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Abstract
In this paper we characterize the validity of the Hardy-type inequality

∥∥∥∥∥∥∫ ∞

s
h(z)dz

∥∥∥
p,u,(0,t)

∥∥∥
q,w,(0,∞)

≤ c‖h‖1,v,(0,∞),

where 0 < p <∞, 0 < q≤ +∞, u, w and v are weight functions on (0,∞). It is pointed
out that this characterization can be used to obtain new characterizations for the
boundedness between weighted Lebesgue spaces for Hardy-type operators
restricted to the cone of monotone functions and for the generalized Stieltjes
operator.
MSC: Primary 26D10; 46E20

Keywords: iterated Hardy inequalities; discretization; weights

1 Introduction
Throughout the paper, we assume that I := (a,b) ⊆ (,∞). By M(I) we denote the set of
all measurable functions on I . The symbolM+(I) stands for the collection of all f ∈M(I)
which are non-negative on I , whileM+(I;↓) is used to denote the subset of those functions
which are non-increasing on I . The family of all weight functions (also called just weights)
on I , that is, locally integrable non-negative functions on (,∞), is denoted byW(I).
For p ∈ (, +∞] and w ∈M+(I), we define the functional ‖ · ‖p,w,I onM(I) by

‖f ‖p,w,I :=
⎧⎨
⎩(

∫
I |f (x)|pw(x)dx)/p if p < +∞,

ess supI |f (x)|w(x) if p = +∞.

If, in addition, w ∈W(I), then the weighted Lebesgue space Lp(w, I) is given by

Lp(w, I) =
{
f ∈M(I) : ‖f ‖p,w,I < +∞}

and it is equipped with the quasi-norm ‖ · ‖p,w,I .
When w ≡  on I , we write simply Lp(I) and ‖ · ‖p,I instead of Lp(w, I) and ‖ · ‖p,w,I ,

respectively.
Everywhere in the paper, u, v and w are weights. We denote by

U(t) :=
∫ t


u(s)ds, V (t) :=

∫ t


v(s)ds for every t ∈ (,∞),
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and assume that U(t) >  for every t ∈ (,∞).
In this paper we characterize the validity of the inequality

∥∥∥∥
∥∥∥∥
∫ ∞

s
h(z)dz

∥∥∥∥
p,u,(,t)

∥∥∥∥
q,w,(,∞)

≤ c‖h‖θ ,v,(,∞), (.)

where  < p < ∞,  < q ≤ +∞, θ = , u, w and v are weight functions on (,∞). Note that
inequality (.) was considered in the case p =  in [] (see also []), where the result was
presented without proof, in the case p = ∞ in [] and in the case θ =  in [] and [],
where the special type of a weight function v was considered, and recently in [] in the
case  < p < ∞,  < q ≤ +∞,  < θ ≤ ∞.
We pronounce that the characterization of inequality (.) is important because many

inequalities for classical operators can be reduced to this form. Just to illustrate this impor-
tant fact, we give two applications of the obtained results in Section . Firstly, we present
some new characterizations of weighted Hardy-type inequalities restricted to the cone
of monotone functions (see Theorems . and .). Secondly, we point out boundedness
results in weighted Lebesgue spaces concerning the weighted Stieltjes transform (see The-
orems . and .). Here, we also need to prove some reduction theorems of independent
interest (see Theorems ., . and .).
Our approach is based on discretization and anti-discretization methods developed in

[, , ] and []. Some basic facts concerning these methods and other preliminaries are
presented in Section . In Section  discretizations of inequalities (.) are given. Anti-
discretization of the obtained conditions in Section  and the main results (Theorems .,
. and .) are stated and proved in Section . Finally, the described applications can be
found in Section .

2 Notations and preliminaries
Throughout the paper, we always denote by c or C a positive constant, which is indepen-
dent of the main parameters but it may vary from line to line. However, a constant with
subscript such as c does not change in different occurrences. By a� b (b� a) we mean
that a ≤ λb, where λ >  depends only on inessential parameters. If a � b and b � a, we
write a ≈ b and say that a and b are equivalent. Throughout the paper, we use the abbrevi-
ation LHS(∗) (RHS(∗)) for the left (right) hand side of the relation (∗). By χQ we denote the
characteristic function of a setQ. Unless a special remark is made, the differential element
dx is omitted when the integrals under consideration are the Lebesgue integrals.

Convention . (i) Throughout the paper, we put /(+∞) = , (+∞)/(+∞) = , / =
(+∞), / = ,  · (±∞) = , (+∞)α = +∞ and α =  if α ∈ (, +∞).
(ii) If p ∈ [, +∞], we define p′ by /p + /p′ = . Moreover, we put p∗ = p

–p if p ∈ (, )
and p∗ = +∞ if p = .
(iii) If I = (a,b) ⊆ R and g is a monotone function on I , then by g(a) and g(b) we mean

the limits limx→a+ g(x) and limx→b– g(x), respectively.

In this paper we shall use the Lebesgue-Stieltjes integral. To this end, we recall some
basic facts.

http://www.journalofinequalitiesandapplications.com/content/2013/1/515
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Let ϕ be a non-decreasing and finite function on the interval I := (a,b) ⊆ R. We assign
to ϕ the function λ defined on subintervals of I by

λ
(
[α,β]

)
= ϕ(β+) – ϕ(α–), (.)

λ
(
[α,β)

)
= ϕ(β–) – ϕ(α–), (.)

λ
(
(α,β]

)
= ϕ(β+) – ϕ(α+), (.)

λ
(
(α,β)

)
= ϕ(β–) – ϕ(α+). (.)

The function λ is a non-negative, additive and regular function of intervals. Thus (cf. [],
Chapter ), it admits a unique extension to a non-negative Borel measure λ on I .
Formula (.) implies that

∫
[α,β)

dϕ = ϕ(β–) – ϕ(α–). (.)

Note also that the associated Borel measure can be determined, e.g., only by putting

λ
(
[y, z]

)
= ϕ(z+) – ϕ(y–) for any [y, z] ⊂ I

(since the Borel subsets of I can be generated by subintervals [y, z] ⊂ I).
If J ⊆ I , then the Lebesgue-Stieltjes integral

∫
J f dϕ is defined as

∫
J f dλ. We shall also use

the Lebesgue-Stieltjes integral
∫
J f dϕ when ϕ is non-increasing and finite on the interval I .

In such a case, we put
∫
J
f dϕ := –

∫
J
f d(–ϕ).

We conclude this section by recalling an integration by parts formula for Lebesgue-
Stieltjes integrals. For any non-decreasing function f and a continuous function g on R,
the following formula is valid for –∞ < α < β < ∞:

∫
[α,β)

f (t)d
(
g(t)

)
= f (β–)g(β) – f (α–)g(α) +

∫
[α,β)

g(t)d
(
–f (t–)

)
. (.)

Remark . Let I = (a,b)⊆R. If f ∈ C(I) and ϕ is a non-decreasing, right-continuous and
finite function on I , then it is possible to show that for any [y, z] ⊂ I , the Riemann-Stieltjes
integral

∫
[y,z] f dϕ (written usually as

∫ z
y f dϕ) coincides with the Lebesgue-Stieltjes integral∫

(y,z] f dϕ. In particular, if f , g ∈ C(I) and ϕ is non-decreasing on I , then the Riemann-
Stieltjes integral

∫
[y,z] f dϕ coincides with the Lebesgue-Stieltjes integral

∫
(y,z] f dϕ for any

[y, z] ⊂ I .

Let us now recall some definitions and basic facts concerning discretization and anti-
discretization which can be found in [, ] and [].

Definition . Let {ak} be a sequence of positive real numbers. We say that {ak} is geo-
metrically increasing or geometrically decreasing and write ak ↑↑ or ak ↓↓ when

inf
k∈Z

ak+
ak

>  or sup
k∈Z

ak+
ak

< ,

http://www.journalofinequalitiesandapplications.com/content/2013/1/515
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respectively.

Definition . Let U be a continuous strictly increasing function on [,∞) such that
U() =  and limt→∞ U(t) =∞. Then we say that U is admissible.

Let U be an admissible function. We say that a function ϕ is U-quasiconcave if ϕ is
equivalent to an increasing function on (,∞) and ϕ

U is equivalent to a decreasing function
on (,∞). We say that a U-quasiconcave function ϕ is non-degenerate if

lim
t→+

ϕ(t) = lim
t→∞


ϕ(t)

= lim
t→∞

ϕ(t)
U(t)

= lim
t→+

U(t)
ϕ(t)

= .

The family of non-degenerate U-quasiconcave functions is denoted by �U . We say that
ϕ is quasiconcave when ϕ ∈ �U with U(t) = t. A quasiconcave function is equivalent to a
concave function. Such functions are very important in various parts of analysis. Let us
just mention that, e.g., the Hardy operator Hf (x) =

∫ x
 f (t)dt of a decreasing function, the

Peetre K-functional in interpolation theory and the fundamental function ‖χE‖X , X is a
rearrangement invariant space, all are quasiconcave.

Definition . Assume that U is admissible and ϕ ∈ �U . We say that {xk}k∈Z is a dis-
cretizing sequence for ϕ with respect to U if

(i) x =  and U(xk) ↑↑;
(ii) ϕ(xk) ↑↑ and ϕ(xk )

U(xk )
↓↓;

(iii) there is a decomposition Z = Z ∪Z such that Z ∩Z = ∅ and for every
t ∈ [xk ,xk+],

ϕ(xk)≈ ϕ(t) if k ∈ Z,

ϕ(xk)
U(xk)

≈
ϕ(t)
U(t)

if k ∈ Z.

Let us recall [, Lemma .] that if ϕ ∈ �U , then there always exists a discretizing se-
quence for ϕ with respect to U .

Definition . Let U be an admissible function, and let ν be a non-negative Borel mea-
sure on [,∞). We say that the function ϕ defined by

ϕ(t) =U(t)
∫
[,∞)

dν(s)
U(s) +U(t)

, t ∈ (,∞),

is the fundamental function of the measure ν with respect to U . We also say that ν is a
representation measure of ϕ with respect to U .
We say that ν is non-degeneratewith respect toU if the following conditions are satisfied

for every t ∈ (,∞):

∫
[,∞)

dν(s)
U(s) +U(t)

< ∞, t ∈ (,∞) and
∫
[,]

dν(s)
U(s)

=
∫
[,∞)

dν(s) =∞.

http://www.journalofinequalitiesandapplications.com/content/2013/1/515
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We recall from Remark . of [] that

ϕ(t) ≈
∫
[,t]

dν(s) +U(t)
∫
[t,∞)

U(s)– dν(s), t ∈ (,∞).

Lemma . ([, Lemma .]) Let p ∈ (,∞), u, w be weights and ϕ be defined by

ϕ(t) = ess sup
s∈(,t)

U(s)

p ess sup

τ∈(s,∞)

w(τ )

U(τ )

p
, t ∈ (,∞). (.)

Then ϕ is the least U

p -quasiconcave majorant of w, and

sup
t∈(,∞)

ϕ(t)
(


U(t)

∫ t



(∫ ∞

s
h(z)dz

)p

u(s)ds
) 

p

= ess sup
t∈(,∞)

w(t)
(


U(t)

∫ t



(∫ ∞

s
h(z)dz

)p

u(s)ds
) 

p

for any non-negative measurable h on (,∞). Further, for t ∈ (,∞),

ϕ(t) = ess sup
τ∈(,∞)

w(τ )min

{
,

(
U(t)
U(τ )

) 
p
}
=U(t)


p ess sup

s∈(t,∞)



U(s)

p
ess sup
τ∈(,s)

w(τ ),

ϕ(t) ≈ ess sup
s∈(,∞)

w(s)
(

U(t)
U(s) +U(t)

) 
p
.

Theorem. ([, Theorem .]) Let p,q, r ∈ (,∞).Assume that U is an admissible func-
tion, ν is a non-negative non-degenerate Borelmeasure on [,∞), and ϕ is the fundamental
function of ν with respect to Uq and σ ∈ �Up . If {xk} is a discretizing sequence for ϕ with
respect to Uq, then

∫
[,∞)

ϕ(t)
r
q–

σ (t)
r
p

dν(t)≈
∑
k∈Z

ϕ(xk)
r
q

σ (xk)
r
p
.

Lemma . ([, Corollary .]) Let q ∈ (,∞). Assume that U is an admissible function,
f ∈ �U , ν is a non-negative non-degenerate Borel measure on [,∞) and ϕ is the funda-
mental function of ν with respect to Uq. If {xk} is a discretizing sequence for ϕ with respect
to Uq, then

(∫
[,∞)

(
f (t)
U(t)

)q

dν(t)
) 

q
≈

(∑
k∈Z

(
f (xk)
U(xk)

)q

ϕ(xk)
) 

q
.

Lemma . ([, Lemma .]) Let p,q ∈ (,∞). Assume that U is an admissible function,
ϕ ∈ �Uq and g ∈ �Up . If {xk} is a discretizing sequence for ϕ with respect to Uq, then

sup
t∈(,∞)

ϕ(t)

q

g(t)

p

≈ sup
k∈Z

ϕ(xk)

q

g(xk)

p
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/515
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We shall use some Hardy-type inequalities in this paper. Define

v(a,b) := ess sup
s∈I

v(s)–,

B(a,b) := sup
h∈M+(I)

∥∥∥∥
∫ b

s
h(z)dz

∥∥∥∥
p,u,I

/‖h‖,v,I .
(.)

Lemma . We have the following Hardy-type inequalities:
(a) Let ≤ p < ∞. Then the inequality

∥∥∥∥
∫ b

s
h(z)dz

∥∥∥∥
p,u,I

≤ c‖h‖,v,I (.)

holds for all h ∈M+(I) if and only if

sup
t∈I

(∫ t

a
u(z)dz

) 
p
v(t,b) <∞,

and the best constant c = B(a,b) in (.) satisfies

B(a,b)≈ sup
t∈I

(∫ t

a
u(z)dz

) 
p
v(t,b). (.)

(b) Let  < p < . Then inequality (.) holds for all h ∈M+(I) if and only if

(∫ b

a

(∫ t

a
u(z)dz

)p∗

u(t)v(t,b)p
∗
dt

) 
p∗

< ∞,

and

B(a,b)≈
(∫ b

a

(∫ t

a
u(z)dz

)p∗

u(t)v(t,b)p
∗
dt

) 
p∗
.

These well-known results can be found in Maz’ya and Rozin [], Sinnamon [], Sin-
namon and Stepanov [] (cf. also [] and []).
We shall also use the following fact (cf. [, p.]):

C(a,b) := sup
h∈M+(I)

‖h‖,I/‖h‖,v,I ≈ v(a,b). (.)

Finally, if q ∈ (, +∞] and {wk} = {wk}k∈Z is a sequence of positive numbers, we denote
by �q({wk},Z) the following discrete analogue of a weighted Lebesgue space: if  < q < +∞,
then

�q
({wk},Z

)
=

{
{ak}k∈Z : ‖ak‖�q({wk},Z) :=

(∑
k∈Z

|akwk|q
) 

q
< +∞

}

and

�∞({wk},Z
)
=

{
{ak}k∈Z : ‖ak‖�∞({wk},Z) := sup

k∈Z
|akwk| < +∞

}
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/515
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If wk =  for all k ∈ Z, we write simply �q(Z) instead of �q({wk},Z).
We quote some known results. Proofs can be found in [] and [].

Lemma . Let q ∈ (, +∞]. If {τk}k∈Z is a geometrically decreasing sequence, then

∥∥∥∥τk
∑
m≤k

am
∥∥∥∥

�q(Z)
≈ ‖τkak‖�q(Z)

and

∥∥∥τk sup
m≤k

am
∥∥∥

�q(Z)
≈ ‖τkak‖�q(Z)

for all non-negative sequences {ak}k∈Z.
Let {σk}k∈Z be a geometrically increasing sequence. Then

∥∥∥∥σk
∑
m≥k

am
∥∥∥∥

�q(Z)
≈ ‖σkak‖�q(Z)

and

∥∥∥σk sup
m≥k

am
∥∥∥

�q(Z)
≈ ‖σkak‖�q(Z)

for all non-negative sequences {ak}k∈Z.

We shall use the following inequality, which is a simple consequence of the discrete
Hölder inequality:

∥∥{akbk}
∥∥

�q(Z) ≤
∥∥{ak}

∥∥
�ρ (Z)

∥∥{bk}
∥∥

�p(Z), (.)

where 
ρ
= ( q –


p )+.

a

Given two (quasi-)Banach spaces X and Y , we write X ↪→ Y if X ⊂ Y and if the natural
embedding of X in Y is continuous.
The following two lemmas are discrete versions of the classical Landau resonance the-

orems. Proofs can be found, for example, in [].

Proposition . ([, Proposition .]) Let  < p,q ≤ ∞, and let {vk}k∈Z and {wk}k∈Z be two
sequences of positive numbers. Assume that

�p
({vk},Z)

↪→ �q
({wk},Z

)
. (.)

(i) If  < p ≤ q ≤ ∞, then

∥∥{
wkv–k

}∥∥
�∞(Z) ≤ C,

where C stands for the norm of inequality (.).

http://www.journalofinequalitiesandapplications.com/content/2013/1/515
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(ii) If  < q ≤ p≤ ∞, then

∥∥{
wkv–k

}∥∥
�r(Z) ≤ C,

where /r := /q – /p and C stands for the norm of inequality (.).

3 Discretization of inequalities
In this section we discretize the inequalities

(∫ ∞



(


U(t)

∫ t



(∫ ∞

s
h(z)dz

)p

u(s)ds
) q

p
w(t)dt

) 
q

≤ c
∫ ∞


h(z)v(z)dz (.)

and

sup
t∈(,∞)

w(t)
(


U(t)

∫ t



(∫ ∞

s
h(z)dz

)p

u(s)ds
) 

p
≤ c

∫ ∞


h(z)v(z)dz. (.)

We start with inequality (.). At first we do the following remark.

Remark . Let ϕ be the fundamental function of themeasurew(t)dt with respect toU
q
p ,

that is,

ϕ(x) :=
∫ ∞


U (x, s)

q
p w(s)ds for all x ∈ (,∞), (.)

where

U (x, t) := U(x)
U(t) +U(x)

.

Assume that w(t)dt is non-degenerate with respect to U
q
p . Then ϕ ∈ �

U
q
p
, and there-

fore there exists a discretizing sequence for ϕ with respect to U
q
p . Let {xk} be one such

sequence. Then ϕ(xk) ↑↑ and ϕ(xk)U– q
p ↓↓. Furthermore, there is a decomposition Z =

Z ∪Z, Z ∩Z = ∅ such that for every k ∈ Z and t ∈ [xk ,xk+], ϕ(xk) ≈ ϕ(t) and for every
k ∈ Z and t ∈ [xk ,xk+], ϕ(xk)U(xk)–

q
p ≈ ϕ(t)U(t)–

q
p .

Next, we state a necessary lemma which is also of independent interest.

Lemma . Let  < q < ∞,  < p < ∞, /ρ = (/q – )+, and let u, v, w be weights. Assume
that u is such that U is admissible and the measure w(t)dt is non-degenerate with respect
to U

q
p . Let {xk} be any discretizing sequence for ϕ defined by (.). Then inequality (.)

holds for every h ∈M+(,∞) if and only if

A :=
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p
B(xk–,xk)

}∥∥∥∥
�ρ (Z)

+
∥∥{

ϕ(xk)

q C(xk ,xk+)

}∥∥
�ρ (Z) < ∞, (.)

and the best constant in inequality (.) satisfies

c≈ A.

http://www.journalofinequalitiesandapplications.com/content/2013/1/515
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Proof By using Lemma . with

dν(t) = w(t)dt and f (t) =
∫ t



(∫ ∞

s
h(z)dz

)p

u(s)ds,

we get that

LHS(.) ≈
∥∥∥∥
{∥∥∥∥

∫ ∞

s
h(z)dz

∥∥∥∥
p,u,(,xk )

ϕ(xk)

q

U(xk)

p

}∥∥∥∥
�q(Z)

.

Moreover, by using Lemma .,

LHS(.) ≈
∥∥∥∥
{∥∥∥∥

∫ ∞

s
h(z)dz

∥∥∥∥
p,u,Ik

ϕ(xk)

q

U(xk)

p

}∥∥∥∥
�q(Z)

≈
∥∥∥∥
{∥∥∥∥

∫ xk

s
h(z)dz +

∫ ∞

xk
h(z)dz

∥∥∥∥
p,u,Ik

ϕ(xk)

q

U(xk)

p

}∥∥∥∥
�q(Z)

≈
∥∥∥∥
{∥∥∥∥

∫ xk

s
h(z)dz

∥∥∥∥
p,u,Ik

ϕ(xk)

q

U(xk)

p

}∥∥∥∥
�q(Z)

+
∥∥∥∥
{∥∥∥∥

∫ ∞

xk
h(z)dz

∥∥∥∥
p,u,Ik

ϕ(xk)

q

U(xk)

p

}∥∥∥∥
�q(Z)

≈
∥∥∥∥
{∥∥∥∥

∫ xk

s
h(z)dz

∥∥∥∥
p,u,Ik

ϕ(xk)

q

U(xk)

p

}∥∥∥∥
�q(Z)

+
∥∥∥∥
{∫ ∞

xk
h(z)dz‖‖p,u,Ik

ϕ(xk)

q

U(xk)

p

}∥∥∥∥
�q(Z)

,

where Ik := (xk–,xk), k ∈ Z. By now, using the fact that

‖‖p,u,Ik =
∫ xk

xk–
u(s)ds =U(xk) –U(xk–) ≈U(xk),

we find that

LHS(.) ≈
∥∥∥∥
{∥∥∥∥

∫ xk

s
h(z)dz

∥∥∥∥
p,u,Ik

ϕ(xk)

q

U(xk)

p

}∥∥∥∥
�q(Z)

+
∥∥∥∥
{
ϕ(xk)


q

∫ ∞

xk
h(z)dz

}∥∥∥∥
�q(Z)

.

Consequently, by using Lemma . on the second term,

LHS(.)≈
∥∥∥∥
{∥∥∥∥

∫ xk

s
h(z)dz

∥∥∥∥
p,u,Ik

ϕ(xk)

q

U(xk)

p

}∥∥∥∥
�q(Z)

+
∥∥∥∥
{
ϕ(xk)


q

∫ xk+

xk
h(z)dz

}∥∥∥∥
�q(Z)

:= I + II. (.)
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To find a sufficient condition for the validity of inequality (.), we apply to I locally (that
is, for any k ∈ Z) the Hardy-type inequality

∥∥∥∥
∫ xk

s
h(z)dz

∥∥∥∥
p,u,Ik

≤ B(xk–,xk)‖h‖,v,Ik , h ∈M+(Ik). (.)

Thus, in view of inequality (.), we have that

I ≤
∥∥∥∥
{
B(xk–,xk)

ϕ(xk)

q

U(xk)

p
‖h‖,v,Ik

}∥∥∥∥
�q(Z)

≤
∥∥∥∥
{
B(xk–,xk)

ϕ(xk)

q

U(xk)

p

}∥∥∥∥
�ρ (Z)

∥∥{‖h‖,v,Ik}∥∥�(Z)

=
∥∥∥∥
{
B(xk–,xk)

ϕ(xk)

q

U(xk)

p

}∥∥∥∥
�ρ (Z)

‖h‖,v,(,∞). (.)

For II , by inequalities (.) and (.), we get that

II =
∥∥∥∥
{
ϕ(xk)


q

∫ xk+

xk
h(z)dz

}∥∥∥∥
�q(Z)

≤ ∥∥{
ϕ(xk)


q C(xk ,xk+)‖h‖,v,Ik+

}∥∥
�q(Z)

≤ ∥∥{
ϕ(xk)


q C(xk ,xk+)

}∥∥
�ρ (Z)

∥∥{‖h‖,v,Ik+}∥∥�(Z)

=
∥∥{

ϕ(xk)

q C(xk ,xk+)

}∥∥
�ρ (Z)‖h‖,v,(,∞). (.)

Combining (.) and (.), in view of (.), we obtain that

LHS(.)

�
(∥∥∥∥

{
B(xk–,xk)

ϕ(xk)

q

U(xk)

p

}∥∥∥∥
�ρ (Z)

+
∥∥{

ϕ(xk)

q C(xk ,xk+)

}∥∥
�ρ (Z)

)
RHS(.). (.)

Consequently, (.) holds provided that A < ∞ and c≤ A.
Next we prove that condition (.) is also necessary for the validity of inequality (.).

Assume that inequality (.) holds with c < ∞. By (.), there are hk ∈M+(Ik), k ∈ Z, such
that

‖hk‖,v,Ik =  (.)

and



B(xk–,xk) ≤

∥∥∥∥
∫ xk

s
hk(z)dz

∥∥∥∥
p,u,Ik

for all k ∈ Z. (.)

Define gk , k ∈ Z, as the extension of hk by  to the whole interval (,∞) and put

g =
∑
k∈Z

akgk , (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/515
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where {ak}k∈Z is any sequence of positive numbers. We obtain that

LHS(.)�
∥∥∥∥
{∥∥∥∥

∫ xk

s

∑
m∈Z

amgm
∥∥∥∥
p,u,Ik

ϕ(xk)

q

U(xk)

p

}∥∥∥∥
�q(Z)

�
∥∥∥∥
{
akB(xk–,xk)

ϕ(xk)

q

U(xk)

p

}∥∥∥∥
�q(Z)

. (.)

Moreover,

RHS(.) = c
∥∥∥∥∑
m∈Z

amgm
∥∥∥∥
,v,(,∞)

= c
∥∥{ak}

∥∥
�(Z). (.)

Therefore, by (.), (.) and (.), we arrive at

∥∥∥∥
{
akB(xk–,xk)

ϕ(xk)

q

U(xk)

p

}∥∥∥∥
�q(Z)

� c
∥∥{ak}

∥∥
�(Z), (.)

and Proposition . implies that

∥∥∥∥
{

ϕ(xk)

q

U(xk)

p
B(xk–,xk)

}∥∥∥∥
�ρ (Z)

< c. (.)

On the other hand, there are ψk ∈M+(Ik), k ∈ Z, such that

‖ψk‖,v,Ik =  (.)

and

‖ψk‖,Ik+ ≥ 

C(xk ,xk+) for all k ∈ Z. (.)

Define fk , k ∈ Z, as the extension of ψk by  to the whole interval (,∞) and put

f =
∑
k∈Z

bkfk , (.)

where {bk}k∈Z is any sequence of positive numbers. We obtain that

LHS(.) ≥
∥∥∥∥
{
ϕ(xk)


q

∫ xk+

xk

∑
m∈Z

bmfm
}∥∥∥∥

�q(Z)

�
∥∥{

bkϕ(xk)

q C(xk ,xk+)

}∥∥
�q(Z).

Note that

RHS(.) = c
∥∥∥∥∑
m∈Z

bmfm
∥∥∥∥
,v,(,∞)

= c
∥∥{bk}

∥∥
�(Z).
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Then, by (.) and previous two inequalities, we have that

∥∥{
bkϕ(xk)


q C(xk ,xk+)

}∥∥
�q(Z) � c

∥∥{bk}
∥∥

�(Z).

Proposition . implies that

∥∥{
ϕ(xk)


q C(xk ,xk+)

}∥∥
�ρ (Z) < c. (.)

Inequalities (.) and (.) prove that A� c. �

Before we proceed to inequality (.), we make the following remark.

Remark . Suppose that ϕ(x) <∞ for all x ∈ (,∞), where ϕ is defined by (.). Let ϕ be
non-degenerate with respect to U


p . Then, by Lemma ., ϕ ∈ �

U

p
, and therefore there

exists a discretizing sequence for ϕ with respect to U

p . Let {xk} be one such sequence.

Then ϕ(xk) ↑↑ and ϕ(xk)U– 
p ↓↓. Furthermore, there is a decomposition Z = Z ∪ Z,

Z ∩ Z = ∅ such that for every k ∈ Z and t ∈ [xk ,xk+], ϕ(xk) ≈ ϕ(t) and for every k ∈ Z

and t ∈ [xk ,xk+], ϕ(xk)U(xk)–

p ≈ ϕ(t)U(t)–


p .

The following lemma is proved analogously, and for the sake of completeness, we give
the full proof.

Lemma . Let  < p < ∞, and let u, v, w be weights. Assume that u is such that U

p is

admissible. Let ϕ, defined by (.), be non-degenerate with respect to U

p . Let {xk} be any

discretizing sequence for ϕ. Then inequality (.) holds for every h ∈M+(,∞) if and only
if

D :=
∥∥∥∥
{

ϕ(xk)

U(xk)

p
B(xk–,xk)

}∥∥∥∥
�∞(Z)

+
∥∥{

ϕ(xk)C(xk ,xk+)
}∥∥

�∞(Z) < ∞, (.)

and the best constant in inequality (.) satisfies c≈D.

Proof Using Lemma ., Lemma ., Lemma ., we obtain for the left-hand side of (.)
that

LHS(.) = sup
t∈(,∞)

ϕ(t)

U(t)

p

∥∥∥∥
∫ ∞

s
h(z)dz

∥∥∥∥
p,u,(,t)

≈
∥∥∥∥
{

ϕ(xk)

U(xk)

p

∥∥∥∥
∫ ∞

s
h(z)dz

∥∥∥∥
p,u,(,xk )

}∥∥∥∥
�∞(Z)

≈
∥∥∥∥
{

ϕ(xk)

U(xk)

p

∥∥∥∥
∫ ∞

s
h(z)dz

∥∥∥∥
p,u,Ik

}∥∥∥∥
�∞(Z)

≈
∥∥∥∥
{

ϕ(xk)

U(xk)

p

∥∥∥∥
∫ xk

s
h(z)dz

∥∥∥∥
p,u,Ik

}∥∥∥∥
�∞(Z)

+
∥∥∥∥
{
ϕ(xk)

∫ xk+

xk
h(z)dz

}∥∥∥∥
�∞(Z)

:= III + IV . (.)
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To find a sufficient condition for the validity of inequality (.), we apply to III locally
Hardy-type inequality (.). Thus

III ≤
∥∥∥∥
{
B(xk–,xk)

ϕ(xk)

U(xk)

p
‖h‖,v,Ik

}∥∥∥∥
�∞(Z)

≤
∥∥∥∥
{
B(xk–,xk)

ϕ(xk)

U(xk)

p

}∥∥∥∥
�∞(Z)

∥∥{‖h‖,v,Ik}∥∥�(Z)

=
∥∥∥∥
{
B(xk–,xk)

ϕ(xk)

U(xk)

p

}∥∥∥∥
�∞(Z)

‖h‖,v,(,∞). (.)

For IV we have that

IV =
∥∥∥∥
{
ϕ(xk)

∫ xk+

xk
h(z)dz

}∥∥∥∥
�∞(Z)

≤ ∥∥{
ϕ(xk)C(xk ,xk+)‖h‖,v,Ik+

}∥∥
�∞(Z)

≤ ∥∥{
ϕ(xk)C(xk ,xk+)

}∥∥
�∞(Z)

∥∥{‖h‖,v,Ik+}∥∥�(Z)

=
∥∥{

ϕ(xk)C(xk ,xk+)
}∥∥

�∞(Z)‖h‖,v,(,∞). (.)

Combining (.) and (.), in view of (.), we get that

LHS(.)

�
(∥∥∥∥

{
B(xk–,xk)

ϕ(xk)

q

U(xk)

p

}∥∥∥∥
�∞(Z)

+
∥∥{

ϕ(xk)

q C(xk ,xk+)

}∥∥
�∞(Z)

)
RHS(.).

Consequently, inequality (.) holds provided that D < ∞ and c�D.
Next we prove that condition (.) is also necessary for the validity of inequality (.).

Assume that inequality (.) holds with c < ∞. By (.), (.) and (.), we obtain that

LHS(.)�
∥∥∥∥
{∥∥∥∥

∫ xk

s

∑
m∈Z

amgm
∥∥∥∥
p,u,Ik

ϕ(xk)

U(xk)

p

}∥∥∥∥
�∞(Z)

�
∥∥∥∥
{
akB(xk–,xk)

ϕ(xk)

U(xk)

p

}∥∥∥∥
�∞(Z)

. (.)

Moreover,

RHS(.) = c
∥∥∥∥∑
m∈Z

amgm
∥∥∥∥
,v,(,∞)

= c
∥∥{ak}

∥∥
�(Z). (.)

Therefore, by (.), (.) and (.),
∥∥∥∥
{
akB(xk–,xk)

ϕ(xk)

U(xk)

p

}∥∥∥∥
�∞(Z)

� c
∥∥{ak}

∥∥
�(Z), (.)

and Proposition . implies that
∥∥∥∥
{

ϕ(xk)

U(xk)

p
B(xk–,xk)

}∥∥∥∥
�∞(Z)

� c. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/515


Gogatishvili et al. Journal of Inequalities and Applications 2013, 2013:515 Page 14 of 29
http://www.journalofinequalitiesandapplications.com/content/2013/1/515

On the other hand, accordingly to (.), (.) and (.), we obtain that

LHS(.)�
∥∥∥∥
{
ϕ(xk)

∫ xk+

xk

∑
m∈Z

bmfm
}∥∥∥∥

�∞(Z)
�

∥∥{
bkϕ(xk)C(xk ,xk+)

}∥∥
�∞(Z).

Since

RHS(.) = c
∥∥∥∥∑
m∈Z

bmfm
∥∥∥∥
,v,(,∞)

= c
∥∥{bk}

∥∥
�(Z),

in view of (.) and previous two inequalities, we have that

∥∥{
bkϕ(xk)C(xk ,xk+)

}∥∥
�∞(Z) � c

∥∥{bk}
∥∥

�(Z).

Proposition . implies that

∥∥{
ϕ(xk)C(xk ,xk+)

}∥∥
�∞(Z) � c. (.)

Finally, inequalities (.) and (.) imply that D� c. �

Remark . In view of (.) and Lemma ., it is evident now that

∥∥{
ϕ(xk)


q C(xk ,xk+)

}∥∥
�ρ (Z) ≈

∥∥{
ϕ(xk)


q v(xk ,xk+)

}∥∥
�ρ (Z) ≈

∥∥{
ϕ(xk)


q v(xk ,∞)

}∥∥
�ρ (Z).

Monotonicity of v(t,∞) implies that

∥∥{
ϕ(xk)


q v(xk ,xk+)

}∥∥
�ρ (Z) ≥

∥∥{
ϕ(xk)


q
}∥∥

�ρ (Z) limt→∞ v(t,∞).

Since {ϕ(xk)

q } is geometrically increasing, we obtain that

∥∥{
ϕ(xk)


q v(xk ,xk+)

}∥∥
�ρ (Z) ≥ ϕ(∞)


q lim
t→∞ v(t,∞).

This inequality shows that limt→∞ v(t,∞) must be equal to , because ϕ(∞) is always
equal to ∞ by our assumptions on the function ϕ. Therefore, in the remaining part of the
paper, we consider weight functions v such that

lim
t→∞ v(t,∞) = .

4 Anti-dicretization of conditions
In this section, we anti-discretize the conditions obtained in Lemmas . and .. We dis-
tinguish several cases.
The case  < p < ,  < q < ∞. We need the following lemma.

Lemma . Let  < q < ∞,  < p < , /ρ = (/q – )+, and let u, v, w be weights. Assume
that u is such that U is admissible and the measure w(t)dt is non-degenerate with respect
to U

q
p . Let {xk} be any discretizing sequence for ϕ defined by (.). Then

A≈ A,
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where

A :=
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(∫ xk

xk–

(∫ t

xk–
u(s)ds

)p∗

u(t)v(t,∞)p
∗
dt

) 
p∗ }∥∥∥∥

�ρ (Z)
.

Proof By Lemma ., in this case it yields that

B(xk–,xk) ≈
(∫ xk

xk–

(∫ t

xk–
u(s)ds

)p∗

u(t)v(t,xk)p
∗
dt

) 
p∗
.

Therefore, in view of (.), Lemma ., we have that

A≈
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(∫ xk

xk–

(∫ t

xk–
u(s)ds

)p∗

u(t)v(t,xk)p
∗
dt

) 
p∗ }∥∥∥∥

�ρ (Z)

+
∥∥{

ϕ(xk)

q v(xk ,xk+)

}∥∥
�ρ (Z).

It is easy to see that

A �
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(∫ xk

xk–

(∫ t

xk–
u(s)ds

)p∗

u(t)v(t,xk)p
∗
dt

) 
p∗ }∥∥∥∥

�ρ (Z)

+
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p
v(xk ,∞)

(∫ xk

xk–

(∫ t

xk–
u(s)ds

)p∗

u(t)dt
) 

p∗ }∥∥∥∥
�ρ (Z)

=
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(∫ xk

xk–

(∫ t

xk–
u(s)ds

)p∗

u(t)v(t,xk)p
∗
dt

) 
p∗ }∥∥∥∥

�ρ (Z)

+
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p
v(xk ,∞)

(∫ xk

xk–
u(t)dt

) 
p
}∥∥∥∥

�ρ (Z)

≈
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(∫ xk

xk–

(∫ t

xk–
u(s)ds

)p∗

u(t)v(t,xk)p
∗
dt

) 
p∗ }∥∥∥∥

�ρ (Z)

+
∥∥{

ϕ(xk)

q v(xk ,∞)

}∥∥
�ρ (Z)

≈
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(∫ xk

xk–

(∫ t

xk–
u(s)ds

)p∗

u(t)v(t,xk)p
∗
dt

) 
p∗ }∥∥∥∥

�ρ (Z)

+
∥∥{

ϕ(xk)

q v(xk ,xk+)

}∥∥
�ρ (Z) ≈ A.

On the other hand,

A≈
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(∫ xk

xk–

(∫ t

xk–
u(s)ds

)p∗

u(t)v(t,xk)p
∗
dt

) 
p∗ }∥∥∥∥

�ρ (Z)

+
∥∥{

ϕ(xk)

q v(xk ,xk+)

}∥∥
�ρ (Z)

≈
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(∫ xk

xk–

(∫ t

xk–
u(s)ds

)p∗

u(t)v(t,xk)p
∗
dt

) 
p∗ }∥∥∥∥

�ρ (Z)
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+
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p
v(xk ,xk+)

(∫ xk

xk–

(∫ t

xk–
u(s)ds

)p∗

u(t)dt
) 

p∗ }∥∥∥∥
�ρ (Z)

�
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(∫ xk

xk–

(∫ t

xk–
u(s)ds

)p∗

u(t)v(t,∞)p
∗
dt

) 
p∗ }∥∥∥∥

�ρ (Z)
= A. �

Lemma . Assume that the conditions of Lemma . are fulfilled. Then

A ≈ A,

where

A :=
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(∫ xk

xk–
U(t)p

∗
u(t)v(t,∞)p

∗
dt

) 
p∗ }∥∥∥∥

�ρ (Z)
.

Proof Evidently, A ≤ A. Using integrating by parts formula (.), we have that

A ≈
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(∫
[xk–,xk )

v(t,∞)p
∗
d
(
U(t)

p∗
p

)) 
p∗ }∥∥∥∥

�ρ (Z)

≤
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(∫
[xk–,xk )

U(t)
p∗
p d

(
–v(t–,∞)p

∗)) 
p∗ }∥∥∥∥

�ρ (Z)

+
∥∥{

ϕ(xk)

q v(xk–,∞)

}∥∥
�ρ (Z)

≤
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(∫
[xk–,xk )

(∫ t

xk–
u(s)ds

) p∗
p
d
(
–v(t–,∞)p

∗)) 
p∗ }∥∥∥∥

�ρ (Z)

+
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p
U(xk–)


p

(∫
[xk–,xk )

d
(
–v(t–,∞)p∗)) 

p∗ }∥∥∥∥
�ρ (Z)

+
∥∥{

ϕ(xk)

q v(xk–,∞)

}∥∥
�ρ (Z)

≤
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(∫
[xk–,xk )

(∫ t

xk–
u(s)ds

) p∗
p
d
(
–v(t–,∞)p

∗)) 
p∗ }∥∥∥∥

�ρ (Z)

+
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p
U(xk–)


p v(xk––,∞)

}∥∥∥∥
�ρ (Z)

+
∥∥{

ϕ(xk)

q v(xk–,∞)

}∥∥
�ρ (Z)

�
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(∫
[xk–,xk )

(∫ t

xk–
u(s)ds

) p∗
p
d
(
–v(t–,∞)p

∗)) 
p∗ }∥∥∥∥

�ρ (Z)

+
∥∥{

ϕ(xk–)

q v(xk––,∞)

}∥∥
�ρ (Z) +

∥∥{
ϕ(xk)


q v(xk–,∞)

}∥∥
�ρ (Z)

≈
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(∫
[xk–,xk )

(∫ t

xk–
u(s)ds

) p∗
p
d
(
–v(t–,∞)p

∗)) 
p∗ }∥∥∥∥

�ρ (Z)

+
∥∥{

ϕ(xk)

q v(xk–,∞)

}∥∥
�ρ (Z).
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Again integrating by parts, we have that

A �
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(∫ xk

xk–
v(t–,∞)p

∗
d
(∫ t

xk–
u(s)ds

) p∗
p

) 
p∗ }∥∥∥∥

�ρ (Z)

+
∥∥{

ϕ(xk)

q v(xk–,∞)

}∥∥
�ρ (Z)

=
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(∫ xk

xk–

(∫ t

xk–
u(s)ds

)p∗

u(t)v(t–,∞)p
∗
dt

) 
p∗ }∥∥∥∥

�ρ (Z)

+
∥∥{

ϕ(xk)

q v(xk–,∞)

}∥∥
�ρ (Z)

= A +
∥∥{

ϕ(xk)

q v(xk–,∞)

}∥∥
�ρ (Z).

Since

∥∥{
ϕ(xk)


q v(xk–,∞)

}∥∥
�ρ (Z)

=
∥∥{

ϕ(xk–)

q v(xk––,∞)

}∥∥
�ρ (Z)

≈
∥∥∥∥
{

ϕ(xk–)

q

U(xk–)

p
v(xk––,∞)

(∫ xk–

xk–

(∫ t

xk–
u(s)ds

)p∗

u(t)dt
) 

p∗ }∥∥∥∥
�ρ (Z)

≤
∥∥∥∥
{

ϕ(xk–)

q

U(xk–)

p

(∫ xk–

xk–

(∫ t

xk–
u(s)ds

)p∗

u(t)v(t–,∞)dt
) 

p∗ }∥∥∥∥
�ρ (Z)

=
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(∫ xk

xk–

(∫ t

xk–
u(s)ds

)p∗

u(t)v(t–,∞)p∗
dt

) 
p∗ }∥∥∥∥

�ρ (Z)
= A, (.)

we obtain that

A � A. �

Lemma . Assume that the conditions of Lemma . are fulfilled. Then

A ≈ A,

where

A :=
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(∫
[xk–,xk )

U(t)
p∗
p d

(
–v(t–,∞)p

∗)
dt

) 
p∗ }∥∥∥∥

�ρ (Z)

+
∥∥{

ϕ(xk)

q v(xk–,∞)

}∥∥
�ρ (Z).

Proof Integrating by parts, in view of inequality (.) and Lemma ., we have that

A ≤
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(∫ xk

xk–
v(t,∞)p

∗
d
(
U(t)

p∗
p

)
dt

) 
p∗ }∥∥∥∥

�ρ (Z)

+
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p
U(xk–)


p v(xk––,∞)

}∥∥∥∥
�ρ (Z)

+
∥∥{

ϕ(xk)

q v(xk–,∞)

}∥∥
�ρ (Z)
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� A +
∥∥{

ϕ(xk–)

q v(xk––,∞)

}∥∥
�ρ (Z) +

∥∥{
ϕ(xk)


q v(xk–,∞)

}∥∥
�ρ (Z)

≈ A +
∥∥{

ϕ(xk)

q v(xk–,∞)

}∥∥
�ρ (Z) � A +A ≈ A.

On the other hand, again integrating by parts, we get that

A =
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(∫ xk

xk–
v(t,∞)p

∗
d
(
U(t)

p∗
p

)) 
p∗ }∥∥∥∥

�ρ (Z)

�
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(∫
[xk–,xk )

U(t)
p∗
p d

(
–v(t–,∞)p

∗)) 
p∗ }∥∥∥∥

�ρ (Z)

+
∥∥{

ϕ(xk)

q v(xk–,∞)

}∥∥
�ρ (Z) = A. �

Lemma . Assume that the conditions of Lemma . are fulfilled. Then

A ≈ A,

where

A :=
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(∫
[xk–,xk )

U(t)
p∗
p d

(
–v(t–,∞)p

∗)) 
p∗ }∥∥∥∥

�ρ (Z)

+
∥∥∥∥
{
ϕ(xk)


q

(∫
[xk ,xk+)

d
(
–v(t–,∞)p∗)) 

p∗ }∥∥∥∥
�ρ (Z)

.

Proof By Lemma ., in view of Remark ., we have that

∥∥{
ϕ(xk)


q v(xk–,∞)

}∥∥
�ρ (Z)

≈
∥∥∥∥∥
{

ϕ(xk)

q

( ∞∑
i=k

[
v(xi–,∞)p∗ – v(xi+–,∞)p∗]) 

p∗ }∥∥∥∥∥
�ρ (Z)

+
∥∥∥{

ϕ(xk)

q lim
t→∞ v(t,∞)

}∥∥∥
�ρ (Z)

≈ ∥∥{
ϕ(xk)


q
(
v(xk–,∞)p

∗
– v(xk+–,∞)p

∗) 
p∗ }∥∥

�ρ (Z)

≈
∥∥∥∥
{
ϕ(xk)


q

(∫
[xk ,xk+)

d
(
–v(t–,∞)p

∗)) 
p∗ }∥∥∥∥

�ρ (Z)
. �

Lemma . Assume that the conditions of Lemma . are fulfilled. Then

A ≈ A,

where

A :=
∥∥∥∥
{
ϕ(xk)


q

(∫
[,∞)

U (t,xk)
p∗
p d

(
–v(t–,∞)p

∗)) 
p∗ }∥∥∥∥

�ρ (Z)
.
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Proof By Lemma ., we have that

A ≈
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(∫
[,xk )

U(t)
p∗
p d

(
–v(t–,∞)p∗)) 

p∗ }∥∥∥∥
�ρ (Z)

+
∥∥∥∥
{
ϕ(xk)


q

(∫
[xk ,∞)

d
(
–v(t–,∞)p

∗)) 
p∗ }∥∥∥∥

�ρ (Z)
.

Hence,

A ≈
∥∥∥∥
{
ϕ(xk)


q

(∫
[,xk )

U (t,xk)
p∗
p d

(
–v(t–,∞)p

∗)) 
p∗ }∥∥∥∥

�ρ (Z)

+
∥∥∥∥
{
ϕ(xk)


q

(∫
[xk ,∞)

U (t,xk)
p∗
p d

(
–v(t–,∞)p

∗)) 
p∗ }∥∥∥∥

�ρ (Z)

≈
∥∥∥∥
{
ϕ(xk)


q

(∫
[,∞)

U (t,xk)
p∗
p d

(
–v(t–,∞)p

∗)) 
p∗ }∥∥∥∥

�ρ (Z)
= A. �

We are now in a position to state and prove our first main theorem.

Theorem . Let  < p < ,  < q < ∞, and let u, v, w be weights. Assume that u is such
that U is admissible and the measure w(t)dt is non-degenerate with respect to U

q
p .

(i) Let ≤ q < ∞. Then inequality (.) holds for every h ∈M+(,∞) if and only if

I := sup
x∈(,∞)

(∫ ∞


U (x, s)

q
p w(s)ds

) 
q
(∫

[,∞)
U (t,x)

p∗
p d

(
–v(t–,∞)p

∗)) 
p∗

<∞.

Moreover, the best constant c in (.) satisfies c ≈ I.
(ii) Let  < q < . Then inequality (.) holds for every h ∈M+(,∞) if and only if

I :=
(∫ ∞



(∫ ∞


U (x, s)

q
p w(s)ds

)q∗(∫
[,∞)

U (t,x)
p∗
p d

(
–v(t–,∞)p

∗)) q∗
p∗
w(x)dx

) 
q∗

< ∞.

Moreover, the best constant c in (.) satisfies c ≈ I.

Proof (i) The proof of the statement follows by using Lemmas ., .-. and ..
(ii) The proof of the statement follows by combining Lemmas ., .-. and Theo-

rem .. �

The case  ≤ p < ∞,  < q < ∞. The following lemma is true.

Lemma . Let  ≤ p < ∞,  < q < ∞, and let u, v, w be weights. Assume that u is such
that U is admissible and the measure w(t)dt is non-degenerate with respect to U

q
p . Let {xk}

be any discretizing sequence for ϕ defined by (.). Then

A≈ B,
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where

B :=
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(
sup

xk–<t<xk

(∫ t

xk–
u(s)ds

) 
p
v(t,∞)

)}∥∥∥∥
�ρ (Z)

.

Proof By Lemma ., in this case we find that

B(xk–,xk) ≈ sup
xk–<t<xk

(∫ t

xk–
u(s)ds

) 
p
v(t,xk).

By using (.), in view of Lemma ., we have that

A≈
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(
sup

xk–<t<xk

(∫ t

xk–
u(s)ds

) 
p
v(t,xk)

)}∥∥∥∥
�ρ (Z)

+
∥∥{

ϕ(xk)

q v(xk ,xk+)

}∥∥
�ρ (Z).

Obviously,

B �
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(
sup

xk–<t<xk

(∫ t

xk–
u(s)ds

) 
p
v(t,xk)

)}∥∥∥∥
�ρ (Z)

+
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p
v(xk ,∞)

(
sup

xk–<t<xk

(∫ t

xk–
u(s)ds

) 
p
)}∥∥∥∥

�ρ (Z)

=
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(
sup

xk–<t<xk

(∫ t

xk–
u(s)ds

) 
p
v(t,xk)

)}∥∥∥∥
�ρ (Z)

+
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p
v(xk ,∞)

(∫ xk

xk–
u(s)ds

) 
p
}∥∥∥∥

�ρ (Z)

≈
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(
sup

xk–<t<xk

(∫ t

xk–
u(s)ds

) 
p
v(t,xk)

)}∥∥∥∥
�ρ (Z)

+
∥∥{

ϕ(xk)

q v(xk ,∞)

}∥∥
�ρ (Z)

≈
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(
sup

xk–<t<xk

(∫ t

xk–
u(s)ds

) 
p
v(t,xk)

)}∥∥∥∥
�ρ (Z)

+
∥∥{

ϕ(xk)

q v(xk ,xk+)

}∥∥
�ρ (Z) = A.

On the other hand,

A≈
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(
sup

xk–<t<xk

(∫ t

xk–
u(s)ds

) 
p
v(t,xk)

)}∥∥∥∥
�ρ (Z)

+
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p
v(xk ,xk+)

(
sup

xk–<t<xk

(∫ t

xk–
u(s)ds

) 
p
)}∥∥∥∥

�ρ (Z)

�
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(
sup

xk–<t<xk

(∫ t

xk–
u(s)ds

) 
p
v(t,∞)

)}∥∥∥∥
�ρ (Z)

:= B. �
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Lemma . Assume that the conditions of Lemma . are fulfilled. Then

B ≈ B,

where

B :=
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(
sup

xk–<t<xk
U(t)


p v(t,∞)

)}∥∥∥∥
�ρ (Z)

.

Proof Obviously,

B ≤ B.

Since

∥∥{
ϕ(xk)


q v(xk ,∞)

}∥∥
�ρ (Z)

≈
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p
v(xk ,∞)

(∫ xk

xk–
u(s)ds

) 
p
}∥∥∥∥

�ρ (Z)

=
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p
v(xk ,∞) sup

xk–<t<xk

(∫ t

xk–
u(s)ds

) 
p
}∥∥∥∥

�ρ (Z)

≤
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

sup
xk–<t<xk

(∫ t

xk–
u(s)ds

) 
p
v(t,∞)

}∥∥∥∥
�ρ (Z)

= B, (.)

we obtain that

B ≤ B +
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p
U(xk–)


p sup
xk–<t<xk

v(t,∞)
}∥∥∥∥

�ρ (Z)

= B +
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p
U(xk–)


p v(xk–,∞)

}∥∥∥∥
�ρ (Z)

� B +
∥∥{

ϕ(xk–)

q v(xk–,∞)

}∥∥
�ρ (Z)

= B +
∥∥{

ϕ(xk)

q v(xk ,∞)

}∥∥
�ρ (Z) � B. �

Lemma . Assume that the conditions of Lemma . are fulfilled. Then

B ≈ B,

where

B :=
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(
sup

xk–<t<xk
U(t)


p v(t,∞)

)}∥∥∥∥
�ρ (Z)

+
∥∥{

ϕ(xk)

q v(xk ,∞)

}∥∥
�ρ (Z).

Proof Obviously,

B ≤ B.
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On the other hand, by (.), we get that

∥∥{
ϕ(xk)


q v(xk ,xk+)

}∥∥
�ρ (Z) ≈

∥∥{
ϕ(xk)


q v(xk ,∞)

}∥∥
�ρ (Z) � B � B.

Thus

B := B +
∥∥{

ϕ(xk)

q v(xk ,∞)

}∥∥
�ρ (Z) � B. �

Lemma . Assume that the conditions of Lemma . are fulfilled. Then

B ≈ B,

where

B :=
∥∥∥{

ϕ(xk)

q
(

sup
t∈(,∞)

U (t,xk)

p v(t,∞)

)}∥∥∥
�ρ (Z)

.

Proof By Lemma ., we get that

B ≈
∥∥∥∥
{

ϕ(xk)

q

U(xk)

p

(
sup

<t<xk
U(t)


p v(t,∞)

)}∥∥∥∥
�ρ (Z)

+
∥∥∥{

ϕ(xk)

q
(

sup
xk<t<∞

v(t,∞)
)}∥∥∥

�ρ (Z)

≈
∥∥∥{

ϕ(xk)

q
(
sup

<t<xk
U (t,xk)


p v(t,∞)

)}∥∥∥
�ρ (Z)

+
∥∥∥{

ϕ(xk)

q
(

sup
xk<t<∞

U (t,xk)

p v(t,∞)

)}∥∥∥
�ρ (Z)

≈
∥∥∥{

ϕ(xk)

q
(

sup
t∈(,∞)

U (t,xk)

p v(t,∞)

)}∥∥∥
�ρ (Z)

= B. �

Our next main result reads as follows.

Theorem . Let  ≤ p < ∞,  < q < ∞, and let u, v, w be weights. Assume that u is such
that U is admissible and the measure w(t)dt is non-degenerate with respect to U

q
p .

(i) Let ≤ q < ∞. Then inequality (.) holds for every h ∈M+(,∞) if and only if

I := sup
x>

(∫ ∞


U (x, t)

q
p w(t)dt

) 
q
U(x)–


p sup
t∈(,x)

U(t)

p v(t,∞) < ∞.

Moreover, the best constant c in (.) satisfies that c≈ I.
(ii) Let  < q < . Then inequality (.) holds for every h ∈M+(,∞) if and only if

I :=
(∫ ∞



(∫ ∞


U (x, t)

q
p w(t)dt

)q∗

U(x)–
q∗
p

(
sup
t∈(,x)

U(t)
q∗
p v(t,∞)q

∗)
w(x)dx

) 
q∗

< ∞.

Moreover, the best constant c in (.) satisfies that c≈ I.
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Proof (i) The proof of the statement follows by combining Lemmas .-., . and ..
(ii) The proof of the statement follows by using Lemmas .-., . and Theorem ..

�

The case  < p <∞, q =∞. The following lemma is true.

Lemma . Let  < p < ∞, and let u, v, w be weights. Assume that u is such that U is
admissible. Let ϕ, defined by (.), be non-degenerate with respect to U


p . Let {xk} be any

discretizing sequence for ϕ.
(i) If  < p < , then

D ≈
∥∥∥∥
{
ϕ(xk)

(∫
[,∞)

U (t,xk)
p∗
p d

(
–v(t–,∞)p∗)) 

p∗ }∥∥∥∥
�∞(Z)

.

(ii) If ≤ p < ∞, then

D ≈
∥∥∥{

ϕ(xk)
(

sup
t∈(,∞)

U (t,xk)

p v(t,∞)

)}∥∥∥
�∞(Z)

.

Proof (i) The proof of the statement follows by using Lemmas ., . and .-..
(ii) The proof of the statement follows by combining Lemmas ., . and .-.. �

Now we are in a position to formulate our last main result.

Theorem . Let  < p < ∞, and let u, v, w be weights. Assume that u is such that U is
admissible. Let ϕ, defined by (.), be non-degenerate with respect to U


p .

(i) Let  < p < . Then inequality (.) holds for every h ∈M+(,∞) if and only if

I := sup
x∈(,∞)

(
ess sup
s∈(,∞)

w(s)U (x, s)

p
)(∫

[,∞)
U (t,x)

p∗
p d

(
–v(t–,∞)p

∗)) 
p∗

< ∞.

Moreover, the best constant c in (.) satisfies that c≈ I.
(ii) Let ≤ p < ∞. Then inequality (.) holds for every h ∈M+(,∞) if and only if

I := sup
x∈(,∞)

(
ess sup
s∈(,∞)

w(s)U (x, s)

p
)
U(x)–


p sup
t∈(,x)

U(t)

p v(t,∞) < ∞.

Moreover, the best constant c in (.) satisfies that c≈ I.

Proof Both statements of the theorem follow by using Lemmas ., ., . and .. �

5 Some applications
In this section, we give some applications of the obtained results. We start with the
weighted Hardy inequality on the cone of non-increasing functions. Denote by Hu the
weighted Hardy operator

Huf (x) :=


U(x)

∫ x


f (t)u(t)dt, x ∈ (,∞).
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Note that the characterization of the weighted Hardy inequality on the cone of non-
increasing functions

‖Huf ‖q,w,(,∞) ≤ c‖f ‖p,v,(,∞), f ∈M+(,∞;↓), (.)

has been obtained in [] and [].
The following reduction theorem is true.

Theorem . Let  < p,q < ∞, and let u, v, w be weights. Then inequality (.) holds for
every f ∈ M+(,∞;↓) if and only if the inequality

(∫ ∞



(


U(x)

∫ x



(∫ ∞

t
h
) 

p
u(t)dt

)q

w(x)dx
) p

q
≤ C

∫ ∞


h(t)V (t)dt (.)

holds for all h ∈M+(,∞).Moreover, the best constants c and C in (.) and (.), respec-
tively, satisfy C ≈ cp.

Proof It is well known that every non-negative, non-increasing function f is the pointwise
limit of an increasing sequence of functions of the form

∫ ∞
s h for h ≥  (cf. [, p.]).

Since f is non-increasing if and only if f p is non-increasing, by the monotone convergence
theorem, (.) is equivalent to

(∫ ∞



(


U(x)

∫ x



(∫ ∞

t
h
) 

p
u(t)dt

)q

w(x)dx
) p

q

≤ cp
∫ ∞



(∫ ∞

t
h
)
v(t)dt, h ∈M+(,∞),

which, by Fubini’s theorem, is equivalent to

(∫ ∞



(


U(x)

∫ x



(∫ ∞

t
h
) 

p
u(t)dt

)q

w(x)dx
) p

q

≤ cp
∫ ∞


h(t)V (t)dt, h ∈M+(,∞). �

Analogously, the following theorem can be proved.

Theorem . Let  < p < ∞, and let u, v, w be weights. Then the inequality

‖Huf ‖∞,w,(,∞) ≤ c‖f ‖p,v,(,∞) (.)

holds for every f ∈M+(,∞;↓) if and only if the inequality

ess sup
x∈(,∞)

w(x)p
(


U(x)

∫ x



(∫ ∞

t
h
) 

p
u(t)dt

)p

≤ C
∫ ∞


h(t)V (t)dt (.)

holds for all h ∈ M+(,∞). Moreover, for the best constants c and C in (.) and (.),
respectively, it yields that C ≈ cp.
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Combining Theorem . with Theorems . and ., we obtain the following statement.

Theorem . Let u, v, w be weights. Assume that u is such that U is admissible and the
measure w(t)dt is non-degenerate with respect to Uq.
(i) Let  < p ≤ , p ≤ q < ∞. Then inequality (.) holds for every f ∈M+(,∞;↓) if and

only if

C := sup
x∈(,∞)

(∫ ∞


U (x, t)qw(t)dt

) 
q
U(x)–

(
sup
t∈(,x)

U(t)V (t)–

p
)
<∞.

Moreover, the best constant c in (.) satisfies that c≈ C.
(ii) Let  < p ≤ ,  < q < p. Then inequality (.) holds for every f ∈ M+(,∞;↓) if and

only if

C :=
(∫ ∞



(∫ ∞


U (x, t)qw(t)dt

) q
p–q

U(x)
pq
q–p

(
sup
t∈(,x)

U(t)
pq
p–q V (t)

q
q–p

)
w(x)dx

) p–q
pq

<∞.

Moreover, the best constant c in (.) satisfies that c≈ C.
(iii) Let  < p ≤ q < ∞. Then inequality (.) holds for every f ∈ M+(,∞;↓) if and only

if

C := sup
x∈(,∞)

(∫ ∞


U (x, t)qw(t)dt

) 
q
(∫ ∞


U (t,x)p′ v(t)

V (t)p′ dt
) 

p′
< ∞.

Moreover, the best constant c in (.) satisfies that c≈ C.
(iv) Let  < p < ∞,  < q < p. Then inequality (.) holds for every f ∈M+(,∞;↓) if and

only if

C :=
(∫ ∞



(∫ ∞


U (x, t)qw(t)dt

) q
p–q

(∫ ∞


U (t,x)p′ v(t)

V (t)p′ dt
) q(p–)

p–q
w(x)dx

) p–q
pq

< ∞.

Moreover, the best constant c in the (.) satisfies that c≈ C.

Combining Theorems . and ., we arrive at the following statement.

Theorem . Let u, v, w be weights. Assume that u is such that U is admissible. Let ϕ,
defined by

ϕ(t) := ess sup
s∈(,t)

U(s) ess sup
τ∈(s,∞)

w(τ )
U(τ )

, t ∈ (,∞),

be non-degenerate with respect to U .
(i) Let  < p≤ . Then inequality (.) holds for every f ∈M+(,∞;↓) if and only if

C := sup
x∈(,∞)

(
ess sup
s∈(,∞)

w(s)U (x, s)
)
U(x)–

(
sup
t∈(,x)

U(t)V (t)–

p
)
<∞.

Moreover, the best constant c in (.) satisfies that c ≈ C.
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(ii) Let  < p <∞. Then inequality (.) holds for every f ∈M+(,∞;↓) if and only if

C := sup
x∈(,∞)

(
ess sup
s∈(,∞)

w(s)U (x, s)
)(∫ ∞


U (t,x)p′ v(t)

V (t)p′ dt
) 

p′
< ∞.

Moreover, the best constant c in (.) satisfies that c ≈ C.

Now we consider the generalized Stieltjes transform S defined by

(Sh)(x) =
∫ ∞



h(t)dt
U(x) +U(t)

for all h ∈ M+(,∞); the usual Stieltjes transform is obtained by putting U(x) ≡ x. In
the case U(x)≡ xλ, λ > , the boundedness of the operator S between weighted Lp and Lq

spaces was investigated in [] (when  ≤ p≤ q ≤ ∞) and in [, ] (when  ≤ q < p ≤ ∞).
This problem was also considered in [] and [], where a completely different approach
was used, based on the so call ‘gluing lemma’ (see also []).
The following reduction theorem is true.

Theorem . Let  < q ≤ ∞, ≤ p ≤ ∞, and let u, v, w be weights. Then the inequality

‖Sh‖q,w,(,∞) ≤ c‖h‖p,v,(,∞), h ∈M+(,∞), (.)

holds if and only if

∥∥∥∥Hu

(∫ ∞

t
h
)∥∥∥∥

q,w,(,∞)
≤ c‖hU‖p,v,(,∞), h ∈M+(,∞), (.)

holds.

Proof Evidently, inequality (.) is equivalent to the following inequality:

∥∥S(hU)
∥∥
q,w,(,∞) ≤ c‖hU‖p,v,(,∞), h ∈M+(,∞).

It is easy to see that

S(hU)(x)≈ 
U(x)

∫ x



(∫ ∞

t
h(s)ds

)
u(t)dt, h ∈M+(,∞).

Indeed, by Fubini’s theorem, we have that

∫ x



(∫ ∞

t
h(s)ds

)
u(t)dt =

∫ x



(∫ x

t
h(s)ds +

∫ ∞

x
h(s)ds

)
u(t)dt

=
∫ x



∫ s


u(t)dth(s)ds +

∫ ∞

x
h(s)ds

∫ x


u(t)dt

=
∫ x


U(s)h(s)ds +U(x)

∫ ∞

x
h(s)ds

≈U(x)
∫ ∞



U(s)
U(x) +U(s)

h(s)ds =U(x)S(hU)(x),

http://www.journalofinequalitiesandapplications.com/content/2013/1/515


Gogatishvili et al. Journal of Inequalities and Applications 2013, 2013:515 Page 27 of 29
http://www.journalofinequalitiesandapplications.com/content/2013/1/515

that is,

S(hU)(x)≈Hu

(∫ ∞

t
h
)
(x), x ∈ (,∞).

Hence, we see that inequality (.) is equivalent to inequality (.). �

Combining Theorem . with Theorems ., . and Theorems ., . in [], we obtain
the following statements.

Theorem . Let u, v, w be weights. Assume that u is such that U is admissible and the
measure w(t)dt is non-degenerate with respect to Uq. Let p,q ∈ (,∞]. When q < p < ∞,
we set r = pq

p–q .
(i) Let p = ,  ≤ q < ∞. Then inequality (.) holds for every h ∈M+(,∞) if and only if

S := sup
x∈(,∞)

(∫ ∞


U (x, t)qw(t)dt

) 
q
U(x)– sup

t∈(,x)
U(t) ess sup

s∈(t,∞)

(
U(s)v(s)

)– < ∞.

Moreover, the best constant c in (.) satisfies that c ≈ S.
(ii) Let p = ,  < q < . Then inequality (.) holds for every h ∈M+(,∞) if and only if

S :=
(∫ ∞



(∫ ∞


U (x, t)qw(t)dt

)q∗

U(x)–q
∗

×
(
sup
t∈(,x)

U(t)q
∗
ess sup
s∈(t,∞)

(
U(s)v(s)

)–q∗)
w(x)dx

) 
q∗

< ∞.

Moreover, the best constant c in (.) satisfies that c ≈ S.
(iii) Let  < p≤ q < ∞. Then inequality (.) holds for every h ∈M+(,∞) if and only if

S := sup
x∈(,∞)

(∫ ∞


U (x, t)qw(t)dt

) 
q
(∫ ∞


U (t,x)p′

U(t)–p
′
v(t)–p

′
dt

) 
p′
< ∞.

Moreover, the best constant c in (.) satisfies that c ≈ S.
(iv) Let  < p < ∞,  < q < p. Then inequality (.) holds for every h ∈ M+(,∞) if and

only if

S :=
(∫ ∞



(∫ ∞


U (x, t)qw(t)dt

) r
p
(∫ ∞


U (t,x)p′

U(t)–p
′
v(t)–p

′
dt

) r
p′
w(x)dx

) 
r
< ∞.

Moreover, the best constant c in (.) satisfies that c ≈ S.
(v) Let p =∞,  < q < ∞. Then inequality (.) holds for every h ∈M+(,∞) if and only

if

S :=
(∫ ∞



(
U (t,x)U(t)–

dt
v(t)

)q

w(x)dx
) 

q
<∞.

Moreover, the best constant c in (.) satisfies that c ≈ S.

http://www.journalofinequalitiesandapplications.com/content/2013/1/515


Gogatishvili et al. Journal of Inequalities and Applications 2013, 2013:515 Page 28 of 29
http://www.journalofinequalitiesandapplications.com/content/2013/1/515

Theorem . Let u, v, w be weights. Assume that u is such that U is admissible. Let ϕ,
defined by

ϕ(t) := ess sup
s∈(,t)

U(s) ess sup
τ∈(s,∞)

w(τ )
U(τ )

, t ∈ (,∞),

be non-degenerate with respect to U .
(i) Let p = . Then the inequality

‖Sh‖∞,w,(,∞) ≤ c‖h‖p,v,(,∞) (.)

holds for every h ∈M+(,∞) if and only if

S := sup
x∈(,∞)

(
ess sup
s∈(,∞)

w(s)U (x, s)
)
U(x)– sup

t∈(,x)
U(t) ess sup

s∈(t,∞)

(
U(s)v(s)

)– <∞.

Moreover, the best constant c in (.) satisfies that c≈ S.
(ii) Let  < p <∞. Then inequality (.) holds for every h ∈M+(,∞) if and only if

S := sup
x∈(,∞)

(
ess sup
s∈(,∞)

w(s)U (x, s)
)(∫ ∞


U (t,x)p′

U(t)–p
′
v(t)–p

′
dt

) 
p′
< ∞.

Moreover, the best constant c in (.) satisfies that c≈ S.
(iii) Let p =∞. Then inequality (.) holds for every h ∈M+(,∞) if and only if

S := sup
x∈(,∞)

(
ess sup
s∈(,∞)

w(s)U (x, s)
)(∫ ∞


U (t,x)U(t)–

dt
v(t)

)
<∞.

Moreover, the best constant c in (.) satisfies that c≈ S.
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a For any a ∈ R, define a+ = a when a > 0 and a+ = 0 when a≤ 0.
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