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1 Introduction
Recently there has been an increasing interest in developing optimality conditions and
duality relations for nonsmooth multiobjective programming problems involving locally
Lipschitz functions. Many authors have studied under kinds of generalized convexity, and
some results have been obtained. Schaible [] and Bector et al. [] derived some Kuhn-
Tucker necessary and sufficient optimality conditions for the multiobjective fractional
programming. By using ρ-invexity of a fractional function, Kim [] obtained necessary
and sufficient optimality conditions and duality theorems for nonsmooth multiobjective
fractional programming problems. Lai and Ho [] established sufficient optimality con-
ditions for multiobjective fractional programming problems involving exponential V-r-
invex Lipschitz functions. In [], Kim and Schaible considered nonsmooth multiobjective
programming problems with inequality and equality constraints involving locally Lips-
chitz functions and presented several sufficient optimality conditions under various in-
vexity assumptions and regularity conditions. Soghra Nobakhtian [] obtained optimality
conditions and amixed dualmodel for nonsmooth fractionalmultiobjective programming
problems. Jeyakumar and Yang [] considered nonsmooth constrainedmultiobjective op-
timization problems where the objective function and the constraints are compositions of
convex functions and locally Lipschitz and Gâteaux differentiable functions. Lagrangian
necessary conditions and new sufficient optimality conditions for efficient and properly ef-
ficient solutions were presented. Mishra and Mukherjee [] extended the work of Jeyaku-
mar and Yang [] and the constraints are compositions of V-invex functions.
The present article beginswith an extension of the results in [, ] from the nonfractional

to the fractional case. We consider nonsmooth multiobjective programs where the objec-
tive functions are fractional compositions of invex functions and locally Lipschitz and
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Gâteaux differentiable functions. Kuhn-Tucker necessary conditions and sufficient opti-
mality conditions forweakly efficient solutions are presented.We formulate dual problems
and establish weak, strong and converse duality theorems for a weakly efficient solution.

2 Preliminaries
LetRn be the n-dimensional Euclidean space andRn

+ be its nonnegative orthant. Through-
out the paper, the following convention for inequalities will be used for x, y ∈R

n:

x = y if and only if xi = yi for all i = , , . . . ,n;

x < y if and only if xi < yi for all i = , , . . . ,n;

x� y if and only if xi � yi for all i = , , . . . ,n.

The real-valued function f : Rn → R is said to be locally Lipschitz if for any z ∈ R
n there

exists a positive constant K and a neighbourhood N of z such that, for each x, y ∈N ,

∣∣f (x) – f (y)
∣∣� K‖x – y‖.

The Clarke generalized directional derivative of a locally Lipschitz function f at x in the
direction d denoted by f ◦(x;d) (see, e.g., Clarke []) is as follows:

f ◦(x;d) = lim sup
y→x
t↓

t–
(
f (y + td) – f (y)

)
.

The Clarke generalized subgradient of f at x is denoted by

∂f (x) =
{
ξ |f (x;d)� ξTd for all d ∈R

n}.
Proposition . [] Let f , h be Lipschitz near x, and suppose h(x) �= . Then f

h is Lipschitz
near x, and one has

∂

(
f
h

)
(x)⊂ h(x)∂f (x) – f (x)∂h(x)

h(x)
.

If, in addition, f (x)� , h(x) >  and if f and –h are regular at x, then equality holds and
f
h is regular at x.

In this paper, we consider the following composite multiobjective fractional program-
ming problem:

(P) Minimize
(
f(F(x))
h(F(x))

, . . . ,
fp(Fp(x))
hp(Fp(x))

)

subject to gj
(
Gj(x)

)
� , j = , , . . . ,m,x ∈ C,

where
() C is an open convex subset of a Banach space X ,
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() fi, hi, i = , , . . . ,p, and gj , j = , , . . . ,m, are real-valued locally Lipschitz functions
on R

n, and Fi and Gj are locally Lipschitz and Gâteaux differentiable functions from
X into R

n with Gâteaux derivatives F ′
i (·) and G′

j(·), respectively, but are not
necessarily continuously Fréchet differentiable or strictly differentiable [],

() fi(x)� , hi(x) > , i = , , . . . ,p,
() fi(x) and –hi(x) are regular.

Definition . A feasible point x is said to be a weakly efficient solution for (P) if there
exists no feasible point x for which

fi(Fi(x))
hi(Fi(x))

<
fi(Fi(x))
hi(Fi(x))

, ∀i = , , . . . ,p.

Definition . [] A function f is invex on X ⊂R
n if for x,u ∈ X there exists a function

η(x,u) : X ×X →R
n such that

fi(x) – fi(u)� ξT
i η(x,u), ∀ξi ∈ ∂fi(u).

Definition . [] A function f : X → R
n is V-invex on X ⊂ R

n if for x,u ∈ X there
exist functions η(x,u) : X ×X →R

n and αi(x,u) : X ×X →R+ \ {} such that

fi(x) – fi(u)� αi(x,u)ξT
i η(x,u), ∀ξi ∈ ∂f (u).

The following lemma is needed in necessary optimality conditions, weak duality and
converse duality.

Lemma . [] If fi � , hi > , fi and –hi are invex at u with respect to η(x,u), and fi and
–hi are regular at u, then fi

hi
is V-invex at u with respect to η̄, where η̄(x,u) = hi(u)

hi(x)
η(x,u).

3 Optimality conditions
Note that if F : X →R

n is locally Lipschitz near a point x ∈ X andGâteaux differentiable at
x and if f :Rn → R is locally Lipschitz near F(x), then the continuous sublinear function,
defined by

πx(h) :=max

{ n∑
k=

wkF ′
k(x)h

∣∣∣∣w ∈ ∂f
(
F(x)

)}
,

satisfies the inequality

(f ◦ F)′+(x,h)� πx(h), ∀h ∈ X. (.)

Recall that q′
+(x,h) = limλ↓ supλ–(q(x+λh)–q(x))is the upper Dini-directional derivative

of q : X →R at x in the direction of h, and ∂f (F(x)) is the Clarke subdifferential of f at F(x).
The function πx(·) in (.) is called upper convex approximation of f ◦ F at x, see [, ].
Note that for a set C, int C denotes the interior of C, and C+ = {v ∈ X ′|v(x)� ,∀x ∈ C},

denotes the dual cone of C, where X ′ is the topological dual space of X. It is also worth
noting that for a convex set C, the closure of the cone generated by the set C at a point
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a, cl cone(C – a), is the tangent cone of C at a, and the dual cone–(C – a)+ is the normal
cone of C at a, see [, ].

Theorem . (Necessary optimality conditions) Suppose that fi, hi and gj are locally Lip-
schitz functions, and that Fi and Gj are locally Lipschitz and Gâteaux differentiable func-
tions. If a ∈ C is a weakly efficient solution for (P), then there exist Lagrange multipliers
λi � , i = , , . . . ,p, and μj � , j = , , . . . ,m, not all zero, satisfying

 ∈
p∑
i=

λiTi(a)F ′
i (a) +

m∑
j=

μj∂gj
(
Gj(a)

)
G′

j(a) – (C – a)+,

μjgj
(
Gj(a)

)
= , j = , , . . . ,m,

Ti(a) =
∂fi(Fi(a)) – φi(a)∂hi(Fi(a))

hi(Fi(a))
, φi(a) =

fi(Fi(a))
hi(Fi(a))

.

Proof Let I = {, , . . . ,p}, Jp = {p + j|j = , , . . . ,m}, Jp(a) = {p + j|gj(Gj(a)) = , j ∈ {, ,
. . . ,m}}.
For convenience, we define

lk(x) =

⎧⎨
⎩( fkhk ◦ Fk)(x), k = , , . . . ,p,

(gk–p ◦Gk–p(x), k = p + , . . . ,p +m.

Suppose that the following system has a solution:

d ∈ cone(C – a), π k
a (d) < , k ∈ I ∪ Jp(a), (.)

where π k
a (d) is given by

π k
a (d) =

⎧⎨
⎩max{∑p

k= νkF
′
k(a)d|ν ∈ Tk(a)}, k ∈ I,

max{∑m
k–p=wk–pG′

k–p(a)d|w ∈ ∂gk–p(Gk–p(a))}, k ∈ Jp(a).

Then the system

d ∈ cone(C – a), (lk)′+(a;d) < , k ∈ I ∪ Jp(a)

has a solution. So, there exists α >  such that a + αd ∈ C, lk(a + αd) < lk(a), k ∈ I ∪ Jp(a),
whenever  < α � α. Since lk(a) <  for k ∈ Jp \ Jp(a) and lk is continuous in a neighbour-
hood of a, there exists α >  such that lk(a + αd) < , whenever  < α � α, k ∈ Jp \ Jp(a).
Let α∗ =min{α,α}. Then a + αd is a feasible solution for (P) and lk(a + αd) < lk(a), k ∈ I
for sufficiently small α such that  < α � α∗.
This contradicts the fact that a is a weakly efficient solution for (P). Hence (.) has no

solution.
Since, for each k, π k

a (·) is sublinear and cone(C–a) is convex, it follows from a separation
theorem [, ] that there exist λi � , i = , . . . ,p, μj � , j ∈ Jp(a), not all zero, such that

p∑
i=

λiπ
i
a(x) +

∑
j∈Jp(a)

μjπ
j
a(x)� , ∀x ∈ cone(C – a).
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Then, by applying standard arguments of convex analysis (see [, ]) and choosingμj = 
whenever j ∈ Jp \ Jp(a), we have

 ∈
p∑
i=

λi∂π i
a() +

m∑
j=

μj∂π j+p
a () – (C – a)+.

So, there exist νi ∈ Ti(a), wj ∈ ∂gj(Gj(a)) satisfying

p∑
i=

λiν
T
i F

′
i (a) +

m∑
j=

μjwT
j G

′
j(a) ∈ (C – a)+.

Hence, the conclusion holds. �

Under the following generalized Slater condition, we do the following:

∃x ∈ cone(C – a), μTG′
j(a)x < , ∀μ ∈ ∂gj

(
Gj(a)

)
,∀j ∈ J(a),

where J(a) = {j|gj(Gj(a)) = , j = , . . . ,m}.
Choosing q ∈R

p, q >  with λTq =  and defining � = qqT , we can select the multipliers
λ̄ = �λ = qqTλ = q >  and μ̄ = �μ = qqTμ � . Hence, the following Kuhn-Tucker type
optimality conditions (KT) for (P) are obtained:

(KT) λ̄ ∈R
p, λ̄i > , μ̄ ∈ R

m, μ̄j � , μ̄jgj(Gj(a)) = ,

 ∈
p∑
i=

λ̄iTi(a)F ′
i (a) +

m∑
j=

μ̄j∂gj(Gj(a))G′
j(a) – (C – a)+,

Ti(a) =
∂fi(Fi(a)) – φi(a)∂hi(Fi(a))

hi(Fi(a))
, φi(a) =

fi(Fi(a))
hi(Fi(a))

.

We present new conditions under which the optimality conditions (KT) become suffi-
cient for weakly efficient solutions.
The following null space condition is as in []:
Let x,a ∈ X . Define K : X →R

n(p+m) := πRn by
K (x) = (F(x), . . . ,Fp(x),G(x), . . . ,Gm(x)). For each x,a ∈ X , the linear mapping
Ax,a : X →R

n(p+m) is given by

Ax,a(y) =
(
α(x,a)F ′

(a)y, . . . ,αp(x,a)F ′
p(a)y,β(x,a)G′

(a)y, . . . ,βm(x,a)G′
m(a)y

)
,

where αi(x,a), i = , , . . . ,p and βj(x,a), j = , , . . . ,m, are real positive constants. Let
us denote the null space of a function H by N[H].

Recall, from the generalized Farkas lemma [], that K (x) – K (a) ∈ Ax,a(X) if and only
if AT

x,a(u) = ⇒ uT (K (x) –K (a)) = . This observation prompts us to define the following
general null space condition:

For each x,a ∈ X , there exist real constants αi(x,a) > , i = , , . . . ,p, and βj(x,a) > ,
j = , , . . . ,m, such that

N[Ax,a] ⊂N
[
K (x) –K (a)

]
, (NC)

http://www.journalofinequalitiesandapplications.com/content/2013/1/508
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where

Ax,a(y) =
(
α(x,a)F ′

(a)y, . . . ,αp(x,a)F ′
p(a)y,β(x,a)G′

(a)y, . . . ,βm(x,a)G′
m(a)y

)
.

Equivalently, the null space condition means that for each x,a ∈ X, there exist real con-
stants αi(x,a) > , i = , , . . . ,p, and βj(x,a) > , i = , , . . . ,m, and ζ (x,a) ∈ X such that
Fi(x) – Fi(a) = αi(x,a)F ′

i (a)ζ (x,a) and Gj(x) – Gj(a) = βj(x,a)G′
j(a)ζ (x,a). For our prob-

lem (P), we assume the following generalized null space condition for invex function
(GNCI):

For each x,a ∈ C, there exist real constants αi(x,a) > , i = , , . . . ,p, and βj(x,a) > ,
j = , , . . . ,m, and ζ (x,a) ∈ (C – a) such that η(Fi(x),Fi(a)) = αi(x,a)F ′

i (a)ζ (x,a) and
η(Gj(x),Gj(a)) = βj(x,a)G′

j(a)ζ (x,a).
Note thatwhenC = X and η(Fi(x),Fi(a)) = Fi(x)–Fi(a) and η(Gj(x),Gj(a)) =Gj(x)–Gj(a),

the generalized null space condition for invex function (GNCI) reduces to (NC).

Theorem . (Sufficient optimality conditions) For the problem (P), assume that fi, –hi
and gj are invex functions and Fi and Gj are locally Lipschitz and Gâteaux differentiable
functions. Let u be feasible for (P). Suppose that the optimality conditions (KT) hold at u.
If (GNCI) holds at each feasible point x of (P), then u is a weakly efficient solution of (P).

Proof From the optimality conditions (KT), there exist νi ∈ Ti(u),wj ∈ ∂gj(Gj(u)) such that

p∑
i=

λiν
T
i F

′
i (u) +

m∑
j=

μjwT
j G

′
j(u) ∈ (C – u)+, μjgj

(
Gj(u)

)
= .

Suppose that u is not a weakly efficient solution of (P). Then there exists a feasible x ∈ C
for (P) with

fi(Fi(x))
hi(Fi(x)

<
fi(Fi(u))
hi(Fi(u))

, i = , , . . . ,p.

By (GNCI), there exists ζ (x,u) ∈ (C–u), same for each Fi andGj, such that η(Fi(x),Fi(u)) =
αi(x,u)F ′

i (u)ζ (x,u), i = , , . . . ,p, and η(Gj(x),Gj(u)) = βj(x,u)G′
j(u)ζ (x,u), j = , , . . . ,m.

Hence

 �
m∑
j=

μj

βj(x,u)
(
gj
(
Gj(x)

)
– gj

(
Gj(u)

))
(by feasibility)

�
m∑
j=

μj

βj(x,u)
wT
j η

(
Gj(x),Gj(u)

)
(by subdifferentiability)

=
m∑
j=

μjwT
j G

′
j(u)ζ (x,u) (by (GNCI))

� –
m∑
j=

λiν
T
i F

′
i (u)ζ (x,u) (by a hypothesis)

= –
p∑
i=

λi

αi(x,u)
νT
i η

(
Fi(x),Fi(u)

)
(by (GNCI))

http://www.journalofinequalitiesandapplications.com/content/2013/1/508
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= –
p∑
i=

λi

αi(x,u)

(
hi(Fi(x))
hi(Fi(u))

)(
fi(Fi(x))
hi(Fi(x))

–
fi(Fi(u))
hi(Fi(u))

)
(by subdifferentiability)

> .

This is a contradiction and hence u is a weakly efficient solution for (P). �

4 Duality theorems
In this section, we introduce a dual programming problem and establish weak, strong and
converse duality theorems. Now we propose the following dual (D) to (P).

(D) Maximize
(
f(F(u))
h(F(u))

, . . . ,
fp(Fp(u))
hp(Fp(u))

)

subject to  ∈
p∑
i=

λiν
T
i F

′
i (u) +

m∑
j=

μjwT
j G

′
j(u) – (C – u)+,

μjgj
(
Gj(u)

)
� , j = , , . . . ,m,

u ∈ C,λ ∈R
p,λi > ,μj ∈R

m,μj � .

Theorem . (Weak duality) Let x be feasible for (P), and let (u,λ,μ) be feasible for (D).
Assume that (GNCI) holds with αi(x,u) = βj(x,u) = . Moreover, fi, –hi and gj are invex
functions and Fi and Gj are locally Lipschitz and Gâteaux differentiable functions. Then

(
f(F(x))
h(F(x))

, . . . ,
fp(Fp(x))
hp(Fp(x))

)T

–
(
f(F(u))
h(F(u))

, . . . ,
fp(Fp(u))
hp(Fp(u))

)T

/∈ –Rp
+ \ {}.

Proof Since (u,λ,μ) is feasible for (D), there exist λi > , μj � , νi ∈ Ti(u), i = , , . . . ,p,
wj ∈ ∂gj(Gj(u)), j = , , . . . ,m, satisfying μjgj(Gj(u))�  for j = , , . . . ,m and

p∑
i=

λiν
T
i F

′
i (u) +

m∑
j=

μjwT
j G

′
j(u) ∈ (C – u)+.

Suppose that x �= u and

(
f(F(x))
h(F(x))

, . . . ,
fp(Fp(x))
hp(Fp(x))

)T

–
(
f(F(u))
h(F(u))

, . . . ,
fp(Fp(u))
hp(Fp(u))

)T

∈ –Rp
+ \ {}.

Then

 >
fi(Fi(x))
hi(Fi(x))

–
fi(Fi(u))
hi(Fi(u))

.

By the invexity of fi and –hi, we have

 >
hi(Fi(u))
hi(Fi(x))

νT
i η

(
Fi(x),Fi(u)

)

=
hi(Fi(u))
hi(Fi(x))

νT
i αi(x,u)F ′

i (u)ζ (x,u) (by (GNCI))

>
hi(Fi(u))
hi(Fi(x))

νT
i F

′
i (u)ζ (x,u) (by αi(x,u) = )

http://www.journalofinequalitiesandapplications.com/content/2013/1/508
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since hi(Fi(u))
hi(Fi(x))

>  and λi > , then

p∑
i=

λiν
T
i F

′
i (u)ζ (x,u) < . (.)

From the feasibility conditions, we get μjgj(Gj(x))� , μjgj(Gj(u))� , and so

m∑
j=

μj

βj(x,u)
(
gj
(
Gj(x)

)
– gj

(
Gj(u)

))
� .

Similarly, by the invexity of gj, positivity of βj(x,u) and by (GNCI), we have

m∑
j=

μjwT
j G

′
j(u)ζ (x,u)� . (.)

By (.) and (.), we get

[ p∑
i=

λiν
T
i F

′
i (u) +

m∑
j=

μjwT
j G

′
j(u)

]
ζ (x,u) < .

This is a contradiction. The proof is completed by noting that when x = u the conclusion
trivially holds. �

Theorem. (Strong duality) For the problem (P), assume that the generalized Slater con-
straint qualification holds. If u is a weakly efficient solution for (P), then there exist λ ∈ R

p,
λi > , μ ∈ R

m, μj �  such that (u,λ,μ) is a weakly efficient solution for (D).

Proof It follows fromTheorem . that there exist λ ∈R
p, λi > ,μ ∈R

m,μj �  such that

 ∈
p∑
i=

λiTi(u)F ′
i (u) +

m∑
j=

μj∂gj
(
Gj(u)

)
G′

j(u) – (C – u)+,

μjgj
(
Gj(u)

)
= , j = , , . . . ,m.

Then (u,λ,μ) is a feasible solution for (D). By weak duality,

(
f(F(x))
h(F(x))

, . . . ,
fp(Fp(x))
hp(Fp(x))

)T

–
(
f(F(u))
h(F(u))

, . . . ,
fp(Fp(u))
hp(Fp(u))

)T

/∈ –Rp
+ \ {}.

Since (u,λ,μ) is a feasible solution for (D), (u,λ,μ) is a weakly efficient solution for (D).
Hence the result holds. �

Theorem . (Converse duality) Let (u,λ,μ) be a weakly efficient solution of (D), and let
a be a feasible solution of (P). Assume that fi, –hi and gj are invex functions and Fi and Gj

are locally Lipschitz and Gâteaux differentiable functions. Moreover, (GNCI) holds with
αi(x,u) = βj(x,u) = . Then u is a weakly efficient solution of (P).

http://www.journalofinequalitiesandapplications.com/content/2013/1/508
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Proof Suppose, contrary to the result, that u is not a weakly efficient solution of (P). Then
there exists x ∈D such that

fi(Fi(x))
hi(Fi(x))

<
fi(Fi(u))
hi(Fi(u))

.

Since fi, –hi are invex functions, for each νi ∈ Ti(x), we have

 >
hi(Fi(u))
hi(Fi(x))

νT
i η

(
Fi(x),Fi(u)

)
.

Since (u,λ,μ) are feasible for (P), we get

 >
p∑
i=

λiν
T
i η

(
Fi(x),Fi(u)

)

=
p∑
i=

λiν
T
i αi(x,u)F ′

i (u)ζ (x,u) (by (GNCI))

=
p∑
i=

λiν
T
i F

′
i (u)ζ (x,u) (by αi(x,u) = ). (.)

From the hypothesis μjgj(Gj(x)) � μjgj(Gj(u)), gj is an invex function and for each wj ∈
∂gj(Gj(x)), it follows that

 � μjwT
j η

(
Gj(x),Gj(u)

)
= μjwT

j β(x,u)G′
j(u)ζ (x,u) (by (GNCI))

= μjwT
j G

′
j(u)ζ (x,u) (by βj(x,u) = )

and μj � , j = , , . . . ,m, then we have

m∑
j=

μjwT
j G

′
j(u)ζ (x,u)� . (.)

From (.) and (.), we get

[ p∑
i=

λiν
T
i F

′
i (u) +

m∑
j=

μjwT
j G

′
j(u)

]
ζ (x,u) < .

This is a contradiction. �

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
DSK presented necessary and sufficient optimality conditions, formulated Mond-Weir type dual problem and established
weak, strong and converse duality theorems for nonconvex composite multiobjective nonsmooth fractional programs.
HJK carried out the optimality and duality studies, participated in the sequence alignment and drafted the manuscript.
All authors read and approved the final manuscript.

http://www.journalofinequalitiesandapplications.com/content/2013/1/508


Kim and Kim Journal of Inequalities and Applications 2013, 2013:508 Page 10 of 10
http://www.journalofinequalitiesandapplications.com/content/2013/1/508

Acknowledgements
This work was supported by a research grant of Pukyong National University (2013). The authors wish to thank the
anonymous referees for their suggestions and comments.

Received: 4 April 2013 Accepted: 25 September 2013 Published: 08 Nov 2013

References
1. Schaible, S: Fractional programming. In: Horst, R, Pardalos, PM (eds.) Handbook of Global Optimization, pp. 495-608.

Kluwer Academic, Dordrecht (1995)
2. Bector, CR, Chandra, S, Husain, I: Optimality conditions and subdifferentiable multiobjective fractional programming.

J. Optim. Theory Appl. 39, 105-125 (1993)
3. Kim, DS: Nonsmooth multiobjective fractional programming with generalized invexity. Taiwan. J. Math. 10(2),

467-478 (2009)
4. Lai, HC, Ho, SC: Optimality and duality for nonsmooth multiobjective fractional programming problems involving

exponential V-r-invexity. Nonlinear Anal. 75, 3157-3166 (2012)
5. Kim, DS, Schaible, S: Optimality and duality for invex nonsmooth multiobjective programming problems.

Optimization 53(2), 165-176 (2004)
6. Nobakhtian, S: Optimality and duality for nonsmooth multiobjective fractional programming with mixed constraints.

J. Glob. Optim. 41, 103-115 (2008)
7. Jeyakumar, V, Yang, XQ: Convex composite multi-objective nonsmooth programming. Math. Program. 59, 325-343

(1993)
8. Mishra, SK, Mukherjee, RN: Generalized convex composite multi-objective nonsmooth programming and

conditional proper efficiency. Optimization 34, 53-66 (1995)
9. Clarke, FH: Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983)
10. Egudo, RR, Hanson, MA: On Sufficiency of Kuhn-Tucker Conditions in Nonsmooth Multiobjective Programming. FSU

Technical Report No. M-888, 51-58 (1993)
11. Jeyakumar, V: Composite nonsmooth programming with Gâteaux differentiability. SIAM J. Control Optim. 1, 30-41

(1991)
12. Jeyakumar, V: On optimality conditions in nonsmooth inequality constrained minimization. Numer. Funct. Anal.

Optim. 9, 535-546 (1987)
13. Rockafellar, RT: Convex Analysis. Princeton University Press, Princeton (1969)
14. Craven, BD: Mathematical Programming and Control Theory. Chapman & Hall, London (1978)
15. Jahn, J: Scalarization in multi-objective optimization. Math. Program. 29, 203-219 (1984)
16. Mangasarian, OL: A simple characterization of solution sets of convex programs. Oper. Res. Lett. 7, 21-26 (1988)

10.1186/1029-242X-2013-508
Cite this article as: Kim and Kim: Nonconvex composite multiobjective nonsmooth fractional programming. Journal
of Inequalities and Applications 2013, 2013:508

http://www.journalofinequalitiesandapplications.com/content/2013/1/508

	Nonconvex composite multiobjective nonsmooth fractional programming
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Optimality conditions
	Duality theorems
	Competing interests
	Authors' contributions
	Acknowledgements
	References


