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Abstract
This paper is concerned with solvability of a class of functional equations arising in
dynamic programming of multistage decision processes. Using the fixed point
theorems due to Banach and Liu-Ume-Kang and iterative algorithms, some sufficient
conditions which ensure the existence, uniqueness and iterative approximations of
solutions for the functional equation in the Banach spaces BC(S) and B(S) and the
complete metric space BB(S) are provided. Four examples are constructed to illustrate
the results presented in this paper.
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1 Introduction
It is well know that the existence problems of solutions for various functional equations
arising in dynamic programming are both of theoretical and of practical interest; for ex-
ample, see [–] and the references cited therein. Bellman [], Bhakta and Choudhury
[], Liu [] and Liu et al. [, , –, ] studied the existence, uniqueness and itera-
tive approximations of solutions for the following functional equations arising in dynamic
programming:

f (x) = inf
y∈Dmax

{
u(x, y), v(x, y)f

(
a(x, y)

)}
, ∀x ∈ S, (.)

f (x) = inf
y∈Dmax

{
u(x, y), f

(
a(x, y)

)}
, ∀x ∈ S, (.)

f (x) = sup
y∈D

max
{
u(x, y), f

(
a(x, y)

)}
, ∀x ∈ S, (.)

f (x) = opt
y∈D

opt
{
u(x, y), f

(
a(x, y)

)}
, ∀x ∈ S, (.)

f (x) = opt
y∈D

{
u(x, y)max

{
p(x, y), f

(
a(x, y)

)}}
, ∀x ∈ S, (.)

f (x) = opt
y∈D

{
u(x, y)min

{
p(x, y), f

(
a(x, y)

)}}
, ∀x ∈ S (.)

in the complete metric space BB(S), where opt stands for the sup or inf.
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Motivated and inspired by the results in [–], in this paper we introduce and study
a new functional equation arising in dynamic programming of multistage decision pro-
cesses as follows:

f (x) = λopt
y∈D

{
u(x, y)opt

{
p(x, y), f

(
a(x, y)

)}}
+ ( – λ)opt

y∈D

{
v(x, y)opt

{
q(x, y), f

(
b(x, y)

)}
+ t(x, y)opt

{
r(x, y), f

(
c(x, y)

)}}
, ∀x ∈ S, (.)

where λ ∈ [, ] is a constant, x and y stand for the state and decision vectors, respectively,
a, b and c denote the transformations of the processes, and f (x) is the optimal return func-
tion with initial state x. Obviously, functional equation (.) includes functional equations
(.)-(.) as special cases. Utilizing the Banach fixed point theorem and Liu-Ume-Kang
fixed point theorem, some techniques in nonlinear analysis and a few iterative algorithms,
we get the existence, uniqueness and iterative approximations of continuous bounded so-
lutions, bounded solutions and solutions for functional equation (.) in the Banach spaces
BC(S) and B(S) and the complete metric space BB(S), respectively, and discuss some error
estimates between the iterative sequences generated by the iterative algorithms and the
solutions. Four nontrivial examples are given to show that the results presented in this
paper are more general than those in [, , , , –, ].

2 Preliminaries
Throughout this paper, we assume that (X,‖·‖) and (Y ,‖·‖′) are real Banach spaces, S ⊂ X
is the state space, D ⊂ Y is the decision space, N denotes the set of all positive integers,
N = {} ∪N, R = (–∞, +∞), R+ = [,+∞) and R

– = (–∞, ]. Define

� =
{
ϕ : ϕ :R+ →R

+ is nondecreasing and ϕ(t) < t

for each t > 
}
,

� =

{
(ϕ,ψ) : ϕ ∈ �,ψ :R+ →R

+ is nondecreasing and
∞∑
n=

ψ
(
ϕn(t)

)
< +∞

for each t > 

}
,

B(S) = {g : g : S →R is bounded},
BC(S) =

{
g : g ∈ B(S) is continuous

}
,

BB(S) = {g : g : S → R is bounded on each bounded subsets of S}.

Clearly, (B(S),‖·‖) and (BC(S),‖·‖) are Banach spaceswith the norm ‖g‖ = supx∈S |g(x)|.
For each k ∈N and h, g ∈ BB(S), put

dk(h, g) = sup
{∣∣h(x) – g(x)

∣∣ : x ∈ B(,k)
}
,

d(h, g) =
∞∑
k=


k

· dk(h, g)
 + dk(h, g)

,
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where

B(,k) =
{
x : x ∈ S and ‖x‖ ≤ k

}
.

Obviously, {dk}k∈N is a countable family of pseudometrics in BB(S). A sequence {xk}k∈N in
BB(S) is said to converge to a point x ∈ BB(S) if dk(xn,x) →  as n → ∞ and {xn}n∈N is a
Cauchy sequence if dk(xn,xm)→  as n,m → ∞ for each k ∈N. It is clear that (BB(S),d) is
a complete metric space.

Lemma. ([]) Let E be a set, p and q : E →R bemappings. If opty∈E p(y) and opty∈E q(y)
are bounded, then

∣∣∣opt
y∈E

p(y) – opt
y∈E

q(y)
∣∣∣ ≤ sup

y∈E

∣∣p(y) – q(y)
∣∣.

Lemma . ([]) Let α, β , γ and δ be in R. Then

∣∣opt{α,β} – opt{γ , δ}∣∣ ≤max
{|α – γ |, |β – δ|}.

Lemma . (Liu-Ume-Kang fixed point theorem []) Let (G,ρ) be a complete metric
space, {ρk}k∈N be a countable family of pseudometrics onG such that for any different points
x, y ∈G, ρk(x, y) >  for some k ∈ N, and ρ be defined by

ρ(x, y) =
∞∑
k=


k

· ρk(x, y)
 + ρk(x, y)

, ∀x, y ∈G.

Assume that T :G →G satisfies that

ρk(Tx,Ty)≤ ϕ
(
ρk(x, y)

)
, ∀(x, y,k) ∈G ×N,

where ϕ :R+ →R
+ is upper semicontinuous from the right onR+ and ϕ(t) < t for each t > .

Then T has a unique fixed point w ∈G and limn→∞ Tn(x) = w for each x ∈ G.

3 Main results
Now we investigate the existence, uniqueness and iterative approximations of continu-
ous bounded solutions and bounded solutions for functional equation (.) in the Banach
spaces BC(S) and B(S), respectively, by using the Banach fixed point theorem and iterative
algorithms.

Theorem . Let S be compact, λ ∈ [, ] and α ∈ [, ). Let p,q, r,u, v, t : S ×D → R and
a,b, c : S ×D → S satisfy that
(C) p, q and r are bounded in S ×D;
(C) sup(x,y)∈S×Dmax{|u(x, y)|, |v(x, y)| + |t(x, y)|} ≤ α;
(C) for each (x, g) ∈ S × {p,q, r,u, v, t,a,b, c},

lim
x→x

g(x, y) = g(x, y) uniformly for y ∈ D.

Then functional equation (.) possesses a unique solution w ∈ BC(S) such that
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(C) for each w ∈ BC(S), the iterative sequence {wn}n∈N defined by

wn(x) = λopt
y∈D

{
u(x, y)opt

{
p(x, y),wn–

(
a(x, y)

)}}
+ ( – λ)opt

y∈D

{
v(x, y)opt

{
q(x, y),wn–

(
b(x, y)

)}
+ t(x, y)opt

{
r(x, y),wn–

(
c(x, y)

)}}
, ∀(x,n) ∈ S ×N (.)

converges to w and has the error estimate:

‖wn –w‖ ≤ αn‖w –w‖ and

‖wn –w‖ ≤ αn

 – α
‖w –w‖, ∀n ∈N.

(.)

Proof Define a mapping H : BC(S)→ BC(S) by

Hh(x) = λopt
y∈D

{
u(x, y)opt

{
p(x, y),h

(
a(x, y)

)}}
+ ( – λ)opt

y∈D

{
v(x, y)opt

{
q(x, y),h

(
b(x, y)

)}
+ t(x, y)opt

{
r(x, y),h

(
c(x, y)

)}}
, ∀(x,h) ∈ S × BC(S). (.)

Firstly, we show that H is a self-mapping in BC(S). Let (x,h) ∈ S × BC(S) and ε > . It
follows from (C), (C) and the compactness of S that there exist constants M > , δ > 
and δ >  such that

sup
(x,y)∈S×D

max
{∣∣h(x)∣∣, ∣∣h(a(x, y))∣∣, ∣∣h(b(x, y))∣∣, ∣∣h(c(x, y))∣∣, ∣∣p(x, y)∣∣, ∣∣q(x, y)∣∣, ∣∣r(x, y)∣∣}

≤M; (.)

max
{∣∣u(x, y) – u(x, y)

∣∣, ∣∣v(x, y) – v(x, y)
∣∣ + ∣∣t(x, y) – t(x, y)

∣∣} < ε

M
,

∀(x, y) ∈ S ×D with ‖x – x‖ < δ; (.)

max
{∣∣p(x, y) – p(x, y)

∣∣, ∣∣q(x, y) – q(x, y)
∣∣, ∣∣r(x, y) – r(x, y)

∣∣} < ε


,

∀(x, y) ∈ S ×D with ‖x – x‖ < δ; (.)∣∣h(x) – h(x)
∣∣ < ε


, ∀x,x ∈ S with ‖x – x‖ < δ; (.)

max
{∥∥a(x, y) – a(x, y)

∥∥,∥∥b(x, y) – b(x, y)
∥∥,∥∥c(x, y) – c(x, y)

∥∥}
< δ,

∀(x, y) ∈ S ×D with ‖x – x‖ < δ. (.)

On account of (C), (.)-(.), Lemmas . and ., we infer that

∣∣Hh(x) –Hh(x)
∣∣

=
∣∣∣λopt

y∈D

{
u(x, y)opt

{
p(x, y),h

(
a(x, y)

)}}
+ ( – λ)opt

y∈D

{
v(x, y)opt

{
q(x, y),h

(
b(x, y)

)}
+ t(x, y)opt

{
r(x, y),h

(
c(x, y)

)}}
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– λopt
y∈D

{
u(x, y)opt

{
p(x, y),h

(
a(x, y)

)}}

– ( – λ)opt
y∈D

{
v(x, y)opt

{
q(x, y),h

(
b(x, y)

)}
+ t(x, y)opt

{
r(x, y),h

(
c(x, y)

)}}∣∣∣
≤ λ

∣∣∣opt
y∈D

{
u(x, y)opt

{
p(x, y),h

(
a(x, y)

)}}
– opt

y∈D

{
u(x, y)opt

{
p(x, y),h

(
a(x, y)

)}}∣∣∣
+ λ

∣∣∣opt
y∈D

{
u(x, y)opt

{
p(x, y),h

(
a(x, y)

)}}
– opt

y∈D

{
u(x, y)opt

{
p(x, y),h

(
a(x, y)

)}}∣∣∣
+ ( – λ)

∣∣∣opt
y∈D

{
v(x, y)opt

{
q(x, y),h

(
b(x, y)

)}
+ t(x, y)opt

{
r(x, y),h

(
c(x, y)

)}}

– opt
y∈D

{
v(x, y)opt

{
q(x, y),h

(
b(x, y)

)}
+ t(x, y)opt

{
r(x, y),h

(
c(x, y)

)}}∣∣∣
+ ( – λ)

∣∣∣opt
y∈D

{
v(x, y)opt

{
q(x, y),h

(
b(x, y)

)}
+ t(x, y)opt

{
r(x, y),h

(
c(x, y)

)}}

– opt
y∈D

{
v(x, y)opt

{
q(x, y),h

(
b(x, y)

)}
+ t(x, y)opt

{
r(x, y),h

(
c(x, y)

)}}∣∣∣
≤ λ sup

y∈D

{∣∣u(x, y) – u(x, y)
∣∣max

{∣∣p(x, y)∣∣, ∣∣h(a(x, y))∣∣}}
+ λ sup

y∈D

{∣∣u(x, y)∣∣∣∣opt{p(x, y),h(a(x, y))} – opt
{
p(x, y),h

(
a(x, y)

)}∣∣}
+ ( – λ) sup

y∈D

{∣∣v(x, y) – v(x, y)
∣∣max

{∣∣q(x, y)∣∣, ∣∣h(b(x, y))∣∣}
+

∣∣t(x, y) – t(x, y)
∣∣max

{∣∣r(x, y)∣∣, ∣∣h(c(x, y))∣∣}}
+ ( – λ) sup

y∈D

{∣∣v(x, y)∣∣∣∣opt{q(x, y),h(b(x, y))} – opt
{
q(x, y),h

(
b(x, y)

)}∣∣
+

∣∣t(x, y)∣∣∣∣opt{r(x, y),h(c(x, y))} – opt
{
r(x, y),h

(
c(x, y)

)}∣∣}
≤ λM sup

y∈D

∣∣u(x, y) – u(x, y)
∣∣

+ λα sup
y∈D

max
{∣∣p(x, y) – p(x, y)

∣∣, ∣∣h(a(x, y)) – h
(
a(x, y)

)∣∣}
+ ( – λ)M sup

y∈D

{∣∣v(x, y) – v(x, y)
∣∣ + ∣∣t(x, y) – t(x, y)

∣∣}
+ ( – λ) sup

y∈D

{(∣∣v(x, y)∣∣ + ∣∣t(x, y)∣∣)max
{∣∣q(x, y) – q(x, y)

∣∣,
∣∣h(b(x, y)) – h

(
b(x, y)

)∣∣, ∣∣r(x, y) – r(x, y)
∣∣, ∣∣h(c(x, y)) – h

(
c(x, y)

)∣∣}}
< λM

ε

M
+ λα

ε


+ ( – λ)M

ε

M
+ ( – λ)α

ε



< ε, ∀x ∈ S with ‖x – x‖ < δ

and

∣∣Hh(x)∣∣
=

∣∣∣λopt
y∈D

{
u(x, y)opt

{
p(x, y),h

(
a(x, y)

)}}
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+ ( – λ)opt
y∈D

{
v(x, y)opt

{
q(x, y),h

(
b(x, y)

)}
+ t(x, y)opt

{
r(x, y),h

(
c(x, y)

)}}∣∣∣
≤ λ sup

y∈D

{∣∣u(x, y)∣∣∣∣opt{p(x, y),h(a(x, y))}∣∣}
+ ( – λ) sup

y∈D

{∣∣v(x, y)∣∣∣∣opt{q(x, y),h(b(x, y))}∣∣ + ∣∣t(x, y)∣∣∣∣opt{r(x, y),h(c(x, y))}∣∣}
≤ λα sup

y∈D
max

{∣∣p(x, y)∣∣, ∣∣h(a(x, y))∣∣}
+ ( – λ) sup

y∈D

{[∣∣v(x, y)∣∣ + ∣∣t(x, y)∣∣]max
{∣∣q(x, y)∣∣, ∣∣r(x, y)∣∣, ∣∣h(b(x, y))∣∣, ∣∣h(c(x, y))∣∣}}

≤ λαM + ( – λ)αM

= αM, ∀x ∈ S,

which yields that Hh is bounded and continuous in S. That is, H maps BC(S) into BC(S).
Secondly, we show that H is a contraction mapping in BC(S). Given ε > . In view of

(.), Lemmas . and ., we get that

∣∣Hh(x) –Hg(x)
∣∣

=
∣∣∣λopt

y∈D

{
u(x, y)opt

{
p(x, y),h

(
a(x, y)

)}}
+ ( – λ)opt

y∈D

{
v(x, y)opt

{
q(x, y),h

(
b(x, y)

)}
+ t(x, y)opt

{
r(x, y),h

(
c(x, y)

)}}
– λopt

y∈D

{
u(x, y)opt

{
p(x, y), g

(
a(x, y)

)}}

– ( – λ)opt
y∈D

{
v(x, y)opt

{
q(x, y), g

(
b(x, y)

)}
+ t(x, y)opt

{
r(x, y), g

(
c(x, y)

)}}∣∣∣
≤ λ sup

y∈D

{∣∣u(x, y)∣∣∣∣opt{p(x, y),h(a(x, y))} – opt
{
p(x, y), g

(
a(x, y)

)}∣∣}
+ ( – λ) sup

y∈D

{∣∣v(x, y)∣∣∣∣opt{q(x, y),h(b(x, y))} – opt
{
q(x, y), g

(
b(x, y)

)}∣∣
+

∣∣t(x, y)∣∣∣∣opt{r(x, y),h(c(x, y))} – opt
{
r(x, y), g

(
c(x, y)

)}∣∣}
≤ λα sup

y∈D

{∣∣h(a(x, y)) – g
(
a(x, y)

)∣∣} + ( – λ) sup
y∈D

{[∣∣v(x, y)∣∣ + ∣∣t(x, y)∣∣]
×max

{∣∣h(b(x, y)) – g
(
b(x, y)

)∣∣, ∣∣h(c(x, y)) – g
(
c(x, y)

)∣∣}}
≤ α‖h – g‖, ∀x ∈ S,h, g ∈ BC(S),

which gives that

‖Hh –Hg‖ ≤ α‖h – g‖, ∀h, g ∈ BC(S), (.)

that is, H is a contraction mapping in BC(S). Thus the Banach fixed point theorem yields
that H has a unique fixed point w ∈ BC(S), which is a unique solution of functional equa-
tion (.) in BC(S).

http://www.journalofinequalitiesandapplications.com/content/2013/1/516
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Thirdly, we show (C). Note that

w(x) = λopt
y∈D

{
u(x, y)opt

{
p(x, y),w

(
a(x, y)

)}}
+ ( – λ)opt

y∈D

{
v(x, y)opt

{
q(x, y),w

(
b(x, y)

)}
+t(x, y)opt

{
r(x, y),w

(
c(x, y)

)}}
, ∀x ∈ S,

which together with (.), (.) and (.) yields that

‖wn –w‖ = sup
x∈S

∣∣wn(x) –w(x)
∣∣ = sup

x∈S

∣∣Hwn–(x) –Hw(x)
∣∣ = ‖Hwn– –Hw‖

≤ α‖wn– –w‖ ≤ · · · ≤ αn‖w –w‖, ∀n ∈N, (.)

which guarantees that the sequence {wn}n∈N converges to w. Similarly, we conclude that

‖wn –wn+m‖ ≤
n+m–∑
i=n

‖wi –wi+‖ =
n+m–∑
i=n

‖Hwi– –Hwi‖ ≤
n+m–∑
i=n

α‖wi– –wi‖

≤ · · · ≤
n+m–∑
i=n

αi‖w –w‖ ≤ αn

 – α
‖w –w‖, ∀(n,m) ∈N×N.

Letting m → ∞ in the above inequalities, we infer that (.) holds. This completes the
proof. �

Using the proof of Theorem ., we have the following.

Theorem . Let α ∈ (, ) and λ ∈ [, ]. Let p,q, r,u, v, t : S × D → R and a,b, c : S ×
D → S satisfy (C) and (C). Then functional equation (.) possesses a unique solution
w ∈ B(S) and for each w ∈ B(S), the sequence {wn}n∈N defined by (.) converges to w and
satisfies (C).

Example . Consider the functional equation

f (x) = λ opt
y∈R+

{
cos(x + y)

y + 
opt

{
x

x + y + 
, f

(
sin

(
x – y

))}}

+ ( – λ) opt
y∈R+

{
x sin(y)

(x + ) + y
opt

{
x ln( + x)
x + y + 

, f
(

x

x + y + 

)}

+
√
x + 


√
x +  + y

opt

{
x cos(y – y)
y + y + 

, f
(

xy
x + y + 

)}}
, ∀x ∈ [, ]. (.)

Put X = Y = R, S = [, ], D = R
+, λ ∈ [, ], α = 

 . Let p,q, r,u, v, t : S × D → R and
a,b, c : S ×D → S be defined by

p(x, y) =
x

x + y + 
, q(x, y) =

x ln( + x)
x + y + 

, r(x, y) =
x cos(y – y)
y + y + 

,

u(x, y) =
cos(x + y)

y + 
, v(x, y) =

x sin(y)
(x + ) + y

, t(x, y) =
√
x + 


√
x +  + y

,

http://www.journalofinequalitiesandapplications.com/content/2013/1/516
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a(x, y) = sin
(
x – y

)
, b(x, y) =

x

x + y + 
, c(x, y) =

xy
x + y + 

,

∀(x, y) ∈ S ×D.

It is easy to see that the conditions of Theorem. are satisfied. It follows fromTheorem.
that functional equation (.) possesses a unique solution w ∈ BC(S) and (C) holds.

Example . Consider the functional equation

f (x) = λ opt
y∈R–

{
xy sin(xy)
x + y + 

opt
{
sin

(
xy

)
, f

(
x

√
x + y

)}}

+ ( – λ) opt
y∈R–

{
x arctan(xy)
πx + y + 

opt
{
cos

(
xy(x + y)

)
, f

(
xy

)}

+
x – sin(xy)

x + cos(xy)
opt

{
x – y

(x + ) + y
, f

(
x – y – xy

)}}
, ∀x ∈ R

+. (.)

Set X = Y = R, S = R
+, D = R–, λ ∈ [, ], α = 

 . Let p,q, r,u, v, t : S × D → R and a,b, c :
S ×D→ S be defined by

p(x, y) = sin
(
xy

)
, q(x, y) = cos

(
xy(x + y)

)
, r(x, y) =

x – y

(x + ) + y
,

u(x, y) =
xy sin(xy)
x + y + 

, v(x, y) =
x arctan(xy)
πx + y + 

,

t(x, y) =
x – sin(xy)

x + cos(xy)
, a(x, y) = x

√
x + y, b(x, y) = xy,

c(x, y) = x – y – xy, ∀(x, y) ∈ S ×D.

It is clear that the conditions of Theorem . are fulfilled. Thus Theorem . guarantees
that functional equation (.) possesses a unique solution w ∈ B(S), which satisfies (C).

Next we prove the existence, uniqueness and iterative approximation of solutions for
functional equation (.) in the completemetric space BB(S) by using Liu-Ume-Kang fixed
point theorem.

Theorem . Let α ∈ (, ), λ ∈ [, ], p,q, r,u, v, t : S × D → R and a,b, c : S × D → S
satisfy that
(C) p, q and r are bounded on B(,k)×D, ∀k ∈N;
(C) sup(x,y)∈B(,k)×Dmax{|u(x, y)|, |v(x, y)| + |t(x, y)|} ≤ α, ∀k ∈N;
(C) sup(x,y)∈B(,k)×Dmax{‖a(x, y)‖,‖b(x, y)‖,‖c(x, y)‖} ≤ k, ∀k ∈N.

Then functional equation (.) possesses a unique solution w ∈ BB(S) such that
(C) for each w ∈ BB(S), the sequence {wn}n∈N defined by

wn(x) = λopt
y∈D

{
u(x, y)opt

{
p(x, y),wn–

(
a(x, y)

)}}
+ ( – λ)opt

y∈D

{
v(x, y)opt

{
q(x, y),wn–

(
b(x, y)

)}

http://www.journalofinequalitiesandapplications.com/content/2013/1/516


Liu et al. Journal of Inequalities and Applications 2013, 2013:516 Page 9 of 19
http://www.journalofinequalitiesandapplications.com/content/2013/1/516

+ t(x, y)opt
{
r(x, y),wn–

(
c(x, y)

)}}
,

∀(x,k,n) ∈ B(,k)×N×N (.)

converges to w and has the following error estimates:

dk(wn,w) ≤ αndk(w,w) and

dk(wn,w) ≤ αn

 – α
dk(w,w), ∀(k,n) ∈N×N.

(.)

Proof Define a mapping H : BB(S)→ BB(S) by

Hh(x) = λopt
y∈D

{
u(x, y)opt

{
p(x, y),h

(
a(x, y)

)}}
+ ( – λ)opt

y∈D

{
v(x, y)opt

{
q(x, y),h

(
b(x, y)

)}
+ t(x, y)opt

{
r(x, y),h

(
c(x, y)

)}}
, ∀(x,k,h) ∈ B(,k)×N× BB(S). (.)

It follows from (C) and (C) that for each (k,h) ∈ N × BB(S), there exist γ (k) >  and
β(k,h) >  such that

sup
(x,y)∈B(,k)×D

max
{∣∣p(x, y)∣∣, ∣∣q(x, y)∣∣, ∣∣r(x, y)∣∣} ≤ γ (k);

sup
(x,y)∈B(,k)×D

max
{∣∣h(a(x, y))∣∣, ∣∣h(b(x, y))∣∣, ∣∣h(c(x, y))∣∣} ≤ β(k,h),

which together with (C), (.) and Lemma . gives that

∣∣Hh(x)∣∣
=

∣∣∣λopt
y∈D

{
u(x, y)opt

{
p(x, y),h

(
a(x, y)

)}}
+ ( – λ)opt

y∈D

{
v(x, y)opt

{
q(x, y),h

(
b(x, y)

)}

+ t(x, y)opt
{
r(x, y),h

(
c(x, y)

)}}∣∣∣
≤ λ sup

y∈D

{∣∣u(x, y)∣∣max
{∣∣p(x, y)∣∣, ∣∣h(a(x, y))∣∣}}

+ ( – λ) sup
y∈D

{∣∣v(x, y)∣∣max
{∣∣q(x, y)∣∣, ∣∣h(b(x, y))∣∣}

+
∣∣t(x, y)∣∣max

{∣∣r(x, y)∣∣, ∣∣h(c(x, y))∣∣}}
≤ λαmax

{
γ (k),β(k,h)

}
+ ( – λ)max

{
γ (k),β(k,h)

}
sup
y∈D

(∣∣v(x, y)∣∣ + ∣∣t(x, y)∣∣)
≤ λαmax

{
γ (k),β(k,h)

}
+ ( – λ)αmax

{
γ (k),β(k,h)

}
= αmax

{
γ (k),β(k,h)

}
, ∀(x,k,h) ∈ B(,k)×N× BB(S),

http://www.journalofinequalitiesandapplications.com/content/2013/1/516
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which means thatH is a self-mapping in BB(S). By virtue of (.), (C), (C), Lemmas .
and ., we get that

∣∣Hh(x) –Hg(x)
∣∣

=
∣∣∣λopt

y∈D

{
u(x, y)opt

{
p(x, y),h

(
a(x, y)

)}}
+ ( – λ)opt

y∈D

{
v(x, y)opt

{
q(x, y),h

(
b(x, y)

)}
+ t(x, y)opt

{
r(x, y),h

(
c(x, y)

)}}
– λopt

y∈D

{
u(x, y)opt

{
p(x, y), g

(
a(x, y)

)}}

– ( – λ)opt
y∈D

{
v(x, y)opt

{
q(x, y), g

(
b(x, y)

)}
+ t(x, y)opt

{
r(x, y), g

(
c(x, y)

)}}∣∣∣
≤ λ sup

y∈D

{∣∣u(x, y)∣∣∣∣opt{p(x, y),h(a(x, y))} – opt
{
p(x, y), g

(
a(x, y)

)}∣∣}
+ ( – λ) sup

y∈D

{∣∣v(x, y)∣∣∣∣opt{q(x, y),h(b(x, y))} – opt
{
q(x, y), g

(
b(x, y)

)}∣∣
+

∣∣t(x, y)∣∣∣∣opt{r(x, y),h(c(x, y))} – opt
{
r(x, y), g

(
c(x, y)

)}∣∣}
≤ λαdk(h, g) + ( – λ) sup

y∈D

{∣∣v(x, y)∣∣ + ∣∣t(x, y)]}dk(h, g)
≤ αdk(h, g), (x,k,h, g) ∈ B(,k)×N× BB(S)× BB(S),

which yields that

dk(Hh,Hg)≤ αdk(h, g), ∀(k,h, g) ∈N× BB(S)× BB(S). (.)

Put ϕ(t) = αt for all t ∈R
+. It follows from (.) and Lemma . thatH has a unique fixed

point w ∈ BB(S), which is also a unique solution of functional equation (.). In light of
(.), (.) and (.), we obtain that

dk(wn,w) = dk(Hwn–,Hw) ≤ αdk(wn–,w) ≤ · · ·
≤ αndk(w,w), ∀(k,n) ∈N×N (.)

and

dk(wn,wn+m) ≤
n+m–∑
i=n

dk(wi,wi+) =
n+m–∑
i=n

dk(Hwi–,Hwi)

≤
n+m–∑
i=n

αdk(wi–,wi) ≤
n+m–∑
i=n

αidk(w,w)

≤ αn

 – α
dk(w,w), ∀(k,n,m) ∈N×N×N. (.)

Clearly (.) means that {wn}n∈N converges to w. Thus (.) follows from (.) and
(.) by letting m → ∞. This completes the proof. �
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Remark . Theorem . extends Theorem . in [] and Corollaries . and . in [].
The example below shows that Theorem . extends substantially the corresponding re-
sults in [, ].

Example . Consider the functional equation

f (x) = λ opt
y∈R+

{
x cos(xy)
(x + ) + y

opt

{
x

(x – y) + 
, f

(
x sin(xy)
x + xy + 

)}}

+ ( – λ) opt
y∈R+

{
sin(xy)
xy + 

opt

{
xy

xy + 
, f

(
xy cos(xy)

xy + 

)}

+
xy

x + (y + )
opt

{
xy

x + y + 
, f

(
ln( + xy)

(x + )(y + )

)}}
, ∀x ∈ R

+. (.)

Put X = Y = R, S = D = R
+, λ ∈ [, ] and α = 

 . Let p,q, r,u, v, t : S × D → R and a,b, c :
S ×D→ S be defined by

p(x, y) =
x

(x – y) + 
, q(x, y) =

xy

xy + 
, r(x, y) =

xy

x + y + 
,

u(x, y) =
x cos(xy)
(x + ) + y

, v(x, y) =
sin(xy)
xy + 

, t(x, y) =
xy

x + (y + )
,

a(x, y) =
x sin(xy)
x + xy + 

, b(x, y) =
xy cos(xy)

xy + 
,

c(x, y) =
ln( + xy)

(x + )(y + )
, ∀(x, y) ∈ S ×D.

It is clear that the conditions of Theorem . are satisfied. It follows from Theorem .
that functional equation (.) possesses a unique solutionw ∈ BB(S), which satisfies (C).
But Theorem . in [] and Corollaries . and . in [] are unapplicable to functional
equation (.).

Next we discuss the behaviors of solutions and iterative algorithms for functional equa-
tion (.) in the complete metric space BB(S).

Theorem . Let λ ∈ [, ], (ϕ,ψ) ∈ �, p,q, r,u, v, t : S × D → R and a,b, c : S × D → S
satisfy that

(C) sup(x,y)∈B(,k)×Dmax{|p(x, y)|, |q(x, y)|, |r(x, y)|} ≤ ψ(‖x‖), ∀k ∈N;
(C) sup(x,y)∈B(,k)×Dmax{|u(x, y)|, |v(x, y)| + |t(x, y)|} ≤ , ∀k ∈N;
(C) sup(x,y)∈B(,k)×Dmax{‖a(x, y)‖,‖b(x, y)‖,‖c(x, y)‖} ≤ ϕ(‖x‖), ∀k ∈ N.

Then functional equation (.) possesses a solution w ∈ BB(S) such that
(C) for each w ∈ BB(S) with |w(x)| ≤ ψ(‖x‖), ∀(x,k) ∈ B(,k)×N, the sequence

{wn}n∈N defined by (.) converges to w and dk(wn,w) ≤ ∑∞
j=n– ψ(ϕj(k)),

∀(k,n) ∈ N×N;
(C) |w(x)| ≤ ∑∞

n= ψ(ϕn(‖x‖)), ∀(x,k) ∈ B(,k)×N;
(C) limn→∞ w(xn) =  for any (x,k) ∈ B(,k)×N, {yn}n∈N ⊂D and

xn ∈ {a(xn–, yn),b(xn–, yn), c(xn–, yn)}, ∀n ∈N;
(C) w is a unique solution of functional equation (.) relative to (C).

http://www.journalofinequalitiesandapplications.com/content/2013/1/516
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Proof Define a mapping H : BB(S)→ BB(S) by

Hh(x) = λAh(x) + ( – λ)Bh(x), ∀(x,k,h) ∈ B(,k)×N× BB(S), (.)

where

Ah(x) = opt
y∈D

{
u(x, y)opt

{
p(x, y),h

(
a(x, y)

)}}
,

Bh(x) = opt
y∈D

{
v(x, y)opt

{
q(x, y),h

(
b(x, y)

)}
+ t(x, y)opt

{
r(x, y),h

(
c(x, y)

)}}
,

∀(x,k,h) ∈ B(,k)×N× BB(S).

(.)

Note that (C) and (C) imply (C) and (C) by (ϕ,ψ) ∈ �, respectively. Similar to the
proof of Theorem ., by (C) we conclude that the mapping H maps BB(S) into BB(S)
and satisfies that

dk(Hh,Hg)≤ dk(h, g), ∀(h, g,k) ∈ BB(S)× BB(S)×N,

which yields that

d(Hh,Hg) =
∞∑
k=


k

· dk(Hh,Hg)
 + dk(Hh,Hg)

≤
∞∑
k=


k

· dk(h, g)
 + dk(h, g)

= d(h, g), ∀(h, g) ∈ BB(S)× BB(S), (.)

that is, the mapping H is nonexpansive in BB(S).
Now we show that for each n ∈N,

∣∣wn(x)
∣∣ ≤

n∑
j=

ψ
(
ϕj(‖x‖)), ∀(x,k) ∈ B(,k)×N. (.)

It is easy to see that (.) holds for n = . Assume that (.) holds for some n ∈ N. In
terms of (C), (C), (C), (.), (ϕ,ψ) ∈ � and Lemma ., we gain that

∣∣wn+(x)
∣∣

=
∣∣∣λopt

y∈D

{
u(x, y)opt

{
p(x, y),wn

(
a(x, y)

)}}

+ ( – λ)opt
y∈D

{
v(x, y)opt

{
q(x, y),wn

(
b(x, y)

)}
+ t(x, y)opt

{
r(x, y),wn

(
c(x, y)

)}}∣∣∣
≤ λ sup

y∈D

{∣∣u(x, y)∣∣max
{∣∣p(x, y)∣∣, ∣∣wn

(
a(x, y)

)∣∣}}

+ ( – λ) sup
y∈D

{∣∣v(x, y)∣∣max
{∣∣q(x, y)∣∣, ∣∣wn

(
b(x, y)

)∣∣
+

∣∣t(x, y)∣∣max
{∣∣r(x, y)∣∣, ∣∣wn

(
c(x, y)

)∣∣}}
≤ λ sup

y∈D

{
max

{
ψ

(‖x‖), n∑
j=

ψ
(
ϕj(∥∥a(x, y)∥∥))}}
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+ ( – λ) sup
y∈D

{∣∣v(x, y)∣∣max

{
ψ

(‖x‖), n∑
j=

ψ
(
ϕj(∥∥b(x, y)∥∥))}

+
∣∣t(x, y)∣∣max

{
ψ

(‖x‖), n∑
j=

ψ
(
ϕj(∥∥c(x, y)∥∥))}}

≤ λmax

{
ψ

(‖x‖), n∑
j=

ψ
(
ϕj+(‖x‖))

}

+ ( – λ) sup
y∈D

{∣∣v(x, y)∣∣ + ∣∣t(x, y)∣∣}max

{
ψ

(‖x‖), n∑
j=

ψ
(
ϕj+(‖x‖))

}}

≤ λ

(
ψ

(‖x‖) + n∑
j=

ψ
(
ϕj+(‖x‖))

)
+ ( – λ)

(
ψ

(‖x‖) + n∑
j=

ψ
(
ϕj+(‖x‖))

)

=
n+∑
j=

ψ
(
ϕj(‖x‖)), ∀(x,k) ∈ B(,k)×N,

that is, (.) is true for n + . Hence (.) holds for each n ∈N.
Let ε >  and k,n,m ∈ N. Assume that opty∈D = supy∈D. It follows from (.) that for

each x ∈ B(,k) there exist y, y, z, z ∈D satisfying

Awn+m–(x) – –ε < u(x, y)opt
{
p(x, y),wn+m–

(
a(x, y)

)}
,

Awn–(x) – –ε < u(x, y)opt
{
p(x, y),wn–

(
a(x, y)

)}
,

Awn+m–(x) ≥ u(x, y)opt
{
p(x, y),wn+m–

(
a(x, y)

)}
,

Awn–(x)≥ u(x, y)opt
{
p(x, y),wn–

(
a(x, y)

)}
(.)

and

Bwn+m–(x) – –ε < v(x, z)opt
{
q(x, z),wn+m–

(
b(x, z)

)}
+ t(x, z)opt

{
r(x, z),wn+m–

(
c(x, z)

)}
,

Bwn–(x) – –ε < v(x, z)opt
{
q(x, z),wn–

(
b(x, z)

)}
+ t(x, z)opt

{
r(x, z),wn–

(
c(x, z)

)}
,

Bwn+m–(x) ≥ v(x, z)opt
{
q(x, z),wn+m–

(
b(x, z)

)}
+ t(x, z)opt

{
r(x, z),wn+m–

(
c(x, z)

)}
,

Bwn–(x) ≥ v(x, z)opt
{
q(x, z),wn–

(
b(x, z)

)}
+ t(x, z)opt

{
r(x, z),wn–

(
c(x, z)

)}
.

(.)

On account of (.), (.) and Lemma ., we obtain that

Awn+m–(x) –Awn–(x)

< u(x, y)opt
{
p(x, y),wn+m–

(
a(x, y)

)}
– u(x, y)opt

{
p(x, y),wn–

(
a(x, y)

)}
+ –ε

≤ ∣∣u(x, y)∣∣∣∣wn+m–
(
a(x, y)

)
–wn–

(
a(x, y)

)∣∣ + –ε;
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Awn+m–(x) –Awn–(x)

> u(x, y)opt
{
p(x, y),wn+m–

(
a(x, y)

)}
– u(x, y)opt

{
p(x, y),wn–

(
a(x, y)

)}
– –ε

≥ –
∣∣u(x, y)∣∣∣∣wn+p–

(
a(x, y)

)
–wn–

(
a(x, y)

)∣∣ – –ε;

Bwn+m–(x) – Bwn–(x)

< v(x, z)opt
{
q(x, z),wn+m–

(
b(x, z)

)}
+ t(x, z)opt

{
r(x, z),wn+m–

(
c(x, z)

)}
– v(x, z)opt

{
q(x, z),wn–

(
b(x, z)

)}
– t(x, z)opt

{
r(x, z),wn–

(
c(x, z)

)}
+ –ε

≤ ∣∣v(x, z)∣∣∣∣wn+p–
(
b(x, z)

)
–wn–

(
b(x, z)

)∣∣
+

∣∣t(x, z)∣∣∣∣wn+m–
(
c(x, z)

)
–wn–

(
c(x, z)

)∣∣ + –ε

and

Bwn+m–(x) – Bwn–(x)

> v(x, z)opt
{
q(x, z),wn+m–

(
b(x, z)

)}
+ t(x, z)opt

{
r(x, z),wn+m–

(
c(x, z)

)}
– v(x, z)opt

{
q(x, z),wn–

(
b(x, z)

)}
– t(x, z)opt

{
r(x, z),wn–

(
c(x, z)

)}
– –ε

≥ –
∣∣v(x, z)∣∣∣∣wn+m–

(
b(x, z)

)
–wn–

(
b(x, z)

)∣∣
–

∣∣t(x, z)∣∣∣∣wn+m–
(
c(x, z)

)
–wn–

(
c(x, z)

)∣∣ – –ε,

which together with (C), (.), (.), (.) imply that

∣∣wn+m(x) –wn(x)
∣∣

=
∣∣λAwn+m–(x) + ( – λ)Bwn+m–(x) – λAwn–(x) – ( – λ)Bwn–(x)

∣∣
≤ λ

∣∣Awn+m–(x) –Awn–(x)
∣∣ + ( – λ)

∣∣Bwn+m–(x) – Bwn–(x)
∣∣

≤max
{∣∣Awn+m–(x) –Awn–(x)

∣∣, ∣∣Bwn+m–(x) – Bwn–(x)
∣∣}

≤max
{∣∣u(x, y)∣∣∣∣wn+m–

(
a(x, y)

)
–wn–

(
a(x, y)

)∣∣,∣∣u(x, y)∣∣∣∣wn+m–
(
a(x, y)

)
–wn–

(
a(x, y)

)∣∣,∣∣v(x, z)∣∣∣∣wn+m–
(
b(x, z)

)
–wn–

(
b(x, z)

)∣∣
+

∣∣t(x, z)∣∣∣∣wn+m–
(
c(x, z)

)
–wn–

(
c(x, z)

)∣∣,∣∣v(x, z)∣∣∣∣wn+m–
(
b(x, z)

)
–wn–

(
b(x, z)

)∣∣
+

∣∣t(x, z)∣∣∣∣wn+m–
(
c(x, z)

)
–wn–

(
c(x, z)

)∣∣} + –ε

≤max
{∣∣u(x, y)∣∣, ∣∣u(x, y)∣∣, ∣∣v(x, z)∣∣ + ∣∣t(x, z)∣∣, ∣∣v(x, z)∣∣ + ∣∣t(x, z)∣∣}

×max
{∣∣wn+m–

(
a(x, y)

)
–wn–

(
a(x, y)

)∣∣, ∣∣wn+m–
(
a(x, y)

)
–wn–

(
a(x, y)

)∣∣,∣∣wn+m–
(
b(x, z)

)
–wn–

(
b(x, z)

)∣∣, ∣∣wn+m–
(
c(x, z)

)
–wn–

(
c(x, z)

)∣∣,
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∣∣wn+m–
(
b(x, z)

)
–wn–

(
b(x, z)

)∣∣, ∣∣wn+m–
(
c(x, z)

)
–wn–

(
c(x, z)

)∣∣} + –ε

≤max
{∣∣wn+m–

(
a(x, y)

)
–wn–

(
a(x, y)

)∣∣, ∣∣wn+m–
(
a(x, y)

)
–wn–

(
a(x, y)

)∣∣,∣∣wn+m–
(
b(x, z)

)
–wn–

(
b(x, z)

)∣∣, ∣∣wn+m–
(
c(x, z)

)
–wn–

(
c(x, z)

)∣∣,∣∣wn+m–
(
b(x, z)

)
–wn–

(
b(x, z)

)∣∣, ∣∣wn+m–
(
c(x, z)

)
–wn–

(
c(x, z)

)∣∣} + –ε

=
∣∣wn+m–(x) –wn–(x)

∣∣ + –ε

for some x ∈ {a(x, y),b(x, y), c(x, y)} and y ∈ {y, y, z, z}, that is,
∣∣wn+m(x) –wn(x)

∣∣ < |wn+m–(x) –wn–(x)| + –ε. (.)

Similarly, we infer that (.) holds for opty∈D = infy∈D. Proceeding in this way, we con-
clude that for each n ∈ N, there exist yi ∈ D and xi ∈ {a(xi–, yi),b(xi–, yi), c(xi–, yi)} for
i ∈ {, , . . . ,n} such that

∣∣wn+m–(x) –wn–(x)
∣∣ ≤ ∣∣wn+m–(x) –wn–(x)

∣∣ + –ε,∣∣wn+m–(x) –wn–(x)
∣∣ ≤ ∣∣wn+m–(x) –wn–(x)

∣∣ + –ε,

· · ·∣∣wm+(xn–) –w(xn–)
∣∣ ≤ ∣∣wm(xn) –w(xn)

∣∣ + –nε.

(.)

In terms of (ϕ,ψ) ∈ �, (C), (.) and (.), we deduce that

∣∣wn+m(x) –wn(x)
∣∣ < ∣∣wm(xn) –w(xn)

∣∣ + ε ≤
m∑
j=

ψ
(
ϕj(‖xn‖)) +ψ

(‖xn‖) + ε

≤
m∑
j=

ψ
(
ϕj+n(k)

)
+ψ

(
ϕn(k)

)
+ ε ≤

m+n∑
j=n–

ψ
(
ϕj(k)

)
+ ε,

which means that

dk(wn+m,wn)≤
n+m∑
j=n–

ψ
(
ϕj(k)

)
+ ε. (.)

Letting ε → + in the above inequality, we deduce that

dk(wn+m,wn)≤
n+m∑
j=n–

ψ
(
ϕj(k)

)
. (.)

Notice that
∑∞

n= ψ(ϕn(t)) < +∞ for each t > . Thus (.) means that {wn}n∈N is a
Cauchy sequence in (BB(S),d) and it converges to some w ∈ BB(S). Letting m → ∞ in
(.), we conclude immediately that

dk(wn,w) ≤
∞∑

j=n–

ψ
(
ϕj(k)

)
, ∀(k,n) ∈N×N.
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By virtue of (.), we infer that

d(Hw,w) ≤ d(Hw,Hwn) + d(wn+,w) ≤ d(w,wn) + d(wn+,w) →  as n→ ∞,

which yields thatHw = w, that is, functional equation (.) possesses a solution w ∈ BB(S).
Next we show (C). Let (x,k) ∈ B(,k)×N. According to (C), (.) and (ϕ,ψ) ∈ �,

we know that

∣∣w(x)∣∣ ≤ ∣∣w(x) –wn(x)
∣∣ + ∣∣wn(x)

∣∣ ≤ dk(w,wn) +
n∑
j=

ψ
(
ϕj(‖x‖))

→
∞∑
j=

ψ
(
ϕj(‖x‖)) as n→ ∞,

that is, (C) holds.
Next we show (C). Given (x,k) ∈ B(,k) × N, {yn}n∈N ⊂ D and xn ∈ {a(xn–, yn),

b(xn–, yn), c(xn–, yn)}, ∀n ∈N. It follows from (C) and (ϕ,ψ) ∈ � that

‖xn‖ ≤ max
{∥∥a(xn–, yn)∥∥,∥∥b(xn–, yn)∥∥,∥∥c(xn–, yn)∥∥}

≤ ϕ
(‖xn–‖) ≤ · · · ≤ ϕn(‖x‖) ≤ ϕn(k) < k, ∀n ∈N,

which together with (C), (.) and (ϕ,ψ) ∈ � implies that

∣∣w(xn)∣∣ ≤ ∣∣w(xn) –wn(xn)
∣∣ + ∣∣wn(xn)

∣∣ ≤ dk(w,wn) +
n∑
j=

ψ
(
ϕj(‖xn‖))

≤ dk(w,wn) +
n∑
j=n

ψ
(
ϕj(k)

) →  as n→ ∞,

which yields that limn→∞ w(xn) = .
Finally we show (C). Suppose that functional equation (.) has another solution

h ∈ BB(S) that satisfies (C). Let ε >  and x ∈ S. It follows from (.) that there ex-
ist y, y, z, z ∈D with

Aw(x) – –ε < u(x, y)opt
{
p(x, y),w

(
a(x, y)

)}
,

Ah(x) – –ε < u(x, y)opt
{
p(x, y),h

(
a(x, y)

)}
,

Aw(x) > u(x, y)opt
{
p(x, y),w

(
a(x, y)

)}
– –ε,

Ah(x) > u(x, y)opt
{
p(x, y),h

(
a(x, y)

)}
– –ε

and

Bw(x) – –ε < v(x, z)opt
{
q(x, z),w

(
b(x, z)

)}
+ t(x, z)opt

{
r(x, z),w

(
c(x, z)

)}
,

Bh(x) – –ε < v(x, z)opt
{
q(x, z),h

(
b(x, z)

)}
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+ t(x, z)opt
{
r(x, z),h

(
c(x, z)

)}
,

Bw(x) > v(x, z)opt
{
q(x, z),w

(
b(x, z)

)}
+ t(x, z)opt

{
r(x, z),w

(
c(x, z)

)}
– –ε,

Bh(x) > v(x, z)opt
{
q(x, z),h

(
b(x, z)

)}
+ t(x, z)opt

{
r(x, z),h

(
c(x, z)

)}
– –ε,

which together with (C), (.) and (.) yield that there exist x ∈ {a(x, y),b(x, y),
c(x, y)} and y ∈ {y, y, z, z} satisfying

∣∣w(x) – h(x)
∣∣

=
∣∣λAw(x) + ( – λ)Bw(x) – λAh(x) – ( – λ)Bh(x)

∣∣
≤ λ

∣∣Aw(x) –Ah(x)
∣∣ + ( – λ)

∣∣Bw(x) – Bh(x)
∣∣

≤max
{∣∣Aw(x) –Ah(x)

∣∣, ∣∣Bw(x) – Bh(x)
∣∣}

<max
{∣∣u(x, y)∣∣∣∣opt{p(x, y),w(

a(x, y)
)}

– opt
{
p(x, y),h

(
a(x, y)

)}∣∣,∣∣u(x, y)∣∣∣∣opt{p(x, y),w(
a(x, y)

)}
– opt

{
p(x, y),h

(
a(x, y)

)}∣∣,∣∣v(x, z)opt{q(x, z),w(
b(x, z)

)}
+ t(x, z)opt

{
r(x, z),w

(
c(x, z)

)}
– v(x, z)opt

{
q(x, z),h

(
b(x, z)

)}
– t(x, z)opt

{
r(x, z),h

(
c(x, z)

)}∣∣,∣∣v(x, z)opt{q(x, z),w(
b(x, z)

)}
+ t(x, z)opt

{
r(x, z),w

(
c(x, z)

)}
– v(x, z)opt

{
q(x, z),h

(
b(x, z)

)}
– t(x, z)opt

{
r(x, z),h

(
c(x, z)

)}∣∣} + ε

≤max
{∣∣u(x, y)∣∣, ∣∣u(x, y)∣∣, ∣∣v(x, z)∣∣ + ∣∣t(x, z)∣∣, ∣∣v(x, z)∣∣ + ∣∣t(x, z)∣∣}

×max
{∣∣w(

a(x, y)
)
– h

(
a(x, y)

)∣∣, ∣∣w(
a(x, y)

)
– h

(
a(x, y)

)∣∣,∣∣w(
b(x, z)

)
– h

(
b(x, z)

)∣∣, ∣∣w(
c(x, z)

)
– h

(
c(x, z)

)∣∣,∣∣w(
b(x, z)

)
– h

(
b(x, z)

)∣∣, ∣∣w(
c(x, z)

)
– h

(
c(x, z)

)∣∣} + ε

≤ ∣∣w(x) – h(x)
∣∣ + ε,

that is,

∣∣w(x) – h(x)
∣∣ < ∣∣w(x) – h(x)

∣∣ + ε. (.)

Similarly, we infer that for each n ∈ N \ {}, there exist xi ∈ {a(xi–, yi),b(xi–, yi), c(xi–, yi)}
and yi ∈ D, i ∈ {, , . . . ,n}, such that

∣∣w(x) – h(x)
∣∣ < ∣∣w(x) – h(x)

∣∣ + –ε,∣∣w(x) – h(x)
∣∣ < ∣∣w(x) – h(x)

∣∣ + –ε,

· · ·∣∣w(xn–) – h(xn–)
∣∣ < ∣∣w(xn) – h(xn)

∣∣ + –n+ε.

(.)
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Using (.) and (.), we deduce that

∣∣w(x) – h(x)
∣∣ < ∣∣w(xn) – h(xn)

∣∣ + ε → ε as n→ ∞.

Letting ε → + in the above inequality, we infer that w(x) = h(x). This completes the
proof. �

Remark . Theorem . generalizes Theorem . in [, , ], Corollaries . and . in
[], Corollaries ., . and . in [], Theorems . and . in [], Theorem . in []
and Theorem . in []. The example below shows that Theorem . extends properly
the corresponding results in [, , , , –, ].

Example . Consider the functional equation

f (x) = λ opt
y∈R–

{
sin(xy)
(x – y) + 

opt

{
xy

xy + 
, f

(
xy

(x + )(y + )

)}}

+ ( – λ) opt
y∈R–

{
(x + ) cos(xy)
x – yx + 

opt

{
xy

xy – 
, f

(
xy√

xy + 

)}

+
(x + ) sin(xy)
x – yx + 

opt

{
xy

xy + cos(xy)
, f

(
x sin

(
√

 + xy

))}}
,

∀x ∈R
+. (.)

Let λ ∈ [, ], X = Y = R, S = R
+, D = R

–. Let p,q, r,u, v, t : S ×D → R, a,b, c : S ×D → S,
ϕ and ψ :R+ →R

+ be defined by

p(x, y) =
xy

xy + 
, q(x, y) =

xy

xy – 
, r(x, y) =

xy

xy + cos(xy)
,

u(x, y) =
sin(xy)
(x – y) + 

, v(x, y) =
(x + ) cos(xy)
x – yx + 

,

t(x, y) =
(x + ) sin(xy)
x – yx + 

, a(x, y) =
xy

(x + )(y + )
,

b(x, y) =
xy√

xy + 
, c(x, y) = x sin

(
√

 + xy

)
, ∀(x, y) ∈ S ×D,

ϕ(t) =
t

, ψ(t) =max

{
t, t

}
, ∀t ∈R

+.

Obviously, the conditions of Theorem . are satisfied. It follows from Theorem . that
functional equation (.) possesses a unique solution w ∈ BB(S) satisfying (C)-(C).
However, Theorem . in [, , ], Corollaries . and . in [], Corollaries ., . and
. in [], Theorems . and . in [], Theorem . in [] and Theorem . in [] are
not applicable to functional equation (.).
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