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Abstract
Sharp error bounds in approximating the Riemann-Stieltjes integral

∫ b
a f (t)du(t) with

the generalised trapezoid formula f (b)[u(b) – 1
b–a

∫ b
a u(s)ds] + f (a)[ 1

b–a

∫ b
a u(s)ds – u(a)]

are given for various pairs (f ,u) of functions. Applications for weighted integrals are
also provided.
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1 Introduction
In [], in order to approximate the Riemann-Stieltjes integral

∫ b
a f (t)du(t) by the gener-

alised trapezoid formula

[
u(b) – u(x)

]
f (b) +

[
u(x) – u(a)

]
f (a), x ∈ [a,b], (.)

the authors considered the error functional

T(f ,u;a,b;x) :=
∫ b

a
f (t)du(t) –

[
u(b) – u(x)

]
f (b) –

[
u(x) – u(a)

]
f (a) (.)

and proved that

∣∣T(f ,u;a,b;x)∣∣ ≤ H
[


(b – a) +

∣∣∣∣x – a + b


∣∣∣∣
]r b∨

a
(f ), x ∈ [a,b], (.)

provided that f : [a,b] → R is of bounded variation on [a,b] and u is of r-H-Hölder type,
that is, u : [a,b] → R satisfies the condition |u(t) – u(s)| ≤ H|t – s|r for any t, s ∈ [a,b],
where r ∈ (, ] and H >  are given.
The dual case, namely, when f is of q-K-Hölder type and u is of bounded variation, has

been considered by the authors in [] in which they obtained the bound:

∣∣T(f ,u;a,b;x)∣∣
≤ K

[
(x – a)q

x∨
a
(u) + (b – x)q

b∨
x
(u)

]
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≤

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

K[(x – a)q + (b – x)q][ 
∨b

a(u) +

 |

∨x
a(u) –

∨b
x(u)|];

K[(x – a)qα + (b – x)qα] 
α [[

∨x
a(u)]β – [

∨b
x(u)]β ]


β

if α > , 
α
+ 

β
= ;

K[  (b – a) + |x – a+b
 |]q ∨b

a(u)

(.)

for any x ∈ [a,b].
The case where f is monotonic and u is of r-H-Hölder type, which provides a refine-

ment for (.), and respectively the case where u is monotonic and f of q-K-Hölder type
were considered by Cheung andDragomir in [], while the case where one function was of
Hölder type and the other was Lipschitzian was considered in []. For other recent results
in estimating the error T(f ,u;a,b,x) for absolutely continuous integrands f and integra-
tors u of bounded variation, see [] and [].
The main aim of the present paper is to investigate the error bounds in approximating

the Stieltjes integral by a different generalised trapezoid rule than the one from (.) in
which the value u(x), x ∈ [a,b] is replaced with the integral mean 

b–a
∫ b
a u(s)ds. Applica-

tions in approximating the weighted integrals
∫ b
a h(t)f (t)dt are also provided.

2 Representation results
Weconsider the following error functionalTg(f ;u) in approximating theRiemann-Stieltjes
integral

∫ b
a f (t)du(t) by the generalised trapezoid formula:

f (b)
[
u(b) –


b – a

∫ b

a
u(t)dt

]
+ f (a)

[


b – a

∫ b

a
u(t)dt – u(a)

]
,

Tg(f ;u) := f (b)
[
u(b) –


b – a

∫ b

a
u(t)dt

]

+ f (a)
[


b – a

∫ b

a
u(t)dt – u(a)

]
–

∫ b

a
f (t)du(t). (.)

If we consider the associated functions �f , �f and �f defined by

�f (t) :=
(t – a)f (b) + (b – t)f (a)

b – a
– f (t), t ∈ [a,b],

�f (t) := (t – a)
[
f (b) – f (t)

]
– (b – t)

[
f (t) – f (a)

]
, t ∈ [a,b]

and

�f (t) :=
f (b) – f (t)

b – t
–
f (t) – f (a)

t – a
, t ∈ (a,b),

then we observe that

�f (t) =


b – a
�f (t) =

(b – t)(t – a)
b – a

�f (t) for any t ∈ (a,b). (.)

The following representation result can be stated.
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Theorem  Let f ,u : [a,b] → R be bounded on [a,b] and such that the Riemann-Stieltjes
integral

∫ b
a f (t)du(t) and the Riemann integral

∫ b
a u(t)dt exist. Then we have the identities

Tg(f ;u) =
∫ b

a
�f (t)du(t)

=


b – a

∫ b

a
�f (t)du(t)

=


b – a

∫ b

a
(b – t)(t – a)�f (t)du(t)

= D(u; f ), (.)

where

D(u; f ) =
∫ b

a
u(t)df (t) –

[
f (b) – f (a)

] · 
b – a

∫ b

a
u(t)dt. (.)

Proof Integrating the Riemann-Stieltjes integral by parts, we have

∫ b

a
�f (t)du(t)

=
∫ b

a

[
f (a)(b – t) + f (b)(t – a)

b – a
– f (t)

]
du(t)

=


b – a

{[
f (a)(b – t) + f (b)(t – a)

]
u(t)

∣∣b
a

–
∫ b

a
u(t)d

[
f (a)(b – t) + f (b)(t – a)

]}
–

∫ b

a
f (t)du(t)

=


b – a

{[
f (b)u(b) – f (a)u(a)

]
(b – a) –

[
f (b) – f (a)

]∫ b

a
u(t)dt

}
–

∫ b

a
f (t)du(t)

= f (b)
[
u(b) –


b – a

∫ b

a
u(t)dt

]

+ f (a)
[


b – a

∫ b

a
u(t)dt – u(a)

]
–

∫ b

a
f (t)du(t)

= Tg(f ;u),

and the first equality in (.) is proved.
The second and third identity is obvious by the relation (.).
For the last equality, we use the fact that for any g,h : [a,b] → R bounded functions for

which the Riemann-Stieltjes integral
∫ b
a h(t)dg(t) and the Riemann integral

∫ b
a g(t)dt exist,

we have the representation (see, for instance, [])

D(g;h) =
∫ b

a
�h(t)dg(t). (.)

The proof is now complete. �

In the case where u is an integral, the following identity can be stated.

http://www.journalofinequalitiesandapplications.com/content/2013/1/53


Cerone and Dragomir Journal of Inequalities and Applications 2013, 2013:53 Page 4 of 11
http://www.journalofinequalitiesandapplications.com/content/2013/1/53

Corollary  Let p,h : [a,b] → R be continuous on [a,b] and f : [a,b] → R be Riemann
integrable. Then we have the identity

Tg

(
f ;

∫
a
ph

)
=


b – a

[
f (b) ·

∫ b

a
(t – a)p(t)h(t)dt + f (a) ·

∫ b

a
(b – t)p(t)h(t)dt

]

–
∫ b

a
p(t)f (t)h(t)dt

=
∫ b

a
�f (t)p(t)h(t)dt. (.)

Proof Since p and h are continuous, the function u(t) =
∫ t
a p(s)h(s)ds is differentiable and

u′(t) = p(t)h(t) for each t ∈ (a,b).
Integrating by parts, we have

∫ b

a
u(t)dt =

(∫ t

a
p(s)h(s)ds

)
· t

∣∣∣∣
b

a
–

∫ b

a
tp(t)h(t)dt

= b
∫ b

a
p(s)h(s)ds –

∫ b

a
tp(t)h(t)dt

=
∫ b

a
(b – t)p(t)h(t)dt.

Since

u(b) –


b – a

∫ b

a
u(t)dt =

∫ b

a
p(t)h(t)dt –


b – a

∫ b

a
(b – t)p(t)h(t)dt

=


b – a

∫ b

a
(t – a)p(t)h(t)dt,

then, by the definition of Tg in (.), we deduce the first part of (.).
The second part of (.) follows by (.). �

Remark  In the particular case p(t) = , t ∈ [a,b], we have the equality

Tg

(
f ;

∫
a
h
)
=


b – a

[
f (b) ·

∫ b

a
(t – a)h(t)dt + f (a) ·

∫ b

a
(b – t)h(t)dt

]
–

∫ b

a
f (t)h(t)dt

=
∫ b

a
�f (t)h(t)dt =


b – a

∫ b

a
�f (t)h(t)dt. (.)

3 Some inequalities for f -convex
The following result concerning the nonnegativity of the error functional Tg(·; ·) can be
stated.

Theorem  If u is monotonic nonincreasing and f : [a,b] → R is such that the Riemann-
Stieltjes integral

∫ b
a f (t)du(t) exists and

f (b) – f (t)
b – t

≥ f (t) – f (a)
t – a

for any t ∈ (a,b), (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/53
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then Tg(f ;u) ≥  or, equivalently,

f (b)
[
u(b) –


b – a

∫ b

a
u(t)dt

]
+ f (a)

[


b – a

∫ b

a
u(t)dt – u(a)

]
≥

∫ b

a
f (t)du(t). (.)

A sufficient condition for (.) to hold is that f is convex on [a,b].

Proof The condition (.) is equivalent with the fact that �f (t) ≥  for any t ∈ (a,b) and
then, by the equality

Tg(f ;u) =


b – a

∫ b

a
(b – t)(t – a)�f (t)du(t),

we deduce that Tg(f ;u) ≥ .
If f is convex, then

t – a
b – a

f (b) +
b – t
b – a

f (a) ≥ f
[(

t – a
b – a

)
b +

(
b – t
b – a

)
a
]
= f (t),

which shows that �f (t) ≥ , namely, the condition (.) is satisfied. �

Corollary  Let p,h : [a,b] → R be continuous on [a,b] and f : [a,b] → R be Riemann
integrable. If p(t)h(t) ≥  for any t ∈ [a,b] and f satisfies (.) or, sufficiently, f is convex on
[a,b], then


b – a

[
f (b) ·

∫ b

a
(t – a)p(t)h(t)dt + f (a) ·

∫ b

a
(b – t)p(t)h(t)dt

]

≥
∫ b

a
p(t)f (t)h(t)dt. (.)

We are now able to provide some new results.

Theorem Assume that p and h are continuous and synchronous (asynchronous) on (a,b),
i.e.,

(
p(t) – p(s)

)(
h(t) – h(s)

) ≥ (≤)  for any t, s ∈ [a,b]. (.)

If f satisfies (.) and is Riemann integrable on [a,b] (or sufficiently, f is convex on [a,b]),
then

Tg

(
f ;

∫
a
p
)

· Tg

(
f ;

∫
a
h
)

≤ (≥) Tg

(
f ;

∫
a

)

· Tg

(
f ;

∫
a
ph

)
, (.)

where

Tg

(
f ;

∫
a

)
=
f (a) + f (b)


(b – a) –

∫ b

a
f (t)dt. (.)

Proof We use the Čebyšev inequality

∫ b

a
α(t)dt

∫ b

a
α(t)p(t)h(t)dt ≥ (≤)

∫ b

a
α(t)p(t)dt

∫ b

a
α(t)h(t)dt, (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/53
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which holds for synchronous (asynchronous) functions p, h and nonnegative α for which
the involved integrals exist.
Now, on applying the Čebyšev inequality (.) for α(t) = �f (t) ≥  and utilising the rep-

resentation result (.), we deduce the desired inequality (.). �

We also have the following theorem.

Theorem  Assume that f : [a,b] → R is Riemann integrable and satisfies (.) (or suffi-
ciently, f is concave on [a,b]). Then, for p,h : [a,b]→R continuous, we have

∣∣∣∣Tg

(
f ;

∫
a
ph

)∣∣∣∣ ≤ sup
t∈[a,b]

∣∣h(t)∣∣Tg

(
f ;

∫
a
|p|

)
(.)

and

∣∣∣∣Tg

(
f ;

∫
a
ph

)∣∣∣∣ ≤
[
Tg

(
f ;

∫
a
|p|α

)] 
α
[
Tg

(
f ;

∫
a
|h|β

)] 
β

, (.)

where α > , 
α
+ 

β
= . In particular, we have

∣∣∣∣Tg

(
f ;

∫
a
ph

)∣∣∣∣


≤ Tg

(
f ;

∫
a
|p|

)
Tg

(
f ;

∫
a
|h|

)
. (.)

Proof Observe that

∣∣∣∣Tg

(
f ;

∫
a
ph

)∣∣∣∣ =
∣∣∣∣
∫ b

a
�f (t)p(t)h(t)dt

∣∣∣∣
≤

∫ b

a

∣∣�f (t)p(t)h(t)
∣∣dt

=
∫ b

a
�f (t)

∣∣p(t)∣∣∣∣h(t)∣∣dt
≤ sup

t∈[a,b]

∣∣h(t)∣∣ ∫ b

a
�f (t)

∣∣p(t)∣∣dt
= sup

t∈[a,b]

∣∣h(t)∣∣Tg

(
f ;

∫
a
|p|

)

and the inequality (.) is proved.
Further, by the Hölder inequality, we also have

∣∣∣∣Tg

(
f ;

∫
a
ph

)∣∣∣∣ ≤
∫ b

a
�f (t)

∣∣p(t)∣∣∣∣h(t)∣∣dt
≤

(∫ b

a
�f (t)

∣∣p(t)∣∣α dt) 
α
(∫ b

a
�f (t)

∣∣h(t)∣∣β dt) 
β

=
[
Tg

(
f ;

∫
a
|p|α

)] 
α
[
Tg

(
f ;

∫
a
|h|β

)] 
β

for α > , 
α
+ 

β
= , and the theorem is proved. �

http://www.journalofinequalitiesandapplications.com/content/2013/1/53
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Remark  The above result can be useful for providing some error estimates in approxi-
mating the weighted integral

∫ b
a h(t)f (t)dt by the generalised trapezoid rule


b – a

[
f (b) ·

∫ b

a
(t – a)h(t)dt + f (a) ·

∫ b

a
(b – t)h(t)dt

]

as follows:

∣∣∣∣ 
b – a

[
f (b) ·

∫ b

a
(t – a)h(t)dt + f (a) ·

∫ b

a
(b – t)h(t)dt

]
–

∫ b

a
h(t)f (t)dt

∣∣∣∣
≤ sup

t∈[a,b]

∣∣h(t)∣∣[ f (a) + f (b)


(b – a) –
∫ b

a
f (t)dt

]
, (.)

provided f satisfies (.) and is Riemann integrable (or sufficiently, convex on [a,b]), which
is continuous on [a,b].
If h(t) = |w(t)| 

β , t ∈ [a,b], then for some f , we also have

∣∣∣∣ 
b – a

[
f (b)

∫ b

a
(t – a)

∣∣w(t)∣∣ 
β dt + f (a)

∫ b

a
(b – t)

∣∣w(t)∣∣ 
β dt

]
–

∫ b

a

∣∣w(t)∣∣ 
β f (t)dt

∣∣∣∣
≤

[
f (a) + f (b)


(b – a) –

∫ b

a
f (t)dt

] 
α

×
{


b – a

[
f (b)

∫ b

a
(t – a)

∣∣w(t)∣∣dt
+ f (a)

∫ b

a
(b – t)

∣∣w(t)∣∣dt] –
∫ b

a

∣∣w(t)∣∣f (t)dt} 
β

, (.)

with α > , 
α
+ 

β
= .

Finally, we can state the following Jensen type inequality for the error functional
Tg(f ;

∫ b
a h).

Theorem  Assume f : [a,b]→R is Riemann integrable and satisfies (.) (or sufficiently,
f is convex on [a,b]), while h : [a,b] → R is continuous. If F : R →R is convex (concave),
then

F
(Tg(f ;

∫ b
a h)

Tg(f ;
∫ b
a )

)
≤ (≥)

Tg(f ;
∫ b
a F ◦ h)

Tg(f ;
∫ b
a )

. (.)

Proof By the use of Jensen’s integral inequality, we have

F
(∫ b

a �f (t)h(t)dt∫ b
a �f (t)dt

)
≤ (≥)

∫ b
a �f (t)F(h(t))dt∫ b

a �f (t)dt
. (.)

Since, by the identity (.), we have

∫ b

a
�f (t)F

(
h(t)

)
dt = Tg

(
f ;

∫ b

a
F ◦ h

)
,

then (.) is equivalent with the desired result (.). �

http://www.journalofinequalitiesandapplications.com/content/2013/1/53
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4 Sharp bounds via Grüss type inequalities
Due to the identity (.), in which the error bound Tg(f ;u) can be represented as D(u; f ),
where

D(u; f ) =
∫ b

a
u(t)df (t) –

[
f (b) – f (a)

] · 
b – a

∫ b

a
u(t)dt,

is a Grüss type functional introduced in [], any sharp bound for D(u; f ) will be a sharp
bound for Tg(f ;u).
We can state the following result.

Theorem  Let f ,u : [a,b]→R be bounded functions on [a,b].
(i) If there exist constants n, N such that n≤ u(t) ≤ N for any t ∈ [a,b], u is Riemann

integrable and f is K -Lipschitzian (K > ), then

∣∣Tg(f ;u)
∣∣ ≤ 


K(N – n)(b – a). (.)

The constant 
 is best possible in (.).

(ii) If f is of bounded variation and u is S-Lipschitzian (S > ), then

∣∣Tg(f ;u)
∣∣ ≤ 


S(b – a)

b∨
a
(f ). (.)

The constant 
 is best possible in (.)

(iii) If f is monotonic nondecreasing and u is S-Lipschitzian, then

∣∣Tg(f ;u)
∣∣ ≤ 


S(b – a)

[
f (b) – f (a) – P(f )

]
≤ 


S(b – a)

[
f (b) – f (a)

]
, (.)

where

P(f ) =


(b – a)

∫ b

a

(
t –

a + b


)
f (t)dt.

The constant 
 is best possible in both inequalities.

(iv) If f is monotonic nondecreasing and u is of bounded variation and such that the
Riemann-Stieltjes integral

∫ b
a f (t)du(t) exists, then

∣∣Tg(f ;u)
∣∣ ≤ [

f (b) – f (a) –Q(f )
] b∨

a
(u), (.)

where

Q(f ) :=


b – a

∫ b

a
sgn

(
t –

a + b


)
f (t)dt.

The inequality (.) is sharp.

http://www.journalofinequalitiesandapplications.com/content/2013/1/53
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(v) If f is continuous and convex on [a,b] and u is of bounded variation on [a,b], then

∣∣Tg(f ;u)
∣∣ ≤ 


[
f ′
–(b) – f ′

+(a)
] b∨

a
(u). (.)

The constant 
 is sharp (if f ′

–(b) and f ′
+(a) are finite).

(vi) If f : [a,b]→R is continuous and convex on [a,b] and u is monotonic
nondecreasing on [a,b], then

 ≤ Tg(f ;u)

≤  · f
′
–(b) – f ′

+(a)
b – a

·
∫ b

a

(
t –

a + b


)
u(t)dt

≤

⎧⎪⎪⎨
⎪⎪⎩


 [f

′
–(b) – f ′

+(a)]max{|u(a)|, |u(b)|}(b – a);


(q+)/q [f
′
–(b) – f ′

+(a)]‖u‖p(b – a)/q if p > , p +

q = ;

[f ′
–(b) – f ′

+(a)]‖u‖.
(.)

The constants  and 
 are best possible in (.) (if f ′

–(b) and f ′
+(a) are finite).

Proof The inequality (.) follows from the inequality (.) in [] applied to D(u; f ), while
(.) comes from (.) of []. The inequalities (.) and (.) follow from [], while (.)
and (.) are valid via the inequalities (.) and (.) from [] applied to the functional
D(u; f ). The details are omitted. �

If we consider the error functional in approximating the weighted integral
∫ b
a h(t)f (t)dt

by the generalised trapezoid formula,


b – a

[
f (b) ·

∫ b

a
(t – a)h(t)dt + f (a) ·

∫ b

a
(b – t)h(t)dt

]
,

namely (see also (.)),

E(f ;h) := Tg

(
f ;

∫ b

a
h
)

=


b – a

[
f (b) ·

∫ b

a
(t – a)h(t)dt + f (a) ·

∫ b

a
(b – t)h(t)dt

]

–
∫ b

a
h(t)f (t)dt, (.)

then the following corollary provides various sharp bounds for the absolute value ofE(f ;h).

Corollary  Assume that f and u are Riemann integrable on [a,b].
(i) If there exist constants γ , � such that γ ≤ ∫ t

a h(s)ds≤ � for each t ∈ [a,b], and f is
K -Lipschitzian on [a,b], then

∣∣E(f ;h)∣∣ ≤ 

K(� – γ )(b – a). (.)

The constant 
 is best possible in (.).
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(ii) If f is of bounded variation and |h(t)| ≤ M for each t ∈ [a,b], then

∣∣E(f ;h)∣∣ ≤ 

M(b – a)

b∨
a
(f ). (.)

The constant 
 is best possible in (.).

(iii) If f is monotonic nondecreasing and |h(t)| ≤ M, t ∈ [a,b], then

∣∣E(f ;h)∣∣ ≤ 

M(b – a)

[
f (b) – f (a) – P(f )

] ≤ 

M(b – a)

[
f (b) – f (a)

]
, (.)

where P(f ) is defined in Theorem . The constant 
 is sharp in both inequalities.

(iv) If f is monotonic nondecreasing and
∫ b
a |h(t)|dt <∞, then

∣∣E(f ;h)∣∣ ≤ [
f (b) – f (a) –Q(f )

] ∫ b

a

∣∣h(t)∣∣dt, (.)

where Q(f ) is defined in Theorem . The inequality (.) is sharp.
(v) If f is continuous and convex on [a,b] and

∫ b
a |h(t)|dt <∞, then

∣∣E(f ;h)∣∣ ≤ 


[
f ′
–(b) – f ′

+(a)
]∫ b

a

∣∣h(t)∣∣dt. (.)

The constant 
 is sharp (if f ′

–(b) and f ′
+(a) are finite).

(vi) If f : [a,b]→R is continuous and convex on [a,b] and h(t) ≥  for t ∈ [a,b], then

 ≤ E(f ;h)

≤ f ′
–(b) – f ′

+(a)
b – a

∫ b

a
(b – t)(t – a)h(t)dt

≤

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩


 [f

′
–(b) – f ′

+(a)](b – a)
∫ b
a h(t)dt;


(q+)/q [f

′
–(b) – f ′

+(a)][
∫ b
a (

∫ t
a h(s)ds)

p dt]

p (b – a)/q

if p > , p +

q = ;

[f ′
–(b) – f ′

+(a)]
∫ b
a (b – t)h(t)dt.

(.)

The first inequality in (.) is sharp (if f ′
–(b) and f ′

+(a) are finite).

Proof We only prove the first inequality in (.).
Utilising the inequality (.) for u(t) =

∫ t
a h(s)ds, we get

 ≤ E(f ;h) ≤  · f
′
–(b) – f ′

+(a)
b – a

∫ b

a

(
t –

a + b


)∫ t

a
h(s)dsdt. (.)

However, on integrating by parts, we have

∫ b

a

(
t –

a + b


)∫ t

a
h(s)dsdt

=
∫ b

a

(∫ t

a
h(s)ds

)
d
[



(
t –

a + b


)]
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=



(
t –

a + b


) ∫ t

a
h(s)ds

∣∣∣∣
b

a
–



∫ b

a

(
t –

a + b


)

h(t)dt

=



[(
b – a


) ∫ b

a
h(t)dt –

∫ b

a

(
t –

a + b


)

h(t)dt
]

=



∫ b

a

[(
b – a


)

–
(
t –

a + b


)]
h(t)dt

=



∫ b

a
(b – t)(t – a)h(t)dt.

The rest of the inequality is obvious. �
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