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Abstract
In this paper, we investigate the approximate controllability for nonlinear evolution
equations with monotone operators and nonlinear controllers according to
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1 Introduction
In this paper, we deal with the approximate controllability for the semilinear equation in
a Hilbert space H as follows:⎧⎨⎩x′(t) +Ax(t) + f (t,x(t),u(t)) + Bu(t) = ,  < t ≤ T ,

x() = x.
(.)

In (.), the principal operator –A generates an analytic semigroup S(t). LetU be a Hilbert
space of control variables, and let B be a linear (or nonlinear) operator fromU toH , which
is called a controller.
First, we consider the following initial value problem of a semilinear equation:⎧⎨⎩x′(t) +Ax(t) + f (t,x(t)) = h(t),  < t ≤ T ,

x() = x.
(.)

If A : D(A) ⊂ H → H is an unbounded operator, Di Blasio et al. [] proved L-regularity
for a retarded linear system in Hilbert spaces, and Jeong [] (also see []) considered the
control problem for retarded linear systems with L-valued controller and more general
Lipschitz continuity of nonlinear terms.
For the theory of monotone operators, there are many literature works; for example, see

Lions [], Stampacchia [], Browder [], and the references cited therein. Kenmochi []
derived new results on monotone operator equations, and Ouchi [] proved the analytic-
ity of solutions of semilinear parabolic differential equations with monotone nonlinearity.
For the existence of solutions for a class of nonlinear evolution equations with monotone
perturbations, one can refer to [–].We refer to Pascali and Sburlan [], Morosanu []
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to see the applications of nonlinear mapping of monotone type and nonlinear evolution
equations. The classical solutions of (.) were obtained by Kato [] under the mono-
tonicity condition on the nonlinear term f as an operator from [,T]×H to H .
In the first part of this note, we apply results of [] to find L-regularity of solutions in

the wider sense of (.) under the more general monotonicity of a nonlinear operator f
from R×V to V ∗, which is related to the results of Tanabe [, Theorem ..].
Next, we extend and develop control problems on this topic. In recent years, as for the

controllability for semilinear differential equations with Lipschitz continuity of a nonlin-
ear operator f , Naito [] and [–] proved the approximate controllability under the
range conditions of the controller B. However, we can find few articles which extend the
known general controllability problems to nonlinear evolution equation (.) with mono-
tone operators and nonlinear controllers.
In this paper, based on the regularity for solutions of equation (.), we obtain the ap-

proximate controllability for nonlinear evolution equation (.) with monotone operators
and nonlinear controllers.
The paper is organized as follows. In Section , we explain several notations of this paper

and state results about L-regularity for linear equations in the sense of [, , ]. In
Section , we give the regularity for nonlinear equation (.). In Section , we obtain the
approximate controllability for nonlinear evolution equation (.) with hemicontinuous
monotone operators by using the theory of monotone operators. In the end, an example
is provided to illustrate the application of the obtained results.

2 Preliminaries
If H is identified with its dual space, we may write V ⊂ H ⊂ V ∗ densely and the corre-
sponding injections are continuous. The norm on V ,H and V ∗ will be denoted by ‖ · ‖, | · |
and ‖ · ‖∗, respectively. The duality pairing between the element v of V ∗ and the element
v of V is denoted by (v, v), which is the ordinary inner product in H if v, v ∈H .
For l ∈ V ∗, we denote (l, v) by the value l(v) of l at v ∈ V . The norm of l as element of V ∗

is given by

‖l‖∗ = sup
v∈V

|(l, v)|
‖v‖ .

Therefore, we assume that V has a stronger topology than H and, for brevity, we may
regard that

‖u‖∗ ≤ |u| ≤ ‖u‖, ∀u ∈ V . (.)

Let a(·, ·) be a bounded sesquilinear form defined in V × V and satisfying Gårding’s
inequality

Rea(u,u) ≥ ω‖u‖ –ω|u|, (.)

whereω >  andω is a real number. LetA be an operator associatedwith this sesquilinear
form:

(Au, v) = a(u, v), u, v ∈ V .
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Then –A is a bounded linear operator from V to V ∗ by the Lax-Milgram theorem. The
realization of A in H , which is the restriction of A to

D(A) = {u ∈ V : Au ∈ H},

is also denoted by A. It is well known that A is positive definite and self-adjoint and gen-
erates an analytic semigroup S(t) in both H and V ∗. From the following inequalities:

ω‖u‖ ≤ Rea(u,u) +ω|u| ≤ C|Au||u| +ω|u| ≤max{C,ω}‖u‖D(A)|u|,

where

‖u‖D(A) =
(|Au| + |u|)/

is the graph norm of D(A), it follows that there exists a constant C >  such that

‖u‖ ≤ C‖u‖/D(A)|u|/. (.)

Thus we have the following sequence:

D(A) ⊂ V ⊂H ⊂ V ∗ ⊂D(A)∗, (.)

where each space is dense in the next one, which is continuous injection.

Lemma . With notations (.), (.), we have

(
V ,V ∗)

/, =H ,(
D(A),H

)
/, = V ,

where (V ,V ∗)/, denotes the real interpolation space between V and V ∗ (Section . of
[] or []).

If X is a Banach space, L(,T ;X) is the collection of all stronglymeasurable square inte-
grable functions from (,T) into X, andW ,(,T ;X) is the set of all absolutely continuous
functions on [,T] such that their derivative belong to L(,T ;X). C([,T];X) will denote
the set of all continuous functions from [,T] into X with the supremum norm. If X and
Y are two Banach spaces, L(X,Y ) is the collection of all bounded linear operators from X
into Y , and L(X,X) is simply written as L(X). Here, we note that by using interpolation
theory, we have

L(,T ;V )∩W ,(,T ;V ∗) ⊂ C
(
[,T];H

)
. (.)

First, we consider the following linear system:⎧⎨⎩x′(t) +Ax(t) = k(t),

x() = x.
(.)
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By virtue of Theorem . of [] (or Theorem . of [, ]), we have the following result on
the corresponding linear equation of (.).

Lemma . () For x ∈ V = (D(A),H)/, (see Lemma .) and k ∈ L(,T ;H), T > ,
there exists a unique solution x of (.) belonging to

L
(
,T ;D(A)

) ∩W ,(,T ;H) ⊂ C
(
[,T];V

)
and satisfying

‖x‖L(,T ;D(A))∩W ,(,T ;H) ≤ C
(‖x‖ + ‖k‖L(,T ;H)

)
, (.)

where C is a constant depending on T .
() Let x ∈ H and k ∈ L(,T ;V ∗), T > . Then there exists a unique solution x of (.)

belonging to

L(,T ;V )∩W ,(,T ;V ∗) ⊂ C
(
[,T];H

)
and satisfying

‖x‖L(,T ;V )∩W ,(,T ;V∗) ≤ C
(|x| + ‖k‖L(,T ;V∗)

)
, (.)

where C is a constant depending on T .

Throughout this paper, strong convergence is denoted by ‘→’ and weak convergence by
‘⇀’.

Definition . Let X and Y be Banach spaces and L be a mapping from X into Y . The
domain D(L) of L is assumed to be convex. L is called hemicontinuous if L(( – λ)x + λx)
for any x,x ∈D(L) is continuous in  ≤ λ ≤  in weak topology of Y .

The linear operator is obviously hemicontinuous.

Definition . Let X and Y be Banach spaces and L be a single-valued mapping from X
into Y . L is called demicontinuous if xn ∈D(L) and xn → x ∈D(L) imply that Lxn ⇀ Lx.

Definition . Let L be a mapping from a Banach space X into its conjugate space X∗.
L is said to be pseudo-monotone if the following condition is satisfied. If xi is a directed
family of points, contained in D(L), which converges weakly to an element x of D(L) and
if lim sup(Lxi,xi – x) ≤ , then lim inf(Lxi,xi – y) ≥ (Lx, y) for all y ∈D(L).

Definition . Let L be a generally multi-valued mapping from a Hilbert space X into
itself. If

(x̂ – ŷ,x – y) ≥  (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/534
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for all x, y ∈D(L), x̂ ∈ Lx and ŷ ∈ Ly, then L is called a monotone operator. Sometimes L is
also called a monotone operator if

(x̂ – ŷ,x – y) ≤ 

holds instead of (.).

Definition . A real-valued continuous function j is called a gauge function defined on
[,∞) if it is strictly monotone increasing and satisfies j() =  and limr→∞ j(r) = ∞.
Let X be a Banach space and X∗ its conjugate. For any x ∈ X, we set

F (x) =
{
x∗ ∈ X∗ :

(
x∗,x

)
=

∥∥x∗∥∥∗‖x‖,
∥∥x∗∥∥∗ = j

(‖x‖)}.
The multi-valued operator F : X → X∗ is called the duality mapping of X with a gauge
function j.

Let us denote by Λ the operator determined by an inner product ((·, ·)) on V : (Λx, y) =
((x, y)). Then it is immediate thatΛ is a dualitymapping fromV intoV ∗ with a gauge func-
tion j(r) = r. It is also known that the duality mapping is monotone and hemicontinuous,
and hence it is pseudo-monotone.

Lemma . We have briefly explained the theory of monotone operators (see [, Sec-
tion .]).
() In Definition . above, lim(Lxi,xi – x) =  is seen by taking x = y.
() Hemicontinuous monotone mappings from a Banach space X into X∗ are

pseudo-monotone.
() Let X be a reflexive Banach space, and let both X and X∗ be strictly convex. Further,

letM ⊂ X ×X∗ be monotone and Λ be a duality mapping from X into X∗. If
R(M +Λ) = X∗, thenM is maximal monotone.

() Let X be a reflexive Banach space and L be a closed monotone linear operator from X
and X∗. If the dual operator L∗ is monotone, then L is maximal monotone.

() Let X be a reflexive Banach space,M ⊂ X ×X∗ be maximal monotone and L be a
pseudo-monotone bounded mapping from D(L) = X into X∗. If there exists
[x, f] ∈M such that

lim‖x‖→∞(Lx + f,x – x)/‖x‖ =∞,

then R(M + L) = X∗, that is, for every f ∈ X∗, (M + L)x  f has a solution x ∈D(M).

The following inequality is referred to as Young’s inequality.

Lemma . (Young’s inequality) Let a > , b >  and /p + /q = , where  ≤ p < ∞ and
 < q < ∞. Then, for every λ > , one has

ab ≤ λpap

p
+

bq

λqq
.
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Lemma . Let H be a Hilbert space and V be a reflexive Banach space. Suppose that V is
a dense subspace of H and that V has a stronger topology than H . Therefore, V ⊂H ⊂ V ∗.
Let T >  and X = Lp(,T ;V ) with  ≤ p < ∞. Then the operator L defined by⎧⎨⎩D(L) = {x ∈ X : x′ ∈ X∗,x() = },

Lx = x′ for each x ∈D(L),

is maximal monotone linear.

Proof Since X∗ = Lq(,T ;V ∗) with q = p/(p – ), noting that x′(t) ∈ V ∗ and by Young’s
inequality, we have

∣∣x(t)∣∣ = ∫ t


(d/ds)

∣∣x(s)∣∣ ds = ∫ t


Re

(
x′(s),x(s)

)
ds

≤ q
∫ t



∥∥x′(s)
∥∥q/qds +

∫ t



∥∥x(s)∥∥p/pds,

so that x belongs to C([,T];H). Therefore, we find that x() is well defined as an element
of H . It is easily shown that L is a closed linear operator from X into X∗ and D(L) is dense
in X. Further, since

(Lx,x) =
(
x′,x

)
=

∣∣x(T)∣∣/ ≥ ,

we know that L is monotone. It is also easily seen that the adjoint operator of L is given by⎧⎨⎩D(L∗) = {x ∈ X : x′ ∈ X∗,x(T) = },
L∗x = –x′ for each x ∈D(L∗).

Hence, L∗ is also monotone. Therefore, from () of Lemma ., it is concluded that L is
maximal monotone linear. �

3 Nonlinear equations
We consider the following initial value problem of a semilinear equation:⎧⎨⎩x′(t) +Ax(t) + f (t,x(t)) = h(t),  < t ≤ T ,

x() = x.
(.)

The following result is due to Kato [] (or [, Theorem ..]).

Lemma . Let f be a demicontinuous bounded mapping from [,T]×H into H . Assume
that f (t, ·) is monotone for each t ∈ [,T]:

(
f (t,x) – f (t, y),x – y

)
> .

Assume further that –A is a generator of a contraction semigroup S(t) (t ≥ ).Then, for any
(x,h) ∈H ×C([,T];H), there exists a solution x ∈ C([,T];H) of the integral equation

x(t) = S(t)x –
∫ t


S(t – s)

{
f
(
s,x(s)

)
– h(s)

}
ds,  ≤ t ≤ T ,

http://www.journalofinequalitiesandapplications.com/content/2013/1/534
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corresponding to (.), and it is unique. Let x and x be the solutions with initial values x
and x, respectively. Then the estimate

∣∣x(t) – x(t)
∣∣ ≤ |x – x|

holds on  ≤ t ≤ T . Hence, the mapping which carries the initial value x to the solution x
is a continuous mapping from H into C([,T];H).

Next, we apply Lemma . to find a solution in the wider sense of (.) under some-
what different assumptions. Concerning the nonlinear mapping f , assume the following
hypothesis.

Assumption (F) The mapping f is demicontinuous bounded from [,T] × H into V ∗,
and f (t, ·) for each t is monotone as a mapping from V into V ∗.

The following theorem is a part of Theorem .. due to Tanabe [].

Theorem . Let Assumption (F) be satisfied, and let the assumptions on the principal
operator A stated in Section  be satisfied.Assume that x is an arbitrary element of H and
h ∈ L(,T ;V ∗). Then there exists a solution x ∈ L(,T ;V ), satisfying x′ ∈ L(,T ;V ∗), of⎧⎨⎩x′(t) +Ax(t) + f (t,x(t)) = h(t),  < t ≤ T ,

x() = x
(.)

and it is unique.Moreover, there exists a constant C such that

‖x‖L(,T ;V )∩W ,(,T ;V∗) ≤ C
(|x| + ‖h‖L(,T ;V∗)

)
,

where C is a constant depending on T and the mapping

H × L
(
,T ;V ∗)  (x,h) �→ x ∈ L(,T ;V )∩W ,(,T ;V ∗) ⊂ C

(
[,T];H

)
is Lipschitz continuous.

Proof As far as the existence of the solution is concerned, we may put x = . By
Lemma ., the operator defined by⎧⎨⎩D(L) = {x ∈ L(,T ;V ) : x′ ∈ L(,T ;V ∗),x() = },

Lx = x′, ∀x ∈D(L),

is a maximal monotone linear operator from L(,T ;V ) into L(,T ;V ∗). Let us write
(Ax)(t) = Ax(t) and (Fx)(t) = f (t,x(t)) for each x ∈ L(,T ;V ). Then both A and F are
monotone operators from L(,T ;V ) into L(,T ;V ∗) andD(L)⊂D(F). Sincewe assumed
x = , equation (.) is equivalent to

(L + F +A)x = h.

http://www.journalofinequalitiesandapplications.com/content/2013/1/534
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Note that L + F is monotone, if it is shown to be maximal monotone, assumption () of
Lemma . is satisfied with M = L + F , L = A and x = . Then we have R(L + F + A) =
L(,T ;V ∗), which implies the existence of the solution. Thus, from now on, we prove
the maximal monotonicity of L + F . Since Λ determined by an inner product ((·, ·)) on
V is a duality mapping from V into V ∗, as seen under Definition ., to see the maximal
monotonicity of L+F , on account of () of Lemma ., it is enough to verify that R(L+F +
Λ) = L(,T ;V ∗).
Let h be an arbitrary element of L(,T ;V ∗), hn ∈ C([,T];H) and hn → h in L(,T ;V ∗).

Since Λ is positive definite and self-adjoint in both H and V ∗, the domain Λ/ coincides
with V andH , respectively. Hence, In = (I + n–Λ/)– is a contraction operator in bothH
and V , and it converges strongly to I as n → ∞. It is also easy to see that (Inf , g) = (f , Ing)
holds for f ∈ V ∗ and g ∈ H . Let us define fn(t,x) = Inf (t,x). Then the mapping fn satisfies
the assumption for f in Lemma .. Hence, Lemma . can be applied to the initial value
problem⎧⎨⎩x′

n(t) +Λxn(t) + fn(t,xn(t)) – hn(t) = ,

x() = .
(.)

Let us denote the semigroup generated by Λ by T(t). Then it ensures the existence of a
solution x ∈ C([,T];H) of the equation

xn(t) +
∫ t


T(t – s)

(
fn

(
s,xn(s)

)
– hn(s)

)
ds = . (.)

Multiplying by xn(t) on (.) and integrating over [, t], we have



∣∣xn(t)∣∣ + ∫ t



∥∥xn(s)∥∥ ds =
∫ t



(
hn(s) – fn

(
s,xn(s)

)
,xn(s)

)
ds. (.)

By using Young’s inequality and the monotonicity of f , the following holds:



∣∣xn(t)∣∣ + ∫ t



∥∥xn(s)∥∥ ds

= –
∫ t



(
fn

(
s,xn(s)

)
– fn(s, ),xn(s)

)
ds

–
∫ t



(
fn(s, ),xn(s)

)
ds +

∫ t



(
hn(s),xn(s)

)
ds

≤ 


∫ t



∥∥hn(s)∥∥
∗ ds +




∫ t



∥∥fn(s, )∥∥
∗ ds +

∫ t



∥∥xn(s)∥∥ ds.

So, we obtain

∣∣xn(t)∣∣ + ∫ t



∥∥xn(s)∥∥ ds ≤ C

{∫ t



∥∥hn(s)∥∥
∗ ds +

∫ t



∥∥fn(s, )∥∥
∗ ds

}
,

where C is a constant, so that {xn} is bounded in C([,T];H) ∩ L(,T ;V ). Therefore,
{fn(xn)} is bounded in L(,T ;V ∗). By replacing them by their subsequence, we may as-
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sume xn ⇀ x in L(,T ;V ). By letting n→ ∞ in (.), we have

x(t) +
∫ t


T(t – s)

(
f
(
s,x(s)

)
– h(s)

)
ds = .

Since

x′
n(t) – x′(t) +Λ

(
xn(t) – x(t)

)
=

(
hn(t) – h(t)

)
–

(
fn

(
t,xn(t)

)
– f

(
t,x(t)

))
=

(
hn(t) – h(t)

)
–

(
fn

(
t,xn(t)

)
– fn

(
t,x(t)

))
–

(
fn

(
t,x(t)

)
– f

(
t,x(t)

))
,

from multiplying by xn(t) – x(t) and the monotonicity of fn, it follows that



∣∣xn(t) – x(t)

∣∣ + ∫ t



∥∥xn(s) – x(s)
∥∥ ds

≤ 


∫ t



∥∥hn(s) – h(s)
∥∥

∗ ds

+



∫ t



∥∥fn(s,x(s)) – f
(
s,x(s)

)∥∥
∗ ds +

∫ t



∥∥xn(s) – x(s)
∥∥ ds.

Thus, noting that hn and fn(t,x) converge strongly to h and f (t,x) in L(,T ;V ∗), respec-
tively, we see that x is a solution of the equation (L + F + Λ)x = h. Finally, to prove the
uniqueness of the solution, suppose that x and x are solutions with initial conditions x
and x and forcing terms h and h, respectively. Then it is easy to see that there exists
C >  such that

∣∣x(t) – x(t)
∣∣ + ∫ t



∥∥x(s) – x(s)
∥∥ ds≤ C

{
|x – x| +

∫ t



∥∥h(s) – h(s)
∥∥

∗ ds
}
.

This completes the proof of Theorem .. �

Remark . In a similar way to Theorem ., we also obtain the existence of solutions of
(.) in the case where f is a demicontinuous bounded mapping from [,T] × V into H .
Moreover, assume that f (t, ·) for each t is monotone as a mapping from D(A) into H and
x ∈ V , h ∈ L(,T ;H), then there exists a unique solution x of (.) such that

x ∈ L
(
,T ;D(A)

) ∩W ,(,T ;H) ⊂ C
(
[,T];V

)
.

Moreover, there exists a constant C such that

‖x‖L(,T ;D(A))∩W ,(,T ;H) ≤ C
(‖x‖ + ‖h‖L(,T ;H)

)
,

where C is a constant depending on T and the mapping

V × L(,T ;H)  (x,h) �→ x ∈ L
(
,T ;D(A)

) ∩W ,(,T ;H)

is Lipschitz continuous.
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4 Approximate controllability
In this section, we deal with the approximate controllability for the semilinear equation in
H as follows.⎧⎨⎩x′(t) +Ax(t) + f (t,x(t),u(t)) + Bu(t) = ,  < t ≤ T ,

x() = x.
(.)

In (.), the principal operator –A generates an analytic semigroup S(t) as stated in Sec-
tion . LetU be aHilbert space of control variables, and let B be a bounded linear operator
from U to H , which is called a controller. The mild solution of initial value problem (.)
is the following form:

x(t; f ,u) = S(t)x –
∫ t


S(t – s)

{
f
(
s,x(s),u(s)

)
+ Bu(s)

}
ds.

Let f be a nonlinear mapping satisfying the following.

Assumption (F) The mapping f is demicontinuous bounded from [,T] × H × U
intoV ∗. Assume that f (t, ·,u) for each (t,u) ∈ [,T]×U is monotone as amapping fromV
into V ∗ with f (t, ·, ) = , and f (t,x, ·) for each (t,x) ∈ [,T]×V is monotone as a mapping
from U into V ∗.

For each u ∈ L(,T ;U), let us define F(t,x(t)) = f (t,x(t),u(t)). Then fromTheorem . it
follows that solution (.) exists and is unique in L(,T ;V )∩W ,(,T ;V ∗). Let x(T ; f ,u)
be a state value of system (.) at time T corresponding to the nonlinear term f and the
control u. We define the reachable sets for system (.) as follows:

RT (f ) =
{
x(T ; f ,u) : u ∈ L(,T ;U)

}
,

RT () =
{
x(T ; ,u) : u ∈ L(,T ;U)

}
.

Definition . System (.) is said to be approximately controllable at time T if for every
desired final state x ∈H and ε > , there exists a control function u ∈ L(,T ;U) such that
the solution x(T ; f ,u) of (.) satisfies |x(T ; f ,u) – x| < ε, that is, RT (f ) =H , where RT (f ) is
the closure of RT (f ) in H .

Definition . Let L be a mapping from a Banach space X into its conjugate space X∗.
T is called coercive if there exists u ∈ D(L) such that

lim
u∈D(L),‖u‖→∞

(Lu,u – u)
‖u‖ =∞.

Remark . [, Theorem .] It is well known that if X is a reflexive Banach space and
L is monotone, everywhere defined and hemicontinuous from D(L) = X into X∗, then L is
maximal monotone. If in addition L is coercive monotone, then R(L) = X∗.

First, we consider the approximate controllability of system (.) in the case where the
controller B is the identity operator on H under Assumption (F) on the nonlinear oper-
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ator f . So, H =U obviously. Consider the linear system given by⎧⎨⎩y′(t) +Ay(t) + u(t) = ,

y() = x
(.)

and the following semilinear control system:⎧⎨⎩x′(t) +Ax(t) + f (t,x(t), v(t)) + v(t) = ,

x() = x.
(.)

Lemma . Let Assumption (F) be satisfied, and let y(t) be the solution of (.) corre-
sponding to a control u. Then there exists v ∈ L(,T ;H) such that⎧⎨⎩v(t) = u(t) – f (t, y(t), v(t)),  < t ≤ T ,

v() = u().
(.)

Proof Set

w(t) = v(t) – u(t), g
(
t,w(t)

)
= f

(
t, y(t),w(t) + u(t)

)
.

Let (Gw)(t) = g(t,w(t)). Then equation (.) is equivalent to

(I +G)w = . (.)

It is easy to see that G is monotone as an operator from L(,T ;H) to L(,T ;V ∗), and
is a demicontinuous bounded mapping as an operator from L(,T ;H) into L(,T ;V ∗).
Let the collection of all finite dimensional subspaces of H be denoted by Y , and when
Y ∈ Y , let the orthogonal projection on Y be denoted by PY . For u ∈ L(,T ;H), let us
define (PYu)(t) = PYu(t); thus PY also denotes the orthogonal projection in L(,T ;H).
According to Assumption (F), we have that the operator I + PY g is a coercive monotone
operator from Y into itself. In general, any demicontinuous operator is hemicontinuous.
Therefore, by Remark ., we have R(I + PY g) = Y , which (.) implies the existence of a
solution to

wY (t) + PY g
(
t,wY (t)

)
= , wY () = uY (). (.)

Since

∣∣wY (t)
∣∣ = –

(
PY g

(
t,wY (t)

)
,wY (t)

)
= –

(
PY g

(
t,wY (t)

)
– PY g(t, ),wY (t)

)
–

(
PY g(t, ),wY (t)

)
≤ ∣∣g(t, )∣∣∣∣wY (t)

∣∣,
we have

‖wY‖C([,T];H) ≤ C.
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Hence, the solution of (.) is bounded on C([,T];H). Let w be an arbitrary element of
L(,T ;H). Then we can takewn ∈ Yn ∈ Y satisfying (.) such thatwn → w in L(,T ;H).
Since G is monotone as an operator from L(,T ;H) to L(,T ;V ∗), and is a demicontin-
uous bounded mapping, we have Gwn ⇀ Gw in L(,T ;V ∗). Hence, we obtain that for
v ∈ L(,T ;V ),

 ≤ (
(I + PYG)v – (I + PYG)wn, v –wn

)
=

(
(I + PYG)v, v –wn

)
as n→ ∞, so that

(
(I + PYG)v, v –w

) ≥ . (.)

If v is replaced by w + n–v in (.), we have

 ≤ (
w + n–v + PYG

(
w + n–v

)
,n–v

)
,

which, by the demicontinuity of G, leads to

 ≤ (w +Gw, v), ∀v ∈ L(,T ;V )

in the limit as n→ ∞. Since v is arbitrary, we obtain w +Gw = . �

Remark. As seen in [], we know that ifX is aHilbert space andG ⊂ X×X ismaximal
monotone, then R(I +G) = X. So, (.) is easily obtained if the operator G in Theorem .
is maximal monotone.

Theorem . Under Assumption (F) and B = I , we have

RT () ⊂ RT (f ).

Therefore, if linear system (.) with f =  is approximately controllable at time T , then so
is semilinear system (.).

Proof Let y, x be the solutions of (.) and (.), respectively. Let v(t) = u(t) – f (t, y(t), v(t))
in the sense of Lemma .. Then, since

x′(t) +Ax(t) + f
(
t,x(t), v(t)

)
+ v(t)

= x′(t) +Ax(t) + f
(
t,x(t), v(t)

)
+ u(t) – f

(
t, y(t), v(t)

)
,

we have⎧⎨⎩x′(t) – y′(t) +A(x(t) – y(t)) + f (t,x(t), v(t)) – f (t, y(t), v(t)) = ,

x() – y() = .

Acting on both sides of the above equation, by x(t) – y(t), from the monotonicity of f , it
follows



d
dt

∣∣x(t) – y(t)
∣∣ +ω

∥∥x(t) – y(t)
∥∥ ≤ ω

∣∣x(t) – y(t)
∣∣,

http://www.journalofinequalitiesandapplications.com/content/2013/1/534


Kang et al. Journal of Inequalities and Applications 2013, 2013:534 Page 13 of 17
http://www.journalofinequalitiesandapplications.com/content/2013/1/534

which is

∣∣x(t) – y(t)
∣∣ + ω

∫ t



∥∥x(s) – y(s)
∥∥ ds≤ ω

∫ t



∣∣x(s) – y(s)
∣∣ ds.

By using Gronwall’s inequality, we get x = y in C([,T];H). Noting that x(·), y(·) ∈
C([,T];H), every solution of the linear system with control u is also a solution of the
semilinear system with control v, that is, we have that RT () ⊂ RT (f ). �

From now on, we consider the initial value problem for semilinear parabolic equation
(.). Let U be a Hilbert space, and let the controller operator B be a nonlinear operator
from U to H .

Theorem . Let Assumption (F) and R(f ) ⊂ R(B) be satisfied. Assume that the inverse
mapping B– of the controller B exists and is monotone. Then the linear system⎧⎨⎩y′(t) +Ay(t) + Bu(t) = ,

y() = x,
(.)

is approximately controllable at time T , so is nonlinear system (.).

Proof Let y be a solution of (.) corresponding to a control u. Consider the following
semilinear system:⎧⎨⎩x′(t) +Ax(t) + f (t,x(t), v(t)) + Bu(t) – f (t, y(t), v(t)) = ,

x() = x.
(.)

Set

v(t) = u(t) – B–f
(
t, y(t), v(t)

)
. (.)

We put

w(t) = v(t) –u(t), (Bu)(t) = Bu(t), (Gw)(t) = g
(
t,w(t)

)
= f

(
t, y(t),w(t) +u(t)

)
.

Equation (.) is equivalent to

(
I + B–

 G
)
w = . (.)

Here, similarly to the proof of Lemma ., we have that there exists an element v ∈
L(,T ;U) satisfying (.), that is, Bv(t) = Bu(t) – f (t, y(t), v(t)). In a similar way to the
proof of Theorem ., we get x = y. Since system (.) is equivalent to (.), we conclude
that RT () ⊂ RT (f ). �

Nowwe consider the control problem of (.) when the controller B is a nonlinear map-
ping in the case where U = V . In this case, we suppose that Assumption (F) and the next
additional assumption are satisfied.
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Assumption (F) Assume that f (t,x, ·) for each (t,x) ∈ [,T]× V is maximal monotone
as a mapping from U into V ∗.

The following result is well known from semigroup properties.

Lemma . If p ∈ L(,T ;H) and

∫ t


S(t – s)p(s)ds = ,  ≤ t ≤ T ,

then p(t) =  for almost all t ∈ [,T].

Theorem . Let Assumption (F) and R(f ) ⊂ R(B) be satisfied. Assume that B is a hemi-
continuousmonotonemapping fromV into V ∗;moreover, if it is coercive, then linear system
(.) is approximately controllable at time T , so is semilinear system (.).

Proof Let ξT ∈D(A). We define the linear operator Ŝ from L(,T ;H) to H by

Ŝp =
∫ T


S(T – s)p(s)ds

for p ∈ L(,T ;H). As ξT ∈D(A), there exists p ∈ C(,T ;H) such that

Ŝp = ξT – S(T)x;

for instance, take p(s) = (ξT – sAξT ) – S(s)x/T . By expressing (Bu)(t) = Bu(t) for all u ∈
L(,T ;V ). By Remark ., since R(B) = V ∗, there exists u ∈ L(,T ;V ) such that

p = Bu.

Since p is an arbitrary element of L(,T ;V ∗), pn ∈ C(,T ;H) and pn → p in L(,T ;V ∗).
This implies that linear system (.) is approximately controllable.
To prove the approximate controllability of (.), we will show that D(A) ⊂ RT (f ), i.e.,

for given ε >  and ξT ∈D(A), there exists u ∈ L(,T ;V ) such that

∥∥ξT – x(T ; f ,u)
∥∥ < ε. (.)

Let x ∈ L(,T ;V ). Then we write Gu(t) = f (t,x(t),u(t)) for each u ∈ L(,T ;H). Then we
rewrite (.) as

∥∥Ŝ(p +Gu + Bu)
∥∥ < ε.

Thus, in view of Lemma ., it is enough to verify that there exists an arbitrary element
u of L(,T ;V ) such that (G + B)u = –p. By () of Lemma ., B is pseudo-monotone
and satisfies the condition () of Lemma .. Thus, we have R(G + B) = V ∗. Since p is an
arbitrary element of L(,T ;V ∗), pn ∈ C(,T ;H) and pn → p in L(,T ;V ∗). This implies
inequality (.) and completes the proof of the theorem. �
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Remark . We know that by Assumption (F) and (.), B + G is monotone, hemi-
continuous and coercive from U into V ∗. Therefore, as seen in Remark ., we have
R(B +G) = L(,T ;V ∗), that is, system (.) is approximately controllable.

5 Example
Let 	 be a bounded region in R

n with smooth boundary ∂	. We define the following
spaces:

H(	) =
{
u : u,

∂u
∂xi

∈ L(	), i = , , . . . ,n
}
,

H(	) =
{
u : u,

∂u
∂xi

,
∂u

∂xi ∂xj
∈ L(	), i, j = , , . . . ,n

}
,

where ∂u
∂xi

and ∂u
∂xi ∂xj

are derivatives of u in the distribution sense. The norm of H(	) is
defined by

‖u‖ =
{∫

	

(
u(x) +

n∑
i=

(
∂u(x)
∂xi

)
)
dx

} 


.

Hence H(	) is a Hilbert space.

H
(	) =

{
u : u ∈H(	),u|∂	 = 

}
= the closure of C∞

 (	) in H(	).

The norm and inner product of H
(	) are defined by

‖u‖ =
{∫

	

n∑
i=

(
∂u(x)
∂xi

)

dx

} 


= ‖u‖, ((u, v)) =
∫

	

n∑
i=

∂u(x)
∂xi

· ∂v(x)
∂xi

dx

for any u, v ∈H
(	). We put ∇ = ( ∂

∂x
, . . . , ∂

∂xn ). Define the operator A by

D(A) = domain of A

=
{
u : u ∈H(	)∩H

(	)
}
=

{
u : u ∈H(	),u|∂	 = 

}
,

Au = –�u for all u ∈D(A).

The operator A in L(	) is defined so that for any v ∈ H
(	), there exists f ∈ L(	) such

that

(
(u, v)

)
= (f , v).

Then, for any u ∈D(A), Au = f and A is a positive definite self-adjoint operator.
Let H–(	) = H

(	)∗ be a dual space of H
(	). For any l ∈ H–(	) and v ∈ H

(	), the
notation (l, v) denotes the value l at v.
Let u be fixed if we consider the functional H

(	)  v → ((u, v)), this function is con-
tinuous linear. For any l ∈ H–(	), it follows that (l, v) = ((u, v)). We denote that for any
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u, v ∈H
(	),

((u, v)) = (Ãu, v),

that is, Ãu = l. The operator Ã is a one-to-onemapping fromH
(	) toH–(	). The relation

of operators A and Ã satisfy that

D(A) =
{
u ∈H

(	), Ãu ∈ L(	)
}
,

Au = Ãu for any u ∈D(A).

From now on, both A and Ã are denoted simply by A.
We introduce a simple example of the control operator B which satisfies the condition

in Theorem .. Consider the case U =H , and define the intercept operator  < α < T on
L(,T ;H) by

gαv(t) =

⎧⎨⎩,  ≤ t ≤ α,

|v(t)|p, p ≥ ,α ≤ t ≤ T ,
v ∈ L(,T ;H),

Bu(t) =
(
gαv(t)

)
v(t).

Then B is a continuous monotone mapping such that there exists a constant β > β > 
such that

β|u – u| ≥ (Bu – Bu) ≥ β|u – u|, ∀u,u ∈H .

Let

H = L(	), V =H
(	), V ∗ =H–(	).

Let n≥ . Then by Sobolev’s imbedding theorem, we have

V ⊂ Lp(	) ⊂ L(	)⊂ Lq(	)⊂ V ∗,

where p = n/(n – ) and q = p/(p – ) = n/(n + ). Assume that f̂ (λ,μ) is a continuous
and increasing function defined on R

 such that |f̂ (λ, ·)| = O(|λ|(n+)/n) as |λ| → ∞. If we
put f (t,x,u)(y) = f (t,x(y),u) = f̂ (x(y),u) for each x ∈ H , then f̂ (·,x, ·) ∈ Lq(	), so that it is
clear that f̂ is monotone as an operator Lp(	) × U into Lq(	). To show that f̂ is a demi-
continuous mapping from H into Lq(	), let xn → x in H . Since {xn} is bounded in H , so
is {f̂ (xn)} in Lq(	). Hence, there exists a subsequence {xnj} such that xnj (y) → x(y) almost
everywhere in 	 and there exists an element g ∈ Lq(	) such that f̂ (xnj , ·)⇀ g . Since f̂ (λ, ·)
is a continuous function of real variables λ, f̂ (xnj (y), ·) → f̂ (x(y), ·) almost everywhere in
	. Otherwise, one can find an appropriate convex combination gk =

∑
n≥k λk

nf̂n, where
f̂n(x) = f̂ (xnj , ·), which is strongly convergent to g in Lp(	). This says that gk(y) → f̂ (x(y), ·)
for all y for which f̂n(x(y)) → f̂ (x(y), ·). Therefore, we obtain f̂ = g , that is, f̂ (xn, ·) ⇀ f̂ (x, ·).
Thus, all the conditions stated in Theorem . are satisfied. Therefore, nonlinear system
(.) with monotone operators is approximately controllable at time T .
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