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1 Introduction
Let p,q > , 

p +

q = , an,bn ≥ ,  <

∑∞
n= a

p
n < ∞ and  <

∑∞
n= b

q
n < ∞. Then one [] has

∞∑
n=

∞∑
m=

ambn
m + n

<
π

sin(π/p)

[ ∞∑
n=

apn

] 
p
[ ∞∑

n=

bqn

] 
q

, (.)

∞∑
n=

∞∑
m=

ambn
max{m,n} < pq

[ ∞∑
n=

apn

] 
p
[ ∞∑

n=

bqn

] 
q

, (.)

where the constant factor π
sin(π/p) and pq are best possible. Inequality (.) is well known as

Hardy-Hilbert’s inequality, and inequality (.) is named a Hardy-Hilbert type inequality.
Both of them are important in analysis and applications []. In recent years, many results
about generalizations of this type of inequality were established (see []). Under the same
conditions as (.) and (.), some Hardy-Hilbert type inequalities, which are similar to
(.) and (.), have been studied and generalized by some mathematicians.
By introducing a parameter, Yang gave a generalization of inequality (.) with the best

constant factor as follows:
If p,q > , 

p +

q = ,  –min{p,q} < λ ≤ , an,bn ≥ , such that  <

∑∞
n= n–λapn < ∞ and

 <
∑∞

n= n–λbqn < ∞, then

∞∑
n=

∞∑
m=

ambn
max{mλ,nλ} < kλ(p)

{ ∞∑
n=

n–λapn

} 
p
{ ∞∑

n=

n–λbqn

} 
q

, (.)

where the constant factor kλ(p) = λpq
(p+λ–)(q+λ–) is best possible.

Furthermore, by introducing a parameter and two pairs of conjugate exponents, Zhong
gave a generalization of inequality (.) with the best constant factor as follows:
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If p > , 
p + 

q = , r > , 
r + 

s = ,  < λ ≤ min{r, s}, an,bn ≥ , such that  <∑∞
n= np(–

λ
r )–apn < ∞ and  <

∑∞
n= nq(–

λ
s )–bqn <∞, then

∞∑
n=

∞∑
m=

ambn
max{mλ,nλ} < kλ(r)

{ ∞∑
n=

np(–
λ
r )–apn

} 
p
{ ∞∑

n=

nq(–
λ
s )–bqn

} 
q

, (.)

where the constant factor kλ(r) = rs
λ
is best possible.

Recently, in [], Jiang andHua established an improvement of inequality (.) as follows:
If p,q > , 

p + 
q = ,  – min{p,q} < λ ≤ , an ≥ , bn ≥ , for n ≥ , n ∈ N and  <∑∞

n= n–λapn < ∞,  <
∑∞

n= n–λbqn < ∞, then

∞∑
n=

∞∑
m=

ambn
max{mλ,nλ} <

{ ∞∑
n=

[
k(λ) –

q

(q + λ – )n
q+λ–

q

]
n–λapn

} 
p

×
{ ∞∑

n=

[
k(λ) –

p

(p + λ – )n
p+λ–

p

]
n–λbqn

}
, (.)

where k(λ) = pqλ
(p+λ–)(q+λ–) > .

In this paper, by introducing a parameter and estimating the weight coefficient, we ob-
tain a strengthenment of inequality (.) and generalize inequality (.). As applications,
some particular results are presented.

2 Some preliminary results
First, we need the following formula of the Riemann-ζ function (see []):

ζ (ρ) =
m∑
n=


nρ

–
m–ρ

 – ρ
–


mρ

–
l–∑
n=

Bn

n

(
–ρ

n – 

)


mρ+n– –
Bl

l

(
–ρ

l – 

)
ε

mρ+l– , (.)

where ρ > , ρ �= ,m, l ≥ ,m, l ∈N,  < ε = ε(ρ, l,m) < . The numbersB = –/,B = /,
B = , B = –/, . . . are Bernoulli numbers. In particular, ζ (ρ) =

∑∞
n=


nρ (ρ > ).

Since ζ () = –/, the formula of the Riemann-ζ function (.) also holds for ρ = .

Lemma . Let r > , 
r +


s = ,  < λ ≤ min{r, s}, define the weight coefficients ω(m,λ, s)

and ω(n,λ, r) as

ω(m,λ, s) =
∞∑
n=


max{mλ,nλ}

(
m
n

)– λ
s
, (.)

ω(n,λ, r) =
∞∑
m=


max{mλ,nλ}

(
n
m

)– λ
r
. (.)

Then we have

ω(m,λ, s) <m–λ

[
kλ –

s

λm λ
s

]
(.)
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and

ω(n,λ, r) < n–λ

[
kλ –

r
λm λ

r

]
, (.)

where kλ = rs
λ
.

Proof For  < λ ≤min{r, s}, taking ρ =  – λ
s ≥ , l =  in (.), we get

ζ

(
 –

λ

s

)
=

m∑
n=


n– λ

s
–
sm λ

s

λ
–


m– λ

s
+

 – λ
s

m– λ
s
ε, (.)

where  < ε < .
Set ρ =  + λ

r , l = , and we can derive

ζ

(
 +

λ

r

)
=

m–∑
n=


n+ λ

r
+
rm– λ

r

λ
+


m+ λ

r
+

 + λ
r

m+ λ
r
ε, (.)

where  < ε < .
Thus we get

ω(m,λ, s) =
∞∑
n=


max{mλ,nλ}

(
m
n

)– λ
s

=
m∑
n=


max{mλ,nλ}

(
m
n

)– λ
s
–


mλ

+
∞∑
n=m


max{mλ,nλ}

(
m
n

)– λ
s

=
m∑
n=


mλ

(
m
n

)– λ
s
–


mλ

+
∞∑
n=m


nλ

(
m
n

)– λ
s

=


mλ+ λ
s –

m∑
n=


n– λ

s
–


mλ

+m– λ
s

∞∑
n=m


n+ λ

r
.

Combining (.) and (.), we have

ω(m,λ, s) <


mλ+ λ
s –

[
ζ

(
 –

λ

s

)
+
sm λ

s

λ
+


m– λ

s

]
–


mλ

+m– λ
s

[
rm– λ

r

λ
+


m+ λ

r
+

 + λ
r

m+ λ
r

]

=


mλ+ λ
s –

ζ

(
 –

λ

s

)
+
sm–λ

λ
+


mλ

–

mλ

+
rm–λ

λ
+


mλ

+
 + λ

r
m+λ

=


mλ+ λ
s –

ζ

(
 –

λ

s

)
+
rsm–λ

λ
+

 + λ
r

m+λ

=m–λ

{
rs
λ
–


m λ

s

[
–ζ

(
 –

λ

s

)
–

 + λ
r

m– λ
s

]}
.
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In (.), letm = , by  < λ ≤min{r, s}, we obtain

ζ

(
 –

λ

s

)
=  –

s
λ
–


+
( – λ

s )ε


<


–

s
λ
+
 – λ

s


=
λ – s – λ( – λ

s )
λ

<
λ – s – (λ – s)

λ
=
λ – s
λ

= –
s – λ
λ

< .

Therefore, form ≥ ,m ∈N,  < λ ≤min{r, s}, we obtain

–ζ

(
 –

λ

s

)
–

 + λ
r

m– λ
s
>
s – λ
λ

–
 + λ

r


=
s – λ – λ( + λ

r )
λ

≥ s – λ – λ
λ

=
s + (s – λ)

λ
≥ s

λ
=

s
λ

.

Applying the above inequality, we obtain (.). Similarly, we can prove (.). The lemma
is proved. �

3 Main results
Theorem . Assume that p,q > , 

p + 
q = , r > , 

r +

s = ,  < λ ≤ min{r, s}, an ≥ ,

bn ≥ , such that  <
∑∞

n= np(–
λ
r )–apn <∞ and  <

∑∞
n= nq(–

λ
s )–bqn < ∞, then

∞∑
n=

∞∑
m=

ambn
max{mλ,nλ} <

{ ∞∑
n=

[
kλ –

s

λn λ
s

]
np(–

λ
r )–apn

} 
p

×
{ ∞∑

n=

[
kλ –

r
λn λ

r

]
nq(–

λ
s )–bqn

} 
q

, (.)

∞∑
n=

n
pλ
s –

[kλ – r
λn

λ
r
]p–

[ ∞∑
m=

am
max{mλ,nλ}

]p

<
∞∑
n=

[
kλ –

s

λn λ
s

]
np(–

λ
r )–apn, (.)

where kλ = rs
λ
> . Inequality (.) is equivalent to (.). In particular, we have the following

equivalent inequalities:

∞∑
n=

∞∑
m=

ambn
max{mλ,nλ} < kλ

{ ∞∑
n=

[
 –

s

kλλn
λ
s

]
np(–

λ
r )–apn

} 
p

×
{ ∞∑

n=

nq(–
λ
s )–bqn

} 
q

, (.)

∞∑
n=

n
pλ
s –

[ ∞∑
m=

am
max{mλ,nλ}

]p

< kpλ
∞∑
n=

[
 –

s

kλλn
λ
s

]
np(–

λ
r )–apn. (.)

Proof From Hölder inequality (see []), we have

∞∑
n=

∞∑
m=

ambn
max{mλ,nλ}

=
∞∑
n=

∞∑
m=

ambn
max{mλ,nλ}

n(λ/s–)/p

m(λ/r–)/q
m(λ/r–)/q

n(λ/s–)/p
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≤
{ ∞∑

n=

∞∑
m=

apmmp(–λ/r)+λ–

max{mλ,nλ}
(
m
n

)– λ
s
} 

p
{ ∞∑

n=

∞∑
m=

bqnnq(–λ/s)+λ–

max{mλ,nλ}
(
n
m

)– λ
r
} 

q

=

{ ∞∑
m=

ω(m,λ, s)mp(–λ/r)+λ–apm

} 
p
{ ∞∑

n=

ω(n,λ, r)nq(–λ/s)+λ–bqn

} 
q

.

Hence, by (.), (.), inequality (.) is true.
Setting bn as

bn =
npλ/s–

[kλ – r
λn

λ
r
]p–

[ ∞∑
m=

am
max{mλ,nλ}

]p–

,

by using (.), we have

∞∑
n=

[
kλ –

r
λn λ

r

]
nq(–

λ
s )–bqn

=
∞∑
n=

npλ/s–

[kλ – r
λn

λ
r
]p–

[ ∞∑
m=

am
max{mλ,nλ}

]p

=
∞∑
n=

∞∑
m=

ambn
max{mλ,nλ} ≤

{ ∞∑
n=

[
kλ –

s

λn λ
s

]
np(–

λ
r )–apn

} 
p

×
{ ∞∑

n=

[
kλ –

r
λn λ

r

]
nq(–

λ
s )–bqn

} 
q

. (.)

Hence, we obtain

 <
∞∑
n=

n
pλ
s –

[kλ – r
λn

λ
r
]p–

[ ∞∑
m=

am
max{mλ,nλ}

]p

<
∞∑
n=

[
kλ –

s

λn λ
s

]
np(–

λ
r )–apn < ∞. (.)

By (.), both (.) and (.) take the form of strict inequality, and we have (.).
On the other hand, suppose that (.) is valid, from Hölder inequality, we find

∞∑
n=

∞∑
m=

ambn
max{mλ,nλ}

=
∞∑
n=

n[q(λ/s–)+]/q

[kλ – r
λn

λ
r
]

q

[ ∞∑
m=

am
max{mλ,nλ}

][
kλ –

r
λn λ

r

] 
q
n[q(–λ/s)–]/qbn

≤
{ ∞∑

n=

npλ/s–

[kλ – r
λn

λ
r
]p–

[ ∞∑
m=

am
max{mλ,nλ}

]p} 
p
{ ∞∑

n=

[
kλ –

r
λn λ

r

]
nq(–λ/s)–bqn

} 
q

.

Then, by using (.), we have (.). Hence, (.) and (.) are equivalent. The proof of
Theorem . is completed. �
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Since  < λ ≤min{r, s}, by Theorem ., we have the following.

Corollary . Assume that p,q > , 
p + 

q = , r > , 
r +


s = ,  < λ ≤ min{r, s}, an ≥ ,

bn ≥ , such that  <
∑∞

n= np(–
λ
r )–apn <∞ and  <

∑∞
n= nq(–

λ
s )–bqn < ∞, then

∞∑
n=

∞∑
m=

ambn
max{mλ,nλ} <

{ ∞∑
n=

[
kλ –


n λ

s

]
np(–

λ
r )–apn

} 
p

×
{ ∞∑

n=

[
kλ –


n λ

r

]
nq(–

λ
s )–bqn

} 
q

, (.)

∞∑
n=

n
pλ
s –

[kλ – 
n

λ
r
]p–

[ ∞∑
m=

am
max{mλ,nλ}

]p

<
∞∑
n=

[
kλ –


n λ

s

]
np(–

λ
r )–apn, (.)

where kλ = rs
λ
> . Inequality (.) is equivalent to (.).

For r = s = , by using (.) and (.), we have the following.

Corollary . Assume that p,q > , 
p + 

q = ,  < λ ≤ , an ≥ , bn ≥ , such that  <∑∞
n= np(–

λ
 )–apn < ∞ and  <

∑∞
n= nq(–

λ
 )–bqn < ∞, then

∞∑
n=

∞∑
m=

ambn
max{mλ,nλ} <

{ ∞∑
n=

[
kλ –


λn λ



]
np(–

λ
 )–apn

} 
p

×
{ ∞∑

n=

[
kλ –


λn λ



]
nq(–

λ
 )–bqn

} 
q

, (.)

∞∑
n=

n
pλ
 –

[kλ – 

λn
λ

]p–

[ ∞∑
m=

am
max{mλ,nλ}

]p

<
∞∑
n=

[
kλ –


λn λ



]
np(–

λ
 )–apn, (.)

where kλ = 
λ
> . Inequality (.) is equivalent to (.). In particular, we have the equiva-

lent inequalities as follows.

∞∑
n=

∞∑
m=

ambn
max{mλ,nλ} < kλ

{ ∞∑
n=

[
 –


kλλn

λ


]
np(–

λ
 )–apn

} 
p

×
{ ∞∑

n=

nq(–
λ
 )–bqn

} 
q

, (.)

∞∑
n=

n
pλ
 –

[ ∞∑
m=

am
max{mλ,nλ}

]p

< kpλ
∞∑
n=

[
 –


kλλn

λ


]
np(–

λ
 )–apn. (.)

For r = q, s = p, by using (.) and (.), we have the following.

http://www.journalofinequalitiesandapplications.com/content/2013/1/511


Chen et al. Journal of Inequalities and Applications 2013, 2013:511 Page 7 of 9
http://www.journalofinequalitiesandapplications.com/content/2013/1/511

Corollary . Assume that p,q > , 
p +


q = ,  < λ ≤ min{p,q}, an ≥ , bn ≥ , such that

 <
∑∞

n= n(p–)(–λ)apn <∞ and  <
∑∞

n= n(q–)(–λ)bqn <∞, then

∞∑
n=

∞∑
m=

ambn
max{mλ,nλ} <

{ ∞∑
n=

[
kλ –

p

λn
λ
p

]
n(p–)(–λ)apn

} 
p

×
{ ∞∑

n=

[
kλ –

q

λn
λ
q

]
n(q–)(–λ)bqn

} 
q

, (.)

∞∑
n=

nλ–

[kλ – q

λn
λ
q
]p–

[ ∞∑
m=

am
max{mλ,nλ}

]p

<
∞∑
n=

[
kλ –

p

λn
λ
p

]
n(p–)(–λ)apn, (.)

where kλ = pq
λ
> . Inequality (.) is equivalent to (.). In particular, we have the equiv-

alent inequalities as follows.

∞∑
n=

∞∑
m=

ambn
max{mλ,nλ} < kλ

{ ∞∑
n=

[
 –

p

kλλn
λ
p

]
n(p–)(–λ)apn

} 
p

×
{ ∞∑

n=

n(q–)(–λ)bqn

} 
q

, (.)

∞∑
n=

nλ–

[ ∞∑
m=

am
max{mλ,nλ}

]p

< kpλ
∞∑
n=

[
 –

p

kλλn
λ
p

]
n(p–)(–λ)apn. (.)

For r = p, s = q, by using (.) and (.), we have the following.

Corollary . Assume that p,q > , 
p +


q = ,  < λ ≤ min{p,q}, an ≥ , bn ≥ , such that

 <
∑∞

n= np–λ–apn <∞ and  <
∑∞

n= nq–λ–bqn <∞, then

∞∑
n=

∞∑
m=

ambn
max{mλ,nλ} <

{ ∞∑
n=

[
kλ –

q

λn
λ
q

]
np–λ–apn

} 
p

×
{ ∞∑

n=

[
kλ –

p

λn
λ
p

]
nq–λ–bqn

} 
q

, (.)

∞∑
n=

n(p–)λ–

[kλ – p

λn
λ
p
]p–

[ ∞∑
m=

am
max{mλ,nλ}

]p

<
∞∑
n=

[
kλ –

q

λn
λ
q

]
np–λ–apn, (.)

where kλ = pq
λ
> . Inequality (.) is equivalent to (.). In particular, we have the equiv-

alent inequalities as follows.

∞∑
n=

∞∑
m=

ambn
max{mλ,nλ} < kλ

{ ∞∑
n=

[
 –

q

kλλn
λ
q

]
np–λ–apn

} 
p
{ ∞∑

n=

nq–λ–bqn

} 
q

, (.)

∞∑
n=

n(p–)λ–
[ ∞∑
m=

am
max{mλ,nλ}

]p

< kpλ
∞∑
n=

[
 –

q

kλλn
λ
q

]
np–λ–apn. (.)
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Set λ = , combining (.) and (.), we have the following.

Corollary . Assume that p,q > , 
p + 

q = ,r > , 
r +


s = , an ≥ , bn ≥ , such that

 <
∑∞

n= n
p
s –apn <∞ and  <

∑∞
n= n

q
r –bqn < ∞, then

∞∑
n=

∞∑
m=

ambn
max{m,n} <

{ ∞∑
n=

[
rs –

s
n 

s

]
n

p
s –apn

} 
p

×
{ ∞∑

n=

[
rs –

r
n 

r

]
n

q
r –bqn

} 
q

, (.)

∞∑
n=

n
p
s –

[rs – r
n


r
]p–

[ ∞∑
m=

am
max{m,n}

]p

<
∞∑
n=

[
rs –

s
n 

s

]
n

p
s –apn. (.)

In particular, we have the equivalent inequalities as follows.

∞∑
n=

∞∑
m=

ambn
max{m,n} < rs

{ ∞∑
n=

[
 –


rn 

s

]
n

p
s –apn

} 
p
{ ∞∑

n=

n
q
r –bqn

} 
q

, (.)

∞∑
n=

n
p
s –

[ ∞∑
m=

am
max{m,n}

]p

< (rs)p
∞∑
n=

[
 –


rn 

s

]
n

p
s –apn. (.)

Taking p = q = r = s = , in (.) and (.), we have

∞∑
n=

∞∑
m=

ambn
max{m,n} < 

{ ∞∑
n=

[
 –



√
n

]
an

} 

{ ∞∑

n=

[
 –



√
n

]
bn

} 


, (.)

∞∑
n=

[ ∞∑
m=

am
max{m,n}

]

< 
∞∑
n=

[
 –



√
n

]
an. (.)

Remark . For r = λp
λ+p– and s = λq

λ+q– in Theorem ., we get the results of [].
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