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Abstract

We derive a strengthenment of a Hardy-Hilbert type inequality by using the
Euler-Maclaurin expansion for the zeta function and estimating the weight function
effectively. As applications, some particular results are presented.
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1 Introduction

Letp,g>1, —+——1 anby,>0,0<> 7 al <ooand 0< Y o2, b < co. Then one [1] has
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where the constant factor (— and pq are best possible. Inequality (1.1) is well known as
Hardy-Hilbert’s inequality, and inequality (1.2) is named a Hardy-Hilbert type inequality.
Both of them are important in analysis and applications [2]. In recent years, many results
about generalizations of this type of inequality were established (see [3]). Under the same
conditions as (1.1) and (1.2), some Hardy-Hilbert type inequalities, which are similar to
(1.1) and (1.2), have been studied and generalized by some mathematicians.

By introducing a parameter, Yang gave a generalization of inequality (1.2) with the best
constant factor as follows:

Ifp,g>1, }7 + %1 =1,2-min{p,q} <A <2, a,,b, >0,such that 0 < Y >, n'~*al < 0o and
0<Y > n'~*bl < 0o, then
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where the constant factor &; (p) = is best possible.
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Furthermore, by introducing a parameter and two pairs of conjugate exponents, Zhong

gave a generalization of inequality (1.3) with the best constant factor as follows:
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where the constant factor k;(r) = 5 is best possible.
Recently, in [4], Jiang and Hua established an improvement of inequality (1.3) as follows:
pr,q>1,1%+é=1,2—min{p,q}<k§2,an20,bn20,fornzl,neNand0<
Yo nral < 00,0 < Y 02 n b < 00, then
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where k()\.) = #@”‘_2) > 0.
In this paper, by introducing a parameter and estimating the weight coefficient, we ob-
tain a strengthenment of inequality (1.4) and generalize inequality (1.5). As applications,

some particular results are presented.

2 Some preliminary results
First, we need the following formula of the Riemann-¢ function (see [5]):

-
_ 21: Bon (=P 1 _ Bu( -p € (2.1)
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where p >0,p #1,m, [ >1,m,l € N,0 < ¢ = ¢(p,[,m) < 1. The numbers B; = -1/2, B, = 1/6,
B3 =0, By = -1/30, ... are Bernoulli numbers. In particular, {(p) = > o) n% (p>1).
Since ¢ (0) = —1/2, the formula of the Riemann-¢ function (2.1) also holds for p = 0.

Lemma 2.1 Letr > 1, % + <=1, 0 < A <min{r,s}, define the weight coefficients w(m, A, s)

1
S
and w(n, A, r) as
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Then we have
w(m, A, s) < m*™ [kx -8 - ] (2.4)
3ims
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and

w(n, 1, r) <nt™ [k,\ S - ],
3Amr

where k, = .

Proof For 0 < A <min{r,s}, taking p=1-% >0, /=1in (2.1), we get
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where 0 < &7 < 1.
Setp=1+ %, [ =1, and we can derive
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Thus we get
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Combining (2.6) and (2.7), we have
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n (2.6), let m =1, by 0 < & < min{r, s}, we obtain
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Therefore, for m > 1, m € N, 0 < A < min{r, s}, we obtain
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Applying the above inequality, we obtain (2.4). Similarly, we can prove (2.5). The lemma
is proved. d

3 Main results
Theorem 3.1 Assume that p,q > 1, 1 sty L_1,r>1,1 + L'21,0< A < min{r,s}, a, > 0,

by > 0, such that 0 < Y"°°, n?4=7) 1uﬁ <00 and 0< anl ~9-1p? < 0o, then
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where k; = 7 > 0. Inequality (3.1) is equivalent to (3.2). In particular, we have the following

equivalent inequalities:
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Proof From Hélder inequality (see [6]), we have
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Hence, by (2.4), (2.5), inequality (3.1) is true.
Setting b, as
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By (3.1), both (3.5) and (3.6) take the form of strict inequality, and we have (3.2).
On the other hand, suppose that (3.2) is valid, from Holder inequality, we find
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Then, by using (3.2), we have (3.1). Hence, (3.2) and (3.1) are equivalent. The proof of
Theorem 3.1 is completed. d
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Since 0 < A < min{r, s}, by Theorem 3.1, we have the following.

Corollary 3.2 Assume that p,q > 1, l + l =1,r>1, 1 + 1 =1, 0 < A <min{r,s}, a, > 0,
by >0, such that 0 <y 2, nP1-7)- 1aﬁ <00 and 0<> ) a(1-%) 1T ¢ 0, then
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where k; = % > 0. Inequality (3.7) is equivalent to (3.8).
For r = s = 2, by using (3.1) and (3.2), we have the following.

Corollary 3.3 Assume that p,q > 1, }7 +1=1,0<1r<2,a,>0,b,>0, such that 0 <

A )\.
S0 DGl < 00 and 0 < 300 n10-2) le < 00, then
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where k; = % > 0. Inequality (3.9) is equivalent to (3.10). In particular, we have the equiva-

lent inequalities as follows.
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For r = g, s = p, by using (3.1) and (3.2), we have the following.
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Corollary 3.4 Assume that p,q > 1, l + % —1 0 <A <min{p,q}, a, >0, b, > 0, such that
0<% np-bi- ap<ooomd0<2 naVUNpT < 0o, then
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where k;, = 2L > 0. Inequality (3.13) is equivalent to (3.14). In particular, we have the equiv-
alent mequalltzes as follows.
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For r = p, s = g, by using (3.1) and (3.2), we have the following.

Corollary 3.5 Assume that p,q > 1, l + % =1,0 <A <min{p,q}, a, > 0, b, > 0, such that
0<Y o2 P al <cooand 0 <Y 07 nq"\‘le < 00, then
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where k. = £ > 0. Inequality (3.17) is equivalent to (3.18). In particular, we have the equiv-

alent inequalities as follows.
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Set A =1, combining (3.1) and (3.2), we have the following.

Corollary 3.6 Assume that p,q > 1, - + 2=1r>1, % % =1,a,>0, b, >0, such that
0<% nal <ooand 0 <Y, 1bZ<oo,L‘hen
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In particular, we have the equivalent inequalities as follows.
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Taking p =g =r=s=2,in (3.23) and (3.24), we have
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Remark 3.1 Forr= ,\ p 5 and s = m in Theorem 3.1, we get the results of [4].
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