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1 Introduction and preliminaries

Let us begin with some basic definitions and notations that will be needed in this paper.
Let (X, d) be a metric space. Denote by N'(X) the family of all nonempty subsets of X and
by CB(X) the family of all nonempty closed and bounded subsets of X. For each x € X and
A C X, letd(x,A) =infyeq d(x,y). A function H : CB(X) x CB(X) — [0, 00) defined by

H(A,B) = max{supd(x,A), supd(x,B)}

xeB xe€A

is said to be the Hausdorff metric on C3(X) induced by the metric d on X. The symbols
N and R are used to denote the sets of positive integers and real numbers, respectively.

Let K be a nonempty subset of X, g: K — X be a single-valued non-self-map and T :
K — N(X) be a multivalued non-self-map. A point v in X is a coincidence point (see, for
instance, [1-6]) of g and T if gv € Tx. If g = id is the identity map, then v = gv € Tv and
call v a fixed point of T. The set of fixed points of T and the set of coincidence points of
g and T are denoted by Fx(T) and COPk(g, T), respectively. In particular, if K = X, we
use F(T) and COP(g, T) instead of Fx(T) and COPx(g, T), respectively. The map T is
said to have approximate fixed point property [1-5] on K provided infyex d(x, Tx) = 0. It is
obvious that Fx(T) # ¥ implies that T" has approximate fixed point property.

A function ¢ : [0,00) — [0,1) is said to be an MT -function (or R-function) [3-11] if
limsup,_, . ¢(s) <1 forall £ € [0, 00). Clearly, if ¢ : [0,00) — [0,1) is a nondecreasing func-
tion or a nonincreasing function, then ¢ is an M7 -function. So, the set of MT -functions
is a rich class and has the questions many of which are worth studying.

The study of fixed points for single-valued non-self-maps or multivalued non-self-maps
satisfying certain contractive conditions is an interesting and important direction of re-
search in metric fixed point theory. A great deal of such research has been investigated by
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several authors, see, e.g,, [11-19] and the references therein. Very recently, Du, Karapinar
and Shahzad [11] established the following intersection existence theorem of coincidence
points and fixed points of multivalued non-self-maps of Kannan type and Chatterjea type.

Theorem 1.1 [11, Theorem 8] Let (X,d) be a complete metric space, K be a nonempty
closed subset of X, T : K — CB(X) be a multivalued map and g : K — X be a continuous
map. Suppose that

(D1) TxNK #W forallx € K,

(D2) TxNK is g-invariant (i.e., g(Tx N K) € Tx N K) for each x € K,

(D3) there exist a function h: K — [0,00) and y € [0, %) such that

H(Tx, Ty N K) < y[d(x, Tx N K) + d(y, Tx N K) + d(y, Ty N K)]

+h(y)d(gy, Tx N K) forallx,y € K. (1.1)

Then COPK(g, T) N f[{(T) #@

In [11], they also gave some coincidence and fixed point theorems for multivalued non-
self-maps of Mizoguchi-Takahashi type, Berinde-Berinde type and Du type.

Theorem 1.2 [11, Theorem 19] Let (X,d) be a complete metric space, K be a nonempty
closed subset of X, T : K — CB(X) be a multivalued map and g : K — X be a continuous
map. Suppose that conditions (D1) and (D2) as in Theorem 1.1 hold. If there exist an MT -
function ¢ : [0,00) — [0,1) and a function h : K — [0, 00) such that

H(Tx, TyNK) < (p(d(x,y))d(x,y) +h()d(gy, Tx NK) forallx,y €K, (1.2)
then CO,PK(g, )N Fi(T) # 0.

In this work, we give new short proofs of Du-Karapinar-Shahzad’s intersection theorems
of COPxk(g, T) and Fi(T) for multivalued non-self-maps (i.e., Theorems 1.1 and 1.2) by
applying an existence theorem for approximate fixed point property.

2 Some auxiliary key results

Let (X,d) be a metric space. Recall that a function p : X x X — [0,00) is said to be a
T-function [3-5, 7, 8, 20-22], first introduced and studied by Lin and Du, if the following
conditions hold:

(t1) p(x,z) <pxy) +pQ,2) forallx,y,z € X;

(r2) ifx € X and {y,} in X with lim,_, » ¥, = y such that p(x, y,) < M for some M = M(x) >
0, then p(x,y) < M;

(t3) for any sequence {x,} in X with lim,_, o sup{p(x,, x,,) : m > n} = 0, if there exists a
sequence {y,} in X such that lim,_, » p(x,, y,) = 0, then lim,,_, o d(x,, ) = 0;

(t4) forx,y,z€ X, p(x,y) =0 and p(x,z) = 0 imply y = z.

Note that with the additional condition
(t5) px,x)=0forallx e X,

a 7-function becomes a ro—function [3-5, 7, 8] introduced by Du.
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Clearly, any metric d is a °-function. Observe further that if p is a t°-function, then,
from (r4) and (5), p(x,y) = 0 ifand only if x = y.

Example A [7] Let X = R with the metric d(x,y) = |[x—y| and 0 < a < b. Define the function
p:X x X — [0,00) by

plx,y) = max{a(y —x),b(x —y)}.
Then p is nonsymmetric and hence p is not a metric. It is easy to see that p is a t°-function.

Lemma 2.1 [22, Lemma 2.1] Let (X,d) be a metric space and p : X x X — [0,00)
be a function. Assume that p satisfies the condition (t3). If a sequence {x,} in X with

lim,,—, oo sUp{p(xy, X,,) : m > n} = 0, then {x,} is a Cauchy sequence in X.

Let (X, d) be a metric space and p be a T-function. A multivalued map T : X — N(X) is
said to have p-approximate fixed point property on X provided

;g)f(p(x, Tx) = 0.

The following characterizations of M T -functions proved first by Du [6] are quite useful

for proving our main results.

Theorem 2.1 [6, Theorem 2.1] Let ¢ : [0,00) — [0,1) be a function. Then the following
statements are equivalent.
(a) ¢ isan MT -function.
(b) Foreach t € [0,00), there exist rﬁl) €[0,1) and egl) > 0 such that ¢(s) < rf)for all
se(tt+ 851)).
(c) Foreacht € [0,00), there exist rt(z) € [0,1) and st(z) > 0 such that ¢(s) < rﬁz) forall
sett+ 8;2)]
(d) Foreachte|
se(tt+ sﬁ?’)].
(e) Foreacht € [0,00), there exist r£4) € [0,1) and 8;4) > 0 such that ¢(s) < r§4) forall
seftt+ 8§4)).

(f) For any nonincreasing sequence {x,},en in [0,00), we have 0 < sup,, . (%) < 1.

0, 00), there exist rf‘) € [0,1) and s§3) > 0 such that ¢(s) < r§3)f0r all

(g) @ is a function of contractive factor; that is, for any strictly decreasing sequence
{%}nen in [0,00), we have 0 < sup, .y ¢(x,) < 1.

The following result was essentially proved by Du et al. in [4], but we give the proof for

the sake of completeness and the readers convenience.

Lemma 2.2 [4, Lemma 3.1] Let (X,d) be a metric space, p be a t°-function and T : X —
N (X) be a multivalued map. Then the following statements are equivalent.
(Ql) There exist a function & : [0,00) — [0, 00) and an MT -function ¢ : [0,00) — [0,1)
such that for each x € X, if y € Tx with y # x, then there exists z € Ty such that

r3,2) < 9(&(p(x.9))p(x, ).
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(Q2) There exist a function t : [0,00) — [0, 00) and an MT -function « : [0,00) — [0,1)
such that for each x € X,

p0, Ty) <k(t(p(.9))px,y) forallye Tx.

Proof If (Q1) holds, then it is easy to verify that (Q2) also holds withx =g and r =£. So it
suffices to prove that ‘(Q2) = (Q1)’ Suppose that (Q2) holds. Define ¢ : [0, 00) — [0,1) by
o(t) = ”%(t) Then ¢ is also an M T -function. Indeed, it is obvious that 0 < «(£) < ¢(¢) < 1
for all ¢ € [0,00). Let {x,},cn be a strictly decreasing sequence in [0, 00). Since « is an
MT -function, by (g) of Theorem 2.1, we get

0 <supk(x,) <1
neN

and hence

1
0 <supp(x,) = = [1 + supfc(x,,)] <1
neN 2 neN

So, by Theorem 2.1 again, we prove that ¢ is an M7 -function.
For each x € X, let y € Tx with y # x. Then p(x,y) > 0. By (Q2), we have

r, Ty) < o(t(p(x,9)))p(,).

Since ¢(t) > 0 for all £ € [0, 00), there exists z € Ty such that

r(,2) <o(t(p(x,9)))p*, ),
which shows that (Q1) holds with & = 7. So, by above, we prove (Ql) < (Q2). O

Now, we present an existence theorem for p-approximate fixed point property and ap-
proximate fixed point property, which is indeed a somewhat generalized form of [4, The-
orem 3.3] and is one of the key technical devices in the new short proofs of Theorems 1.1
and 1.2.

Theorem 2.2 Let (X,d) be a metric space, p be a t°-function and T : X — N(X) be a
multivalued map. Assume that one of (L1) and (L2) is satisfied, where
(L1) there exist a nondecreasing function & : [0,00) — [0, 00) and an MT -function
¢ :[0,00) = [0,1) such that for each x € X, if y € Tx with y # x, then there exists
z € Ty such that

r,2) < 0(&(p(,9))p(x,9);

(L2) there exist a nondecreasing function t : [0,00) — [0, 00) and an MT -function
Kk :[0,00) — [0,1) such that for each x € X,

pW, Ty) < K(‘L’ (p(x,y)))p(x,y) forally e Tx.

Then the following statements hold.

Page 4 of 10
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(a) There exists a Cauchy sequence {x,}yen in X such that
(i) %441 € Ty foralln e N,
(ii) infuex pOons Xpe1) = 1My 00 P (X5 Xrs1) = 1iMy s 00 A(Xny X41) = infren d(x,,
Xns1) = 0.
(b) infyex p(x, Tx) = inf,cx d(x, Tx) = O; that is, T has p-approximate fixed point
property and approximate fixed point property on X.

Proof By Lemma 2.2, it suffices to prove that the conclusions hold under assumption (L1).
Let u € X be given. If u € Ty, then

inf p(x, Tx) < p(u, Tu) < plu,u) = 0,
XE.
and

inf d(x, Tx) < d(u,u) = 0,
xeX

which implies that inf,cx p(x, Tx) = inf,cx d(x, Tx) = 0. Let w,, = u for all n € N. Thus we
have
Wpi=uc€Tu=Tw, forallneN,

lim p(wy,, Wy.1) = in}g PWy, Wi1) = p(u,u) =0,
ne

n—00

and
lim d(Wy, Wpe1) = inf d(Wy, wyia) = d(u, u) = 0.
n—00 neN

Clearly,

PWoi1, Wni2) = 0 = @(& (DWn, Wii1)) ) P(Wpy Wyy1)  forallme N.
So, conclusions (a) and (b) hold in this case u € Ty, no matter what condition one begins

with. Suppose that u ¢ Tu. Put x; = 4 and x5 € Tx;. Then x, # x; and hence p(x;, ;) > 0.

Assume that condition (L1) is satisfied. Then there exists x3 € Tx, such that

p(x2,%3) < (& (p(x1,%2)) ) (1, %2).

If x, = x3 € Txy, then, following a similar argument as above, the conclusions are also
proved. If x3 # x,, then there exists x4 € Tx3 such that

P(x3,%4) < (& (p(x2,x3)) ) (%2, %3).
By induction, we can obtain a sequence {x,} in X satisfying x,,; € Tx, and

p(xn+1:xn+2) = @(E (P(xn:xn+1)))p(xn7xn+1) foralln e N. (21)

Page 5 of 10
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Since ¢(¢) < 1 for all ¢ € [0, 00), inequality (2.1) implies that the sequence {p(x,, %,+1)}nen
is strictly decreasing in [0, 00). Hence

lim p(x,,%,41) = inf p(x,,%,41) >0  exists. (2.2)
n—00 neN

Since £ is nondecreasing, {£ (p(x,,%,41))}nen is @ nonincreasing sequence in [0, 00). Since
¢ is an MT -function, by (g) of Theorem 2.1, we have

0 f Sugw(é (p(xn)xnﬂ))) < 1

Let A :=sup,,.y (€ (p(%4, %441))). SO X € [0,1) and we get from (2.1) that

Pt Xn12) S AP, Xpi1) < - < Ap(xy, %) foreach n e N. (2.3)
Since X € [0,1), lim,,_,o A” = 0 and hence the last inequality implies

im plos, 2,,1) = 0. (2.4)
By (2.2) and (2.4), we obtain

in}g P Xi1) = M p(x, %041) = 0. (2.5)
ne n—o0

Now, we claim that {x,} is a Cauchy sequence in X. Let a,, = *l%lp(xl,xz), neN.Form,n e
N with m > n, by (2.3), we have

m-1
P Xy %) < Z P, %xj41) < ot
j=n
Since A € [0,1), lim,,_, o, @, = 0 and hence

lim sup{p(x,,,xm) tm > n} =0.

Applying Lemma 2.1, we show that {x,} is a Cauchy sequence in X. Hence lim,,_, oo d(xy,
%4+1) = 0. Since inf,eny d(%, %41) < A%, %m41) for all m € N and lim,,,_, oo d(%,, X141) = 0,

one also obtains
lim d(x,,%,.1) = inlgd(x,,,xml) =0. (2.6)
ne

n—00

So conclusion (a) is proved. To see (b), since x,,,; € Tx, for each n € N, we have
in)f(P(x; Tx) < p(xm Txn) < p(xn:fxn+1) (27)
XE

and

in)f(d(x, Tx) < d(xy, Txp) < d(Xp, fni1) (2.8)
XE.
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for all » € N. Combining (2.6), (2.7) and (2.8), we get
;g)f( plx, Tx) = ;Q)f( d(x, Tx) = 0.

The proof is completed. O
The following existence theorem is obviously an immediate result from Theorem 2.2.

Theorem 2.3 Let (X,d) be a metric space, p be a t°-function and T : X — N(X) be a
multivalued map. Assume that one of (H1) and (H2) is satisfied, where
(H1) there exists an MT -function « : [0,00) — [0,1) such that for each x € X, if y € Tx
with y # x, then there exists z € Ty such that

p(9,2) < a(p(x,9))p(x,9);

(H2) there exists an MT -function B : [0,00) — [0,1) such that for each x € X,

p0, Ty) < B(p(x,9))p(x,y) forally € Tx.

Then the following statements hold.
(a) There exists a Cauchy sequence {x,}yen in X such that
(i) x441 € Txy foralln e N,
(i) infuex pOn, %n11) = limy—s 0o (X, Xn41) = 1My, 00 A(Xy, Xn41) = infe d(xy,
Xns1) = 0.
(b) infyex p(x, Tx) = infycx d(x, Tx) = O; that is, T has p-approximate fixed point
property and approximate fixed point property on X.

Lemma2.3 Lett:[0,00) — [0,00) be a nondecreasing function and « : [0,00) — [0,1) be
an MT -function. Then k o t is an MT -function.

Proof Let {x,},cn be a strictly decreasing sequence in [0, 00). Since 7 is a nondecreasing
function, {t(x,)}.en is @ nonincreasing sequence in [0, 00). Since « is an M T -function, by
(f) of Theorem 2.1, we get

0< supx(r(xn)) <1,

neN

or, equivalently,

0 < sup(k o 7)(x,) < 1.
neN

So, by Theorem 2.1 again, we prove that « o 7 is an M7 -function. O

Applying Lemma 2.3, we conclude that Theorem 2.2 is also a special case of Theo-
rem 2.3. Therefore we obtain the following important fact.

Theorem 2.4 Theorem 2.2 and Theorem 2.3 are equivalent.
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3 Short proofs of Theorems 1.1 and 1.2
Let us see how we can utilize Theorem 2.3 to prove Theorem 1.1.

Short proof of Theorem 1.1 Since K is a nonempty closed subset of X and X is complete,
(K, d) is also a complete metric space. Let x € K. Put k = % and A = % So,0<k<A<l.
Let y € TxN K be arbitrary. So, d(y, Tx N K) = 0. By (D2), we have d(gy, Tx N K) = 0. Hence
inequality (1.1) implies

H(Tx, TyNK) <y [d(x, TxNK)+H(Tx, Ty N K)] forallye TxN K. (3.1)
Inequality (3.1) shows that

dly, yNK) <H(Tx, TyNK) < kd(x, Tx N K) < Md(x,y) forallye TxNK. (3.2)
Define G : K — CB(K) by

Gx=TxNK forallxeK,
and let p : [0,00) — [0,1) be defined by

n(t) =X forallte [0,00).
Then p is an MT -function. By (3.2), we obtain

d(y, Gy) < u(d(x,y))d(x,y) forally € Gx.

Applying Theorem 2.3 with p = d, there exists a Cauchy sequence {x,},cn in K such that

X1 € Gx, =Tx,NK forallmeN (3.3)
and

lim d(x,,%,41) = inlgd(x,,,xml) =0. (3.4)

n— 00 ne

By the completeness of K, there exists v € K such that x, — v as n — oco. By (3.3) and
(D2), we have

gxy1 € Tx, N K foreachn e N. (3.5)
Since g is continuous and lim,,_, « %, = v, we have

nlgrgo gx, = gv. (3.6)
Since the function x — d(x, Tv) is continuous, by (1.1), (3.3), (3.4), (3.5) and (3.6), we get

dv, TvNh K) = nll)rgo d(x,41, TN K)

< lim H(Tx,, TvNK)

n—00
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< lim {y[d(x,, T, NK) + d(v, Tx, N K) + d(v, TN K) |

n—00

+ h(v)d(gv, Tx, N K)}
< lim {y[d(x,,,xn+1) +d(V, x%p41) +d(v, Tv N K)] + h(v)d(gv,gxn+1)}
= yd(v, TvN K),

which implies d(v, Tv N K) = 0. By the closedness of Tv, we have v € Tv N K. From (D2),
gve TvNK C Tv. Hence we verify v e COPg(g, T) N Fx(T). The proof is complete.  [J

In order to finish off our work, let us prove Theorem 1.2 by applying Theorem 2.3.

Short proof of Theorem 1.2 Since K is a nonempty closed subset of X and X is complete,
(K,d) is also a complete metric space. Note first that for each x € K, by (D2), we have
d(gy, Tx N K) =0 for all y € Tx N K. So, for each x € K, by (1.2), we obtain

dly, yNK) < (p(d(x,y))d(x,y) forally e Tx N K. (3.7)
Define G : K — CB(K) by

Gx=TxNK forallxeK.
From (3.7), we obtain

d(y, Gy) < ¢(d(x,9))d(x,y) forallye Gu.

By using Theorem 2.3, there exists a Cauchy sequence {x,},cn in K such that

X1 € Gx, =Tx,NK forallneN (3.8)
and

lim d(x,,%,,1) = inf d(x,,%,.1) = 0. (3.9)

n—00 neN

By the completeness of K, there exists v € K such that x, — v as n — o0o. Thanks to (3.8)
and (D2), we have

gxy1 € Tx, NK foreachn e N. (3.10)
Since g is continuous and lim,,_, « %, = v, we have
lim gx, = gv. (3.11)
n— o0
Since the function x — d(x, Tv) is continuous, by (1.2), (3.8), (3.10) and (3.11), we get
div, TvN K) = lim d(x,,1, TvN K)
Hn—>0Q

< lim H(Tx,, TvNK)

n—00
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< nlingo{w(d(xn, v))d(xn, v) + h(v)d(gv, Tx, N K)}
< lim {¢(d(xs, v))d(xn, v) + h(v)d(gv, gxnir) } = 0,

which implies d(v, Tv N K) = 0. By the closedness of Tv, we have v € Tv N K. By (D2),
gve TvNK C Tv and hence v e COPx(g, T) N Fx(T). The proof is complete. O
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