a,b) = Z/p(ap,bp) = Zp - the p-order power-exponential mean, etc. The second class
is mainly made up of exponential and logarithmic functions, such as the second part of
Schwab-Borchardt mean (see [], [, Section , equation (.)], []) defined by

SB = SB(a,b) =

{ √
b–a

arccos(a/b) ,  ≤ a < b,√
a–b

arccosh(a/b) , b < a,
(.)

the logarithmic mean L(a,b), the exponential mean defined by

E(a,b) =
beb – aea

eb – ea
– 

given in [] (also see [, ]) by Sándor and Toader, and the Neuman-Sándor mean defined
in [] by

NS =NS(a,b) =
a – b

 arcsinh a–b
a+b

. (.)

It should be noted that NS is actually a Schwab-Borchardt mean since NS(a,b) = SB(Q,A)
mentioned by Neuman and Sándor in [].
The third class is mainly composed of trigonometric functions and their inverses, for

example, the first part of Schwab-Borchardt mean defined by (.), the first and second
Seiffert means [, ] defined by

P = P(a,b) =
a – b

 arcsin a–b
a+b

, (.)

T = T(a,b) =
a – b

 arctan a–b
a+b

, (.)

respectively, and the new mean presented recently by Sándor in [, ] defined as

X = X(a,b) = AeG/P–, (.)

where A = (a + b)/, G =
√
ab, P is defined by (.). As Neuman and Sándor pointed out

in [], the first and second Seiffert means are generated by the Schwab-Borchardt mean,
because SB(G,A) = P(a,b), SB(A,Q) = T(a,b).
From the published literature, the first and second classes have been focused on and

investigated, and there are a lot of references (see [, –]). While the third class is
relatively little known.
The aim of this paper is to define three families of two-parameter means constructed

by trigonometric functions, which include the Schwab-Borchardt mean SB, the first and
second Seiffert means P, T , and Sándor’s mean X.
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The paper is organized as follows. In Section , some useful lemmas are given. Three
families of trigonometric functions and means with two parameters and their proper-
ties are presented in Sections -. In Section , we establish some new inequalities for
two-parameter trigonometric means. In the last section, two families of two-parameter
hyperbolic means are also presented in the same way without proofs.

2 Lemmas
For later use, we give the following lemmas.

Lemma . [, p.] Let f be a differentiable function defined on an interval I . Then the
divided differences function F defined on I by

F(x, y) =
f (x) – f (y)

x – y
if x �= y and F(x,x) = f ′(x) (.)

is increasing (decreasing) in both variables if and only if f is convex (concave).

Lemma . [, Theorem ] Let f be a differentiable function defined on an interval I ,
and let F be defined on I by (.). Then the following statements are equivalent:

(i) f ′ is convex (concave) on I ,
(ii) F(x, y)≤ (≥) f

′(x)+f ′(y)
 for all x, y ∈ I ,

(iii) F is bivariate convex (concave) on I.

Lemma . If f : (–m,m) → R is a differentiable even function such that f ′ is convex in
(,m), then the function x 	→ F(c + x, c – x) defined by (.) increases for positive x if c ≥ 
and decreases if c ≤  provided c + x, c – x ∈ (–m,m).

Proof Differentiation yields

F ′(c + x, c – x) =
f ′(c+x)+f ′(c–x)

 – f (c+x)–f (c–x)
x

x
:= x–gc(x).

Since f is an even and differentiable function, it is easy to verify that gc(–x) = gc(x), g–c(x) =
–gc(x). From this we only need to prove that for c ≥ , F ′(c + x, c – x) >  for x ∈ (,m)
provided c + x, c – x ∈ (–m,m) if f ′ is convex on (,m).
To this end, we first show two facts. Firstly, application of Lemma . leads to

f (c + x) – f (c – x)
x

=
|c + x| – |c – x|

x
f (|c + x|) – f (|c – x|)

|c + x| – |c – x|

<
c

|c + x| + |c – x|
f ′(|c + x|) + f ′(|c – x|)


.

The second one states that if h is a continuous and odd function on [–d,d] (d > ) and is
convex on [,d], then, for u, v ∈ (,d] with u > v, the inequality

h(u)
u

>
h(v)
v

holds. Indeed, using the fact h() =  and the property of a convex function, the second
one easily follows.

http://www.journalofinequalitiesandapplications.com/content/2013/1/541
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Now we can prove the desired result. When x ∈ (,m), application of the two previous
facts and notice that f ′ is odd on (–m,m) lead to

gc(x) >
f ′(c + x) + f ′(c – x)


–

c
|c + x| + |c – x|

f ′(|c + x|) + f ′(|c – x|)


=

{
 if c – x ∈ [,m),
– (c–x)(c+x)

x ( f
′(c+x)
x+c – f ′(c–x)

c–x ) >  if c – x ∈ (–m, ).

Hence, F ′(c + x, c – x) = x–gc(x) >  for c,x≥ .
This completes the proof. �

Lemma . The following inequalities are true:

sinx – x < (>) for x > (<), (.)

sinx – x cosx > (<) for x ∈ (,π )
(
x ∈ (–π , )

)
, (.)

x + sinx > (<) for x > (<), (.)

cosx + x sinx >  for  < |x| < π/, (.)

cosx –
sin x
x

<  for  < |x| < π , (.)

sinx
x

<
 + cosx


for x �= . (.)

Proof Inequalities (.)-(.) easily follow by the elementary differential method, and we
omit all details here. Inequality (.) can be derived from a well-known inequality given
in [, p.]) by Adamović and Mitrinović for  < |x| < π/, while it is obviously true
for π/ ≤ |x| < π . Inequality (.) can be found in [, Problem ., .]. This lemma is
proved. �

Lemma . [, pp.-] Let  < |x| < π . Then we have


sinx

=

x
+

∞∑
n=

n – 
(n)!

|Bn|xn–, (.)

where Bn is the Bernoulli number.

3 Two-parameter sinemeans
3.1 Two-parameter sine functions
We begin with the form of hyperbolic functions of Stolarsky means defined by (.) to
introduce the two-parameter sine functions. Let t = ln

√
b/a. Then the Stolarsky means

can be expressed in hyperbolic functions as

Sp,q(a,b) =
√
abSh(p,q, t),

http://www.journalofinequalitiesandapplications.com/content/2013/1/541
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where

Sh(p,q, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

( qp
sinhpt
sinhqt )

/(p–q), pq(p – q) �= ,
( sinhptpt )/p, p �= ,q = ,
( sinhqtqt )/q, p = ,q �= ,
et cothpt–/p, p = q,pq �= ,
, p = q = .

(.)

We call Sh(p,q, t) two-parameter hyperbolic sine functions. Accordingly, for suitable p, q,
t, we can give the definition of sine versions of Sh(p,q, t) as follows.

Definition . The function S̃ is called a sine function with parameters if S̃ is defined on
[–, ] × (,π/) by

S̃(p,q, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

( qp
sinpt
sinqt )

/(p–q), pq(p – q) �= ,
( sinptpt )/p, q = ,p �= ,
( sinqtqt )/q, p = ,q �= ,
et cotpt–/p, p = q �= ,
, p = q = .

(.)

S̃ is said to be a two-parameter sine function for short.

Now let us observe its properties.

Proposition . Let the two-parameter sine function S̃ be defined by (.). Then
(i) S̃ is decreasing in p, q on [–, ], and is log-concave in (p,q) for (p,q) ∈ [, ] and

log-convex for (p,q) ∈ [–, ];
(ii) S̃ is decreasing and log-concave in t on (,π/) for p + q > , and is increasing and

log-convex for p + q < .

Proof We have

ln S̃(p,q, t) =
f (p) – f (q)

p – q
if p �= q and ln S̃(p,p, t) = f ′(p),

where

f (x) = ln
sinxt
x

if |x| ∈ (, ] and f () = ln t. (.)

(i) We prove that S̃ is decreasing in p, q on [–, ], and is log-concave in (p,q) for (p,q) ∈
[, ] and log-convex for (p,q) ∈ [–, ]. By Lemmas . and ., it suffices to check that
f is concave in p,q ∈ [–, ] and that f ′ is concave for p,q ∈ [, ] and convex for p,q ∈
[–, ].
Differentiation and employing (.), (.) yield that for t ∈ (,π/),

f ′(x) =
t cos tx
sin tx

–

x

if |x| ∈ (, ] and f ′() = , (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/541
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f ′′(x) =
sin tx – tx

x sin tx
<  for |x| ∈ (, ] and f ′′() = –

t


< , (.)

f ′′′(x) =
t

sin tx

(
cos tx –

sin tx
tx

){
<  if x ∈ (, ],
>  if x ∈ [–, ),

(.)

which prove part one.
(ii) Now we show that S̃ is decreasing and log-concave in t on (,π/) for p + q > , and

increasing and log-convex for p + q < . It is easy to verify that f ′ is an odd function on
[–, ], and so ln S̃(p,q, t) can be written in the form of integral as

ln S̃(p,q, t) =


p – q

∫ p

q
f ′(x)dx =

p + q
|p| + |q|


|p| – |q|

∫ |p|

|q|
f ′(x)dx. (.)

Differentiation and application of (.) and (.) give

∂f ′

∂t
=


 sin tx

(sintx – tx) <  for x ∈ (, ],

∂f ′

∂t
=

x
sin tx

(tx cos tx – sin tx) <  for x ∈ (, ].

It follows from (.) that

∂ ln S̃
∂t

=
p + q

|p| + |q|


|p| – |q|
∫ |p|

|q|
∂f ′

∂t
dx

{
<  if p,q ∈ [–, ] with p + q > ,
>  if p,q ∈ [–, ] with p + q < ,

∂ ln S̃
∂t

=
p + q

|p| + |q|


|p| – |q|
∫ |p|

|q|
∂f ′

∂t
dx

{
<  if p,q ∈ [–, ] with p + q > ,
>  if p,q ∈ [–, ] with p + q < ,

which proves part two and, consequently, the proof is completed. �

From the proof of Proposition ., we see that f defined by (.) is an even function and
f ′′′(x) <  for x ∈ [, ] given by (.). Letm =  and c– x = p ∈ (–, ). Then by Lemma .
we immediately obtain the following.

Proposition . For fixed c ∈ (–, ), let –min(,  – c) ≤ p ≤ min(, c + ) and t ∈
(,π/), and let S̃(p,q, t) be defined by (.). Then the function p 	→ S̃(p, c – p, t) is de-
creasing on [–, c) and increasing on (c, c+] for c ∈ (–, ], and is increasing on [c–, c)
and decreasing on (c, ] for c ∈ (, ).

By Propositions . and . we can obtain some new inequalities for trigonometric func-
tions.

Corollary . For t ∈ (,π/), we have

√
sin t
t

cos t <
 cos t + 


< exp(t cot t – ) <

 + cos t


<
sin t
t

<
(
 + cos t



)/

, (.)

cos/ t <
(


cos t +




)/

<
(


cos t +



cos

t


)/

http://www.journalofinequalitiesandapplications.com/content/2013/1/541
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<
sin t
t

<
(
cos

t

cos

t


)/

<
(


cos

t

+



)

< cos
t

< exp

(
t
 + cos t
sin t

– 
)
< cos

t

. (.)

Proof (i) By Proposition ., S̃(p, –p, t) is increasing in p on [, ) and decreasing on [, ],
we have

S̃(, , t) < S̃
(


,


, t

)
< S̃(, , t).

Due to S̃(,q, t) is decreasing in q on [–, ], we get

S̃(, , t) < S̃
(
,


, t

)
< S̃(, , t) < S̃

(
,–



, t

)
.

Simplifying leads to (.).
(ii) Similarly, since p 	→ S̃(p,  – p, t) is increasing on [–, /) and decreasing on (/, ],

we get

S̃(,–, t) < S̃
(


,–



, t

)
< S̃

(


,–



, t

)
< S̃(, , t)

< S̃
(


,


, t

)
< S̃

(


,


, t

)
< S̃

(


,


, t

)
< S̃

(


,


, t

)
,

while S̃(  ,

 , t) < S̃(  ,


 , t) follows by the monotonicity of S̃(/,q, t) in q on [–, ]. Sim-

plifying yields inequalities (.). �

3.2 Definition of two-parameter sine means and examples
Being equipped with Propositions ., ., we can easily establish a family of means gen-
erated by (.). To this end, we have to prove the following statement.

Theorem . Let p,q ∈ [–, ], and let S̃(p,q, t) be defined by (.). Then, for all a,b > ,
Sp,q(a,b) defined by

Sp,q(a,b) =max(a,b)× S̃
(
p,q, arccos

(
min(a,b)
max(a,b)

))
if a �= b and

Sp,q(a,a) = a
(.)

is a mean of a and b if and only if  ≤ p + q ≤ .

Proof Without lost of generality, we assume that  < a ≤ b. Let t = arccos(a/b). Then the
statement in question is equivalent to that the inequalities

cos t ≤ S̃(p,q, t) ≤  (.)

hold for t ∈ (,π/) if and only if  ≤ p + q ≤ , where S̃(p,q, t) is defined by (.).

http://www.journalofinequalitiesandapplications.com/content/2013/1/541
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Necessity. We prove that the condition  ≤ p+q ≤  is necessary. If (.) holds, then we
have

lim
t→+

ln S̃(p,q, t) – ln cos t
t

≥  and lim
t→+

ln S̃(p,q, t)
t

≤ .

Using power series extension gives

ln S̃(p,q, t) – ln cos t = –


t(p + q – ) +O

(
t

)
,

ln S̃(p,q, t) = –


t(p + q) +O

(
t

)
.

Hence we have

–


(p + q – )≥  and –



(p + q) ≤ ,

which implies that  ≤ p + q ≤ .
Sufficiency. We show that the condition ≤ p+q ≤  is sufficient. Clearly,max(p,q) ≥ .

Now we distinguish two cases to prove (.).
Case : p,q ≥  and p + q ≤ . This case can be divided into two subcases. In the first

subcase of (p,q) ∈ [, ]× [, ] or [, ]× [, ], by the monotonicity of S̃(p,q, t) in p, q on
[–, ], we get

cos t = S̃(, , t)≤ S̃(p,q, t) ≤ S̃(, , t) = .

In the second subcase of (p,q) ∈ [, ] and p + q ≤ , it is derived that

S̃(p,  – p, t) ≤ S̃(p,q, t) ≤ S̃(, , t) = .

From Proposition . it is seen that S̃(p,  –p, t) is increasing on [, /] and decreasing on
[/, ], which reveals that S̃(p,  – p, t) > S̃(, , t) = cos t, that is, the desired result.
Case : p ≥ , q ≤  or p ≤ , q ≥  and p + q ≤ . Because of the symmetry of p and

q, we assume that p ≥ q. Then p ≥ , q ≤ . Due to p ∈ [, ] and p + q ≤ , we have
p ≤ min( – q, ) = . Using the monotonicity of S̃(p,q, t) in p, q on [–, ] again leads us
to

S̃(p,q, t) ≥ S̃(, , t) =
√
sint
t

=
√
sin t
t

cos t > cos t.

On the other hand, from p + q ≥ , that is, p≥ –q, it is acquired that

S̃(p,q, t) ≤ S̃(–q,q, t) = ,

which proves Case  and the sufficiency is complete. �

Now we can give the definition of the two-parameter sine means as follows.

http://www.journalofinequalitiesandapplications.com/content/2013/1/541
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Definition . Let a,b >  and p,q ∈ [–, ] such that  ≤ p + q ≤ , and let S̃(p,q, t) be
defined by (.). Then Sp,q(a,b) defined by (.) is called a two-parameter sine mean of
a and b.

As a family of means, the two-parameter sine means contain many known and new
means.

Example . Clearly, for  < a < b, all the following

S,(a,b) =
√
b – a

arccos(a/b)
= SB(a,b), (.)

S,(a,b) = b exp
(

a
SB(a,b)

– 
)
, (.)

S/,/(a,b) = b exp
(

a + b
SB(a,b)

– 
)
, (.)

S/,/(a,b) = b/
(


a +



b
)/

(.)

are means of a and b, where SB(a,b) is the Schwab-Borchardt mean defined by (.).

To generate more means involving a two-parameter sine function, we need to note a
simple fact: If M, M, M are means of distinct positive numbers x and y with M <M,
thenM(M,M) is also a mean and satisfies inequalities

M <M(M,M) <M.

Applying the fact to Definition ., we can obtain more means involving a two-parameter
sine function, in which, as mentioned in Section , G, A and Q denote the geometric,
arithmetic and quadratic means, respectively, and we have G < A <Q.

Example . Let (a,b)→ (G,A). Then both the following

S,(G,A) = SB(G,A) =
a – b

 arcsin a–b
a+b

= P(a,b),

S,(G,A) = A exp

(
G
P
– 

)
= X(a,b)

aremeans of a and b, where P = P(a,b) is the first Seiffert mean defined by (.) andX(a,b)
is Sándor’s mean defined by (.). Also, they lie between G and A.

Example . Let (a,b)→ (G,Q). Then both the following

S,(G,Q) = SB(G,Q) =
a – b√

 arctan a–b√
ab

:=U(a,b), (.)

S,(G,Q) =Q exp

(
G
U

– 
)

are means of a and b, and between G and Q.

http://www.journalofinequalitiesandapplications.com/content/2013/1/541
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It is interesting that the new mean U(a,b) is somewhat similar to the second Seiffert
mean T(a,b).

Example . Let (a,b)→ (A,Q). Then both the following

S,(A,Q) = SB(A,Q) =
a – b

 arctan a–b
a+b

= T(a,b),

S,(A,Q) =Q exp

(
A
T

– 
)

aremeans of a and b, where T = T(a,b) is the second Seiffert mean defined by (.). More-
over, they are between A and Q.

3.3 Properties of two-parameter sine means
From Propositions ., . and Theorem ., we easily obtain the properties of two-
parameter sine means.

Property . The two-parameter sine means Sp,q(a,b) are symmetric with respect to pa-
rameters p and q.

Property . The two-parameter sine means Sp,q(a,b) are decreasing in p and q.

Property . The two-parameter sine means Sp,q(a,b) are log-concave in (p,q) for
p,q > .

Property . The two-parameter sine means Sp,q(a,b) are homogeneous and symmetric
with respect to a and b.

Now we prove the monotonicity of two-parameter sine means in a and b.

Property . Suppose that  < a < b. Then, for fixed b > , the two-parameter sine means
Sp,q(a,b) are increasing in a on (,b). For fixed a > , they are increasing in b on (a,∞).

Proof (i) Let t = arccos(a/b). Then lnSp,q(a,b) := lnb + ln S̃(p,q, t). Differentiation yields

∂

∂a
lnSp,q(a,b) =

∂

∂t
ln S̃(p,q, t)× ∂t

∂a
= –

√
b – a

∂

∂t
ln S̃(p,q, t),

which, by part two of Proposition ., reveals that ∂(lnSp,q(a,b))/∂a > , that is, Sp,q(a,b)
is increasing in a on (,b).
(ii) Now we prove the monotonicity of Sp,q(a,b) in b. We have lnSp,q(a,b) := lna –

ln cos t + ln S̃(p,q, t). Differentiation leads to

∂

∂b
lnSp,q(a,b) =

(
∂

∂t
ln S̃(p,q, t) +

sin t
cos t

)
× ∂t

∂b

=
a

b
√
b – a

(
H(p,q) + tan t

)
,
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where

H(p,q) :=
h(p) – h(q)

p – q
if p �= q and H(p,p) = h′(p), (.)

here

h(x) = x cot tx if |x| ∈ (, ] and h() =

t

is an even function on [–, ]. Hence, to prove ∂(lnSp,q(a,b))/∂b > , it suffices to prove
that for p,q ∈ [–, ] with  ≤ p + q ≤ , the inequality H(p,q) + tan t >  is valid for t ∈
(,π/). Differentiation again gives

h′′(x) = –t
sin tx – tx cos tx

sin tx
<  for |x| ∈ (, ] by (.) and h′′() = –

t


< ,

h′′′(x) = –
tx
sin tx

(
 + costx


–
sintx
tx

)
<  for x ∈ (, ] by (.).

It follows by Lemmas . and . thatH(p,q) is decreasing in p and q on [–, ] andH(p, –
p) is increasing on [, /) and decreasing on (/, ].
Next we distinguish two cases to prove H(p,q) >  for p,q ∈ [–, ] with ≤ p + q ≤ .
Case : p,q ≥  and p + q ≤ . This case can be divided into two subcases. In the first

subcase of (p,q) ∈ [, ]× [, ] or [, ]× [, ], by the monotonicity of H(p,q) in p, q on
[–, ], we have

H(p,q) + tan t ≥H(, ) + tan t =  cott – cot t + tan t = .

In the second subcase of (p,q) ∈ [, ] and p + q ≤ , it is derived from the monotonic-
ities of H(p,q) and H(p,  – p) that

H(p,q) + tan t ≥H(p,  – p) + tan t ≥H(, ) + tan t = .

Case : p ≥ , q ≤  or p ≤ , q ≥  and p + q ≤ . Because of the symmetry of p and q,
we assume that p ≥ q. Then p ≥ , q ≤ . This together with p,q ∈ [–, ] with p + q ≤ 
gives p ≤min( – q, ) = . Therefore, we have

H(p,q) + tan t ≥H(, ) + tan t =



(
 cott –


t

)
+ tan t =

t – sint
t sint

> ,

which proves the monotonicity of Sp,q(a,b) in b on (a,∞) and the proof is complete. �

Remark . Suppose that  < a < b. Then, by the monotonicity of Sp,q(a,b) in a and b, we
see that

S,(G,A) < S,(G,Q) < S,(A,Q),

which implies that

P(a,b) <U(a,b) < T(a,b). (.)
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Similarly, we have

X(a,b) = A exp

(
G
P
– 

)
<Q exp

(
G
U

– 
)
<Q exp

(
A
T

– 
)
.

4 Two-parameter cosinemeans
4.1 Two-parameter cosine functions
In the same way, the Gini means defined by (.) can be expressed in hyperbolic functions
by letting t = ln

√
b/a:

Gp,q(a,b) =
√
abCh(p,q, t),

where

Ch(p,q, t) =

⎧⎪⎨
⎪⎩
( coshptcoshqt )

/(p–q), p �= q,
et tanhpt , p = q �= ,
, p = q = .

(.)

We callCh(p,q, t) two-parameter hyperbolic cosine functions. Analogously, we can define
the two-parameter cosine functions as follows.

Definition . The function C̃ is called a two-parameter cosine function if C̃ is defined
on [–, ] × (,π/) by

C̃(p,q, t) =

⎧⎪⎨
⎪⎩
( cosptcosqt )

/(p–q), p �= q,
e–t tanpt , p = q �= ,
, p = q = .

(.)

Similar to the proofs of Propositions . and ., we give the following assertionswithout
proofs.

Proposition . Let the two-parameter cosine function C̃ be defined by (.). Then
(i) C̃ is decreasing in p, q on [–, ], and is log-concave in (p,q) for (p,q) ∈ [, ] and

log-convex for (p,q) ∈ [–, ];
(ii) C̃ is decreasing and log-concave in t on (,π/) for p + q > , and is increasing and

log-convex for p + q < .

Proposition . For fixed c ∈ (–, ), let –min(,  – c) ≤ p ≤ min(,  + c) and t ∈
(,π/), and let C̃(p,q, t) be defined by (.). Then the function p 	→ C(p, c – p, t) is de-
creasing on [–, c) and increasing on (c, c+ ] for c ∈ (–, ], and is increasing on [c– , c)
and decreasing on (c, ] for c ∈ (, ).

Propositions . and . also contain some new inequalities for trigonometric functions,
as shown in the following corollary.

Corollary . For t ∈ (,π/), we have

cos
t

> exp

(
–t

 – cos t
sin t

)
>

(
 cos

t

– 

)

> cos t. (.)
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Proof By Propositions . and ., we see that C̃(/,q, t) is decreasing in q on [–, ] and
C̃(p,  – p, t) is decreasing in p on [, /). It is obtained that

C̃
(


, , t

)
> C̃

(


,


, t

)
> C̃

(


,


, t

)
> C̃(, , t),

which by some simplifications yields the desired inequalities. �

4.2 Definition of two-parameter cosine means and examples
Similarly, by Propositions ., ., we can easily present a family of means generated by
(.). Of course, we need to prove the following theorem.

Theorem . Let p,q ∈ [–, ], and let C̃(p,q, t) be defined by (.). Then, for all a,b > ,
Cp,q(a,b) defined by

Cp,q(a,b) =max(a,b)× C̃
(
p,q, arccos

(
min(a,b)
max(a,b)

))
if a �= b and

Cp,q(a,a) = a
(.)

is a mean of a and b if and only if  ≤ p + q ≤ .

Proof We assume that  < a ≤ b and let t = arccos(a/b). Then the desired assertion is
equivalent to the inequalities

cos t ≤ C̃(p,q, t) ≤  (.)

hold for t ∈ (,π/) if and only if  ≤ p + q ≤ , where C̃(p,q, t) is defined by (.).
Necessity. If (.) holds, then we have

lim
t→+

ln C̃(p,q, t) – ln cos t
t

≥  and lim
t→+

ln C̃(p,q, t)
t

≤ .

Using power series extension gives

ln C̃(p,q, t) – ln cos t = –


t(p + q – ) +O

(
t

)
,

ln C̃(p,q, t) = –


t(p + q) +O

(
t

)
.

Hence we have

–


(p + q – ) ≥  and –



(p + q) ≤ ,

which yields ≤ p + q ≤ .
Sufficiency. We show that the condition  ≤ p+q ≤  is sufficient. Clearly,max(p,q) ≥ .

Now we distinguish two cases to prove (.).
Case : p,q ≥  and p + q ≤ . By Proposition . it is obtained that

C̃(p,  – p, t) ≤ C̃(p,q, t) ≤ C̃(, , t) = .
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From Proposition . it is seen that C̃(p,  – p, t) is increasing on [, /] and decreasing
on [/, ], which yields C̃(p,  – p, t) > C̃(, , t) = cos t, which proves Case .
Case : p ≥ , q ≤  or p ≤ , q ≥  and p + q ≤ . We assume that p ≥ q. Then p ≥ ,

q ≤ . Due to p ∈ [, ] and p+q ≤ , we have p ≤min(–q, ) = . Using the monotonicity
of C̃(p,q, t) in p, q on [–, ] gives

C̃(p,q, t) ≥ C̃(, , t) = cos t.

At the same time, since p + q ≥ , that is, p≥ –q, we have

C̃(p,q, t) ≤ C̃(–q,q, t) = ,

which proves Case  and the sufficiency is complete. �

Thus the two-parameter cosine means can be defined as follows.

Definition . Let a,b >  and p,q ∈ [–, ] such that  ≤ p + q ≤ , and let C̃(p,q, t) be
defined by (.). Then Cp,q(a,b) defined by (.) is called a two-parameter cosine mean of
a and b.

The two-parameter cosinemeans similarly includemany newmeans, for example, when
 < a < b,

C/,/(a,b) = b exp
(

a – b
SB(a,b)

)
(.)

is a mean, where SB(a,b) is the Schwab-Borchardt mean defined by (.).
Additionally, let (a,b)→ (G,A), (G,Q), (A,Q). Then all the following

C/,/(G,A) = A exp

(
G –A
P

)
,

C/,/(G,Q) =Q exp

(
G –Q
U

)
,

C/,/(A,Q) =Q exp

(
A –Q
T

)

aremeans of a and b, where P, T are the first and second Seiffert mean defined by (.) and
(.),U is defined by (.), and they lie between G and A,G andQ, A andQ, respectively.

4.3 Properties of two-parameter cosine means
From Propositions ., . and Theorem ., we can deduce the properties of two-
parameter cosine means as follows.

Property . Cp,q(a,b) are symmetric with respect to parameters p and q.

Property . Cp,q(a,b) are decreasing in p and q.

Property . Cp,q(a,b) are log-concave in (p,q) for p,q > .
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Property . Cp,q(a,b) are homogeneous and symmetric with respect to a and b.

Property . Suppose that  < a < b. Then, for fixed b > , the two-parameter cosine
means Cp,q(a,b) are increasing in a on (,b). For fixed a > , they are increasing in b on
(a,∞).

The proof of Property . is similar to that of Property ., which is left to readers.

Remark . Assume that  < a < b. Then employing the monotonicity of Cp,q(a,b) in a
and b, we have

G < A exp

(
G –A
P

)
<Q exp

(
G –Q
U

)
<Q exp

(
A –Q
T

)
<Q.

5 Two-parameter tangent means
5.1 Two-parameter tangent functions
Now we define the two-parameter tangent function and prove its properties, proofs of
which are also the same as those of Propositions . and ..

Definition . The function T̃ is called a two-parameter tangent function if T̃ is defined
on [–, ] × (,π/) by

T̃ (p,q, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

( qp
tanpt
tanqt )

/(p–q), pq(p – q) �= ,
( tanptpt )/p, q = ,p �= ,
( tanqtqt )/q, p = ,q �= ,
exp( t

sinpt –

p ), p = q �= ,

, p = q = .

(.)

Proposition . Let the two-parameter tangent function T̃ be defined by (.). Then
(i) T̃ is increasing in p, q on [–, ], and is log-convex in (p,q) for p,q >  and log-convex

for p,q < ;
(ii) T̃ is increasing and log-convex in t for p + q > , and is decreasing and log-concave

for p + q < .

Proof We have

ln T̃ (p,q, t) =
g(p) – g(q)

p – q
if p �= q and ln T̃ (p,p, t) = g ′(p),

where

g(x) = ln
tan tx
x

if |x| ∈ (, ] and g() = ln t. (.)

(i) To prove part one, by Lemmas . and . it suffices to check that g is convex on [–, ]
and g ′ is convex on [, ]. In fact, differentiation and application of (.) yield

g ′(x) =

{
t

sintx –

x if |x| ∈ (, ],

 if x = 
=

∞∑
n=

(n – )n

(n)!
|Bn|tnxn–. (.)
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Differentiation again gives

g ′′(x) =
∞∑
n=

(n – )(n – )n

(n)!
|Bn|tnxn– >  for x ∈ [–, ],

g ′′′(x) =
∞∑
n=

(n – )(n – )(n – )n

(n)!
|Bn|tnxn–

{
≥  if x ∈ [, ],
≤  if x ∈ [–, ].

Thus part one is proved.
(ii) For proving part two, we have to check that ∂g ′/∂t ≥  and ∂g ′/∂t ≥  for x ∈ [, ].

Differentiating g ′(x) given in (.) for t, we have

∂g ′

∂t
=

∞∑
n=

n(n – )n

(n)!
|Bn|tn–xn– ≥  for x ∈ [, ],

∂g ′

∂t
=

∞∑
n=

n(n – )(n – )n

(n)!
|Bn|tn–xn– ≥  for x ∈ [, ].

In the samemethod as the proof of part two in Proposition ., part two in this proposition
easily follows.
This completes the proof. �

The following proposition is a consequence of Lemma ., the proof of which is also the
same as that of Proposition . and is left to readers.

Proposition . For fixed c ∈ (–, ), let –min(,  – c) ≤ p ≤ min(,  + c) and t ∈
(,π/), and let T̃ (p,q, t) be defined by (.). Then the function p 	→ T̃ (p, c – p, t) is in-
creasing on [–, c) and decreasing on (c,  +c] for c ∈ (–, ], and is decreasing on [c–, c)
and increasing on (c, ] for c ∈ (, ).

As an application of Propositions . and ., we give the following corollary.

Corollary . For t ∈ (,π/), we have

(
sin t
t

cos–
t


)

< exp

(
t
sin t

– 
)
<
(  cos

t
 +


 )



(  cos t +

 )

<
tan t
t

. (.)

Proof Propositions . and . indicate that T̃ (/,q, t) is increasing in q on [–, ] and
T̃ (p,  – p, t) is decreasing in p on [, /) and increasing on (/, ]. It follows that

T̃
(


, , t

)
< T̃

(


,


, t

)
< T̃

(


,


, t

)
< T̃ (, , t),

which, by some simplifications, yields the required inequalities. �

5.2 Definition of two-parameter tangent means and examples
Before giving the definition of two-parameter tangentmeans,we firstly prove the following
statement.
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Theorem . Let p,q ∈ [–, ], and let T̃ (p,q, t) be defined by (.). Then, for all a,b > ,
Tp,q(a,b) defined by

Tp,q(a,b) =min(a,b)× T̃
(
p,q, arccos

(
min(a,b)
max(a,b)

))
if a �= b and

Tp,q(a,a) = a
(.)

is a mean of a and b if  ≤ p + q ≤ .

Proof We assume that  < a≤ b and let t = arccos(a/b). Then Tp,q(a,b) is a mean of a and
b if and only if the inequalities

≤ T̃ (p,q, t) ≤ 
cos t

hold for t ∈ (,π/), where T̃ (p,q, t) is defined by (.). Similarly, it can be divided into
two cases.
Case : p,q ≥  and p + q ≤ . From the monotonicity of Tp,q(a,b) in p, q on [–, ], it is

deduced that

 = T̃ (, , t)≤ T̃ (p,q, t) ≤ T̃ (p,  – p, t).

By Proposition . we can see that T̃ (p,  – p, t) is decreasing on [, /] and increasing on
[/, ], which yields

T̃ (p,  – p, t) < T̃ (, , t) =
tan t
t

=
sin t
t


cos t

<


cos t
,

that is, the desired result.
Case : p ≥ , q ≤  or p ≤ , q ≥  and p + q ≤ . We assume that p ≥ q. Analogously,

there must be p ≤ min( – q, ) = . Using the monotonicity of T̃ (p,q, t) in p, q on [–, ]
gives

T̃ (p,q, t) ≤ T̃ (, , t) =
tan t
t

<


cos t
.

Noticing that p + q ≥ , that is, p≥ –q, we have

T̃ (p,q, t) ≥ T̃ (–q,q, t) = ,

which proves Case  and the proof is finished. �

We are now in a position to define the two-parameter tangent means by (.).

Definition . Let a,b >  and p,q ∈ [–, ] such that  ≤ p + q ≤ , and let T̃ (p,q, t) be
defined by (.). Then Tp,q(a,b) defined by (.) is called a two-parameter tangent mean
of a and b.

Here are some examples of two-parameter tangent means.
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Example . For  < a < b, both the following

T,(a,b) =
√
b – a

arccos(a/b)
= SB(a,b), (.)

T/,/(a,b) = a exp
(

b
SB(a,b)

– 
)

(.)

are means of a and b, where SB(a,b) is the Schwab-Borchardt mean defined by (.).

Example . Let (a,b)→ (G,A), (G,Q), (A,Q). Then all the following

T/,/(G,A) =G exp

(
A
P

– 
)
,

T/,/(G,Q) =G exp

(
Q
U

– 
)
,

T/,/(A,Q) = A exp

(
Q
T

– 
)

aremeans of a and b, where P, T are the first and second Seiffert mean defined by (.) and
(.),U is defined by (.). Also, they lie betweenG andA,G andQ,A andQ, respectively.

5.3 Properties of two-parameter tangent means
From Propositions . and . and Theorem ., we see that the properties of two-
parameter tangent means are similar to those of sine ones.

Property . Tp,q(a,b) is symmetric with respect to parameters p and q.

Property . Tp,q(a,b) is increasing in p and q.

Property . Tp,q(a,b) is log-convex in (p,q) for p,q > .

Property . Tp,q(a,b) is homogeneous and symmetric with respect to a and b.

Now we prove the monotonicity of two-parameter trigonometric means in a and b.

Property . Let  < a < b. Then, for fixed a > , the two-parameter tangent mean
Tp,q(a,b) is increasing in b on (a,∞). For fixed b > , the two-parameter tangent mean
Tp,q(a,b) is increasing in a on (,b).

Proof (i) Let t = arccos(a/b). Then lnTp,q(a,b) := lna + ln T̃ (p,q, t). Differentiation yields

∂

∂b
lnTp,q(a,b) =

∂

∂t
ln T̃ (p,q, t)× ∂t

∂b
=

a√
b – a

∂

∂t
ln T̃ (p,q, t).

Application of Proposition . yields ∂(lnTp,q(a,b))/∂b > , which proves part one.
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(ii) Now we prove the monotonicity of Tp,q(a,b) in a. Since lnTp,q(a,b) can be written as
lnTp,q(a,b) = lnb + ln T̃ (p,q, t) + ln cos t, we have

∂

∂a
lnTp,q(a,b) =

(
∂

∂t
ln T̃ (p,q, t) –

sin t
cos t

)
× ∂t

∂a

:= –
√

b – a
(
J(p,q) – tan t

)
,

where

J(p,q) =
j(p) – j(q)
p – q

if p �= q and J(p,p) = j′(p), (.)

here

j(x) =
x

sinxt
if |x| ∈ (, ] and j() =


t

is even on [–, ]. Thus, to prove ∂(lnTp,q(a,b))/∂a > , it suffices to prove that for p,q ∈
[–, ] with  ≤ p + q ≤ , the inequality J(p,q) – tan t <  holds for t ∈ (,π/).
Utilizing (.) and differentiating again give

j(x) =

t
+

∞∑
n=

(n – )n

(n)!
|Bn|tn–xn,

j′′(x) =
∞∑
n=

n(n – )(n – )n

(n)!
|Bn|tn–xn– >  for x ∈ [–, ],

j′′′(x) =
∞∑
n=

n(n – )(n – )(n – )n

(n)!
|Bn|tn–xn– ≥  for x ∈ [, ].

By Lemmas . and . we see that J(p,q) is increasing in p and q on [–, ], and J(p,  – p)
is decreasing on [, /) and increasing on (/, ].
Now we distinguish two cases to prove J(p,q) – tan t <  for p,q ∈ [–, ] with

≤ p + q ≤ .
Case : p,q ≥  and p + q ≤ . By the monotonicity of J(p,q) in p, q on [–, ] and of

J(p,  – p) in p on [, ], we have

J(p,q) – tan t ≤ J(p,  – p) – tan t ≤ J(, ) – tan t

=


sint
–

t
–

sin t
cos t

=
cos t
sin t

–

t
< .

Case : p ≥ , q ≤  or p ≤ , q ≥  and p + q ≤ . We assume that p ≥ q. Then p ≥ ,
q ≤  and p ≤min( – q, ) = . Therefore, we get

J(p,q) – tan t ≤ J(, ) – tan t < ,

which proves the monotonicity of Tp,q(a,b) in a on (,b). �
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Remark . Utilizing the monotonicity property, we have

T/,/(G,A) < T/,/(G,Q) < T/,/(A,Q),

which indicates that

G exp

(
A
P

– 
)
<G exp

(
Q
U

– 
)
< A exp

(
Q
T

– 
)
.

Additionally, Tp,q(a,b) has a unique property which shows the relation among two-
parameter sine, cosine and tangent means.

Property . For  < a < b, if  ≤ p + q ≤ , then Tp,q(a,b) = aSp,q(a,b)/Cp,q(a,b). In par-
ticular, T,(a,b) = S,(a,b) = SB(a,b).

6 Inequalities for two-parameter trigonometric means
As shown in the previous sections-, by using Propositions .-. we can establish a series
of new inequalities for trigonometric functions and reprove some known ones. However,
we aremore interested in how to establish new inequalities for two-parameter trigonomet-
ricmeans from these ones derived by using Propositions .-., as obtaining an inequality
for bivariate mans from the corresponding one for hyperbolic functions (see [–, ]).
In fact, Neuman also offered some successful examples (see []).
The inequalities involving Schwab-Borchardt mean SB are mainly due to Neuman and

Sándor (see [–]), and Witkowski [] also has some contributions to them. More of-
ten, however, inequalities for means constructed by trigonometric functions seem to be
related to the first and second Seiffert means, see [, , –]. In this section, we estab-
lish some new inequalities for two-parameter trigonometric means by using their mono-
tonicity and log-convexity. Our steps are as follows.
Step : Obtaining an inequality (I) for trigonometric functions sin t, cos t and tan t by

using the monotonicity and log-convexity of two-parameter trigonometric functions and
simplifying them.
Step : For  < a < b, letting t = arccos(a/b) in inequalities (I) obtained in Step  and

next multiplying both sides by b or a and simplifying yield an inequality (I) for means
involving trigonometric functions.
Step : Let m =m(a,b) and M =M(a,b) be two means of a and b with m(a,b) <M(a,b)

for all a,b > . Making a change of variables a→m(a,b) and b →M(a,b) leads to another
inequality (I) for means involving trigonometric functions.
Now we illustrate these steps.

Example .
Step : For t ∈ (,π/), we have (.).
Step : For  < a < b, letting t = arccos(a/b) and next multiplying each side of (.) by b

and simplifying yield

√
aSB(a,b) <

a + b


< bea/SB(a,b)– <
a + b


< SB(a,b) < b/
(
a + b


)/

.
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Step : With (a,b)→ (G,A) yields

√
GP <

G +A


< AeG/P– <
A +G


< P < A/
(
A +G


)/

.

With (a,b)→ (G,Q) yields

√
GU <

G +Q


<QeG/U– <
G +Q


<U <Q/
(
G +Q


)/

.

With (a,b)→ (A,Q) yields

√
AT <

A +Q


<QeA/T– <
A +Q


< T <Q/
(
A +Q


)/

.

Example .
Step : For t ∈ (,π/), from (.) it is derived that

cos/ t <
(


cos t +




)/

<
sin t
t

<
(


cos

t

+



)

< et(+cos t)/ sin t– <
(


+


cos

t


)

. (.)

Step : For  < a < b, letting t = arccos(a/b) and next multiplying each side of (.) by b
and simplifying yield

b/a/ < b/
(


a +



b
)/

< SB(a,b)

<
(



√
a + b


+
√
b


)

< be(a+b)/SB(a,b)–. (.)

Step : With (a,b)→ (G,A) yields

A/G/ < A/
(


G +



A

)/

< P <
(



√
A +G


+


√
A

)

< Ae(A+G)/P–.

With (a,b)→ (G,Q) yields

Q/G/ <Q/
(


G +



Q

)/

<U <
(



√
G +Q


+


√
Q

)

<Qe(G+Q)/U–.

With (a,b)→ (A,Q) yields

Q/A/ <Q/
(


A +



Q

)/

< T <
(



√
A +Q


+


√
Q

)

<Qe(A+Q)/T–.

Example .
Step : For t ∈ (,π/), we have (.).
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Step : For  < a < b, letting t = arccos(a/b) and next multiplying each side of (.) by b
and simplifying yield

a + b


> be(a–b)/SB(a,b) >
(

√
a + b


–
√
b
)

> a. (.)

Step : With (a,b)→ (G,A) yields

A +G


> Ae(G–A)/P >
(

√
A +G


–
√
A

)

>G. (.)

With (a,b)→ (G,Q), (A,Q) can yield corresponding inequalities.

Remark . From inequalities (.) it is derived that

L(a,b) < SB(a,b) < L
(
a + b


,b
)

(.)

hold for  < a < b, where L(x, y) is the logarithmic mean of positive numbers x and y. The
first inequality of (.) follows from the relation between the second and fourth terms,
that is, b exp((a–b)/SB(a,b)) > a, while the second one is obtained by the first one in (.).

Example .
Step : For t ∈ (,π/), we have (.).
Step : For  < a < b, letting t = arccos(a/b) and next multiplying each side of (.) by a

and simplifying give

a
(
SB(a,b)

a+b


)

< aeb/SB(a,b)– < a
( 

√
a+b
 + 



√
b)

( a +

b)

< SB(a,b). (.)

Step : With (a,b)→ (G,A) yields

G
(

P
A +G

)

<GeA/P– <G
( 

√
A+G
 + 



√
A)

( G + 
A)

< P. (.)

With (a,b)→ (G,Q), (A,Q), we can derive corresponding inequalities.

Remark. Applying ourmethod in establishing inequalities formeans to certain known
ones involving trigonometric functions, we can obtain corresponding inequalities which
are possibly related tomeans. For example, theWilker inequality states that for t ∈ (,π/),

(
sin t
t

)

+
tan t
t

> .

If for  < a < b, put t = arccos(a/b), then we have

(
SB(a,b)

b

)

+
SB(a,b)

a
> .
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In a similar way, the following inequalities

(
 + cos t



)/

<
sin t
t

<
 + cos t


, t ∈ (,π/) (.)

can be changed into

b/
(
a + b


)/

< SB(a,b) <
b + a


,

by letting t = arccos(a/b) for  < a < b, where the left inequality in (.) is due to Neuman
and Sándor [, (.)] (also see [–]) and the right one is known as Cusa’s inequality.

Remark . The third inequality in (.) is clearly superior to Cusa’s inequality (the right
one of (.)) because

(


cos

t

+



)

<


cos

t

+


=
 + cos t


.

While the second one in (.) is weaker than the first one in (.) since

(


cos t +




)

–
(
 + cos t



)

= –



(
 cos t +  cos t + 

)
(cos t – ) < .

7 Families of two-parameter hyperbolic means
After three families of two-parameter trigonometric means have been successfully con-
structed, we are encouraged to establish further two-parameter means of a hyperbolic
version. They are included in the following theorems.

Theorem . Let p,q ∈ R, and let Sh(p,q, t) be defined by (.). Then, for all a,b > ,
Shp,q(b,a) defined by

Shp,q(b,a) =min(a,b)× Sh
(
p,q, arccosh

(
max(a,b)
min(a,b)

))
if a �= b and

Shp,q(a,a) = a
(.)

is a mean of a and b if and only if

p + q ≤  and L(p,q) ≤ 
ln , if p,q > ,

 ≤ p + q ≤ , otherwise.

Theorem . Let p,q ∈ R, and let Ch(p,q, t) be defined by (.). Then, for all a,b > ,
Chp,q(b,a) defined by

Chp,q(b,a) =min(a,b)×Ch
(
p,q, arccosh

(
max(a,b)
min(a,b)

))
if a �= b and

Chp,q(a,a) = a
(.)

is a mean of a and b if and only if  ≤ p + q ≤ .
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To prove the above theorems, it suffices to use comparison theorems given in [, ] by
Páles because both Shp,q(b,a) and Chp,q(b,a) are means if and only if

Sh(, , t) = ≤ Sh(p,q, t) ≤ cosh t = Sh(, , t),

Ch(, , t) = ≤ Ch(p,q, t) ≤ cosh t = Ch(, , t),

respectively. Here we omit further details.
The monotonicities and log-convexities of Shp,q(b,a) and of Chp,q(b,a) in parameters

p and q are clearly the same as those of Sh(p,q, t) and of Ch(p,q, t), which are in turn
equivalent to those of Stolarsky means defined by (.) and of Gini means defined by (.),
respectively. These properties can be found in [, , –, ].
The above theorems indicate that for  < a < b, all the following

Sh,(b,a) = a
sinh t
t

=
√
b – a

arccosh(b/a)
= SB(b,a),

Sh,(b,a) = a exp(t coth t – ) = a exp
(

b
SB(b,a)

– 
)
,

Ch/,/(b,a) = a exp
(
t tanh

t


)
= a exp

(
t
cosh t – 
sinh t

)
= a exp

(
b – a

SB(b,a)

)

are means of a and b, where SB(b,a) is the Schwab-Borchardt mean defined by (.).
It is easy to verify that

Sh,(A,G) = SB(A,G) =
b – a

lnb – lna
= L(b,a),

Sh,(A,G) =G exp

(
A
L
– 

)
= I(b,a),

Ch/,/(A,G) =G exp

(
A –G
L

)
= Z/(b,a),

where L(b,a) and I(b,a) are logarithmic and identric means, respectively, while Zp(b,a) =
Z/p(ap,bp) is the p-order power-exponential mean. Also, all the following

Sh,(Q,G) = SB(Q,G) =
a – b√

 arcsinh a–b√
ab

:= V (a,b),

Sh,(Q,G) =G exp

(
Q
V

– 
)
,

Ch/,/(Q,G) =G exp

(
Q –G
V

)

are means lying in G and Q. Likewise, all the following

Sh,(Q,A) = SB(Q,A) =
a – b

 arcsinh a–b
a+b

=NS(a,b),

Sh,(Q,A) = A exp

(
Q
NS

– 
)
,
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Ch/,/(Q,A) = A exp

(
Q –A
NS

)

are also means between A and Q, where NS(a,b) is the Neuman-Sándor mean defined by
(.).
It should be noted that the new mean V (a,b) is similar to NS(a,b).
Similar to (.), for p,q ∈ R, we can define the two-parameter hyperbolic tangent func-

tion as follows:

Th(p,q, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

( qp
tanhpt
tanhqt )

/(p–q), pq(p – q) �= ,
( tanhptpt )/p, q = ,p �= ,
( tanhqtqt )/q, p = ,q �= ,
exp( t

sinhpt –

p ), p = q �= ,

, p = q = .

(.)

By some verifications, however, Th(p,q, t) does not have good properties like monotonic-
ity in parameters p and q, and therefore, we fail to define a family of two-parameter
hyperbolic tangent means. However, for certain p, q and  < a < b, it is showed that
bTh(p,q, arccosh(b/a)) is a mean of a and b, for example,

b× Th
(
, , arccosh(b/a)

)
= SB(b,a)

is clearly a mean of a and b. It is also proved that

b× Th
(


,


, arccosh(b/a)

)

is also a mean of a and b. For this reason, we pose an open problem as the end of this
paper.

Problem . Let  < a < b, and let Th(p,q, t) be defined by (.). Finding p, q such that
b× Th(p,q, arccosh(b/a)) is a mean of a and b.
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27. Mitrinović, DS: Analytic Inequalities. Springer, Berlin (1970)
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