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Abstract
This article aims to obtain some determinantal inequalities for accretive-dissipative
matrices which are generalizations of the determinantal inequalities presented by Lin
(Linear Algebra Appl. 438:2808-2812, 2013). At the same time, we give some
numerical examples which show the effectiveness of our results.
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1 Introduction
Let Mn(C) be the space of complex matrices of size n × n matrices. A ∈ Mn(C) is said to
be accretive-dissipative, if, in its Toeplitz decomposition

A = B + iC, B = B∗, C = C∗, (.)

both matrices B and C are Hermitian positive definite. For simplicity, let A, B, C be parti-
tioned as

(
A A

A A

)
=

(
B B

B∗
 B

)
+ i

(
C C

C∗
 C

)
(.)

such that the diagonal blocks A and A are of order k and l (k > , l >  and k + l = n),
respectively, and letm =min{k, l}.
If A ∈Mn(C) is partitioned as

(
A A

A A

)
,

where A is a nonsingular submatrix, then the matrix A/A := A – AA–
A is called

the Schur complement of the submatrix A in A.
If A ∈ Mn(C) is positive definite and partitioned as in (.), then the inequalities [,

Lemma ] hold:

|detA| = ∣∣det(B + iC)
∣∣ ≤ ∣∣det(B +C)

∣∣ ≤ 
n

∣∣det(B + iC)

∣∣. (.)
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IfA ∈Mn(C) is positive definite and partitioned as in (.), then the famous Fischer-type
determinantal inequality is proved [, p.]:

detA≤ detA detA. (.)

If A ∈ Mn(C) is an accretive-dissipative matrix and partitioned as in (.), Ikramov []
first proved the determinantal inequality for A:

|detA| ≤ m|detA||detA|. (.)

Lin [, Theorem ] got a stronger result than (.) as follows:
If A ∈Mn(C) is an accretive-dissipative matrix, then

|detA| ≤ 

m|detA||detA|. (.)

The purpose of this paper is to give some generalizations of (.) and (.). Our main
results can be stated as follows.

Theorem  Let B,C ∈Mn(C) be positive definite and x, y be positive real numbers. Then

∣∣det(B + iC)
∣∣ ≤ det(B +C) ≤ (

x + y
) n


∣∣∣∣det
(
B
x
+ i

C
y

)∣∣∣∣. (.)

When x = y, the inequality det(B + C) ≤  n
 |det(B + iC)| is a special case of Theorem .

Thus (.) is a generalization of the inequality |det(B+ iC)| ≤ det(B+C) ≤  n
 |det(B+ iC)|

[, Lemma ].

Theorem  Let A ∈ Mn(C) be accretive-dissipative and partitioned as in (.), and let x,
y be positive real numbers. Then

|detA| ≤ (
x + y

) n


∣∣∣∣det
(
B

x
+ i

C

y

)∣∣∣∣
∣∣∣∣det

(
B

x
+ i

C

y

)∣∣∣∣. (.)

When x = y, we get the inequality |detA| ≤  n
 |detA||detA| [, (.)], which is a spe-

cial case of Theorem .

Theorem  Let A ∈ Mn(C) be accretive-dissipative and partitioned as in (.), and let x,
y be positive real numbers. Then

|detA| ≤ m
(
x + y

)m
 |detA|

∣∣∣∣det
(
B

x
+ i

C

y

)∣∣∣∣. (.)

When x = y, we get the inequality [, (.)]

|detA| ≤ 

m|detA||detA|,

which is a special case of (.).
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2 Proofs of main results
To achieve the proofs of Theorem , Theorem  and Theorem , we need the following
lemmas.

Lemma  [, Property ] Let A ∈ Mn(C) be accretive-dissipative and partitioned as
in (.). Then A/A := A –AA–

A, the Schur complement of A in A, is also accretive-
dissipative.

Lemma  [, Lemma ] Let A ∈ Mn(C) be accretive-dissipative and partitioned as in (.).
Then A– = E – iF with E = (B +CB–C)– and F = (C + BC–B)–.

Lemma  [, Lemma ] Let B,C ∈Mn(C) be Hermitian and assume that B > . Then

B +CB–C ≥ C. (.)

Remark  A stronger inequality than (.) was given in Lin [, Lemma .]: Let A >  and
any Hermitian B. Then A�(BA–B) ≥ B.

Proof of Theorem  Let λj, j = , . . . ,n, be the eigenvalues of B– 
CB– 

 , where B 
 means

the unique positive definite square root of B. Then we have

| + iλj| ≤ | + λj| ≤
√
x + y

∣∣∣∣ x + i
λj

y

∣∣∣∣. (.)

The first inequality follows from [, Theorem .], while the second one we prove is as
follows:

∣∣det(B + iC)
∣∣ ≤ ∣∣det(B +C)

∣∣
=

∣∣detB 

(
I + B– 

CB– 

)
B



∣∣

=
∣∣detB 


∣∣∣∣detB 


∣∣∣∣det(I + B– 

CB– 

)∣∣

= |detB|
∣∣∣ n∏

j=

| + λj|

≤ |detB|
∣∣∣ n∏

j=

√
x + y

∣∣∣∣ x + i
λj

y

∣∣∣∣ (by (.))

=
(
x + y

) n
 |detB|

∣∣∣∣det
(
I
x
+
i
y
B– 

CB– 


)∣∣∣∣
=

(
x + y

) n


∣∣∣∣det
(
B
x
+
i
y
C

)∣∣∣∣.
The proof is completed. �

Proof of Theorem 

|detA| ≤ det(B +C) (by Theorem )

≤ det(B +C) · det(B +C) (by (.))
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≤ (
x + y

) k


∣∣∣∣det B

x
+
i
y
C

∣∣∣∣(x + y
) l


∣∣∣∣det B

x
+
i
y
C

∣∣∣∣ (by (.))

=
(
x + y

) n


∣∣∣∣det B

x
+
i
y
C

∣∣∣∣
∣∣∣∣det B

x
+
i
y
C

∣∣∣∣.
The proof is completed. �

Proof of Theorem  By Lemma , we obtain

A/A = A –AA–
A

= B + iC –
(
B∗
 + iC∗


)
(B + iC)–(B + iC)

= B + iC –
(
B∗
 + iC∗


)
(Ek – iFk)(B + iC).

Furthermore, by Lemma , we have

Ek =
(
B +CB–

C
)–, Fk =

(
C + BC–

 B
)–,

where Ek and Fk are positive definite.
By a simple computation, we obtain

A/A = R + iS.

By Lemma , it is easy to know that R, S are positive definite and we have

R = B – B∗
EkB +C∗

EkC – B∗
FkC –C∗

FkB,

S = C + B∗
FkB –C∗

FkC –C∗
EkB – B∗

EkC.

By the inequalities

(
B∗
 ±C∗


)
Fk(B ±C) ≥ ,

(
B∗
 ±C∗


)
Ek(B ±C)≥ ,

it can be proved that

±(
B∗
FkC +C∗

FkB
) ≤ B∗

FkB +C∗
FkC,

±(
C∗
EkB + B∗

EkC
) ≤ B∗

EkB +C∗
EkC.

Thus

R + S ≤ B + B∗
FkB +C + C∗

EkC. (.)

By Lemma  and the operator reverse monotonicity of the inverse, we get

Ek ≤ 

C–
 , Fk ≤ 


B–
 . (.)

As B, C are positive definite, we also have

B > B∗
B

–
 B, C > C∗

C
–
 C. (.)
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Without loss of generality, assumem = l. Then we have

|detA/A| = |detR + iS|
≤ det(R + S) (by (.))

≤ det
(
B + B∗

FkB +C + C∗
EkC

)
(by (.))

≤ det
(
B + B∗

B
–
 B +C +C∗

C
–
 C

)
(by (.))

< det
(
(B +C)

)
(by (.))

≤ m
(
x + y

)m


∣∣∣∣det
(
B

x
+ i

C

y

)∣∣∣∣ (by (.)).

By noting

|detA| = |detA|
∣∣det(A/A)

∣∣,
the proof is completed. �

3 Numerical examples
There are many upper bounds for the determinant of the accretive-dissipative matrices
which are due to (.), (.) and (.). However, these bounds are incomparable.
In this section, we give some numerical examples to show that (.) and (.) are better

than (.) in some cases.

Example . Let

A = B + i ∗C =

(
. –
– .

)
+ i ∗

(
. 
 .

)

=

(
. + .i – + i

– + i . + .i

)
.

We calculate that |detA| = ..
By the upper bound of |detA| in (.), we have



m|detA||detA| = .,

where A = . + .i, A = . + .i.
Let x = , y = . From the upper bound of |detA| in (.), we have

(
x + y

) n


∣∣∣∣det
(
B

x
+ i

C

y

)∣∣∣∣
∣∣∣∣det

(
B

x
+ i

C

y

)∣∣∣∣ = .,

where B = ., B = ., C = ., C = ..
Meanwhile, by the upper bound of |detA| in (.), we get

m
(
x + y

)m
 |detA|

∣∣∣∣det
(
B

x
+ i

C

y

)∣∣∣∣ = ..
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Example . Let

A = B + i ∗C =

⎛
⎜⎝

 – 
–  –
 – 

⎞
⎟⎠ + i ∗

⎛
⎜⎝
  
  
  

⎞
⎟⎠

=

⎛
⎜⎝

 + i – + i  + i
– + i  + i – + i
 + i – + i  + i

⎞
⎟⎠ .

We calculate that |detA| = ..
By the upper bound of |detA| in (.), we have



m|detA||detA| = .,

where A =
( +i –+i
–+i +i

)
, A =  + i.

Let x = , y = . Then, by the upper bound of |detA| in (.), we have

(
x + y

) n


∣∣∣∣det
(
B

x
+ i

C

y

)∣∣∣∣
∣∣∣∣det

(
B

x
+ i

C

y

)∣∣∣∣ = .,

where B =
(  –
– 

)
, C =

(  
 

)
, B = , C = .

Meanwhile, by the upper bound of |detA| in (.), we get

m
(
x + y

)m
 |detA|

∣∣∣∣det
(
B

x
+ i

C

y

)∣∣∣∣ = ..

From the two examples above, we can obtain that (.) and (.) are better than (.) in
some cases.
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