RESEARCH

Open Access

A note on approximate fixed point property and Du-Karapinar-Shahzad's intersection theorems

Wei-Shih Du*

*Correspondence: wsdu@nknucc.nknu.edu.tw Department of Mathematics, National Kaohsiung Normal University, Kaohsiung, 824, Taiwan

Abstract

In this note, we give new short proofs of Du-Karapinar-Shahzad's intersection theorems for multivalued non-self-maps in complete metric spaces. **MSC:** 47H10; 54H25

Keywords: τ -function; \mathcal{MT} -function (\mathcal{R} -function); coincidence point; fixed point; approximate fixed point property

1 Introduction and preliminaries

Let us begin with some basic definitions and notations that will be needed in this paper. Let (X, d) be a metric space. Denote by $\mathcal{N}(X)$ the family of all nonempty subsets of X and by $\mathcal{CB}(X)$ the family of all nonempty closed and bounded subsets of X. For each $x \in X$ and $A \subseteq X$, let $d(x, A) = \inf_{y \in A} d(x, y)$. A function $\mathcal{H} : \mathcal{CB}(X) \times \mathcal{CB}(X) \to [0, \infty)$ defined by

$$\mathcal{H}(A,B) = \max\left\{\sup_{x\in B} d(x,A), \sup_{x\in A} d(x,B)\right\}$$

is said to be the Hausdorff metric on $C\mathcal{B}(X)$ induced by the metric *d* on *X*. The symbols \mathbb{N} and \mathbb{R} are used to denote the sets of positive integers and real numbers, respectively.

Let *K* be a nonempty subset of *X*, $g: K \to X$ be a single-valued non-self-map and *T* : $K \to \mathcal{N}(X)$ be a multivalued non-self-map. A point *v* in *X* is a *coincidence point* (see, for instance, [1–6]) of *g* and *T* if $gv \in Tx$. If g = id is the identity map, then $v = gv \in Tv$ and call *v* a *fixed point* of *T*. The set of fixed points of *T* and the set of coincidence points of *g* and *T* are denoted by $\mathcal{F}_K(T)$ and $\mathcal{COP}_K(g, T)$, respectively. In particular, if $K \equiv X$, we use $\mathcal{F}(T)$ and $\mathcal{COP}(g, T)$ instead of $\mathcal{F}_K(T)$ and $\mathcal{COP}_K(g, T)$, respectively. The map *T* is said to have *approximate fixed point property* [1–5] on *K* provided $\inf_{x \in K} d(x, Tx) = 0$. It is obvious that $\mathcal{F}_K(T) \neq \emptyset$ implies that *T* has approximate fixed point property.

A function $\varphi : [0, \infty) \to [0, 1)$ is said to be an \mathcal{MT} -function (or \mathcal{R} -function) [3–11] if lim sup_{$s \to t^+$} $\varphi(s) < 1$ for all $t \in [0, \infty)$. Clearly, if $\varphi : [0, \infty) \to [0, 1)$ is a nondecreasing function or a nonincreasing function, then φ is an \mathcal{MT} -function. So, the set of \mathcal{MT} -functions is a rich class and has the questions many of which are worth studying.

The study of fixed points for single-valued non-self-maps or multivalued non-self-maps satisfying certain contractive conditions is an interesting and important direction of research in metric fixed point theory. A great deal of such research has been investigated by

©2013 Du; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. several authors, see, *e.g.*, [11–19] and the references therein. Very recently, Du, Karapinar and Shahzad [11] established the following intersection existence theorem of coincidence points and fixed points of multivalued non-self-maps of Kannan type and Chatterjea type.

Theorem 1.1 [11, Theorem 8] Let (X,d) be a complete metric space, K be a nonempty closed subset of X, $T : K \to CB(X)$ be a multivalued map and $g : K \to X$ be a continuous map. Suppose that

- (D1) $Tx \cap K \neq \emptyset$ for all $x \in K$,
- (D2) $Tx \cap K$ is g-invariant (i.e., $g(Tx \cap K) \subseteq Tx \cap K$) for each $x \in K$,
- (D3) there exist a function $h: K \to [0, \infty)$ and $\gamma \in [0, \frac{1}{2})$ such that

$$\mathcal{H}(Tx, Ty \cap K) \le \gamma \left[d(x, Tx \cap K) + d(y, Tx \cap K) + d(y, Ty \cap K) \right] + h(y)d(gy, Tx \cap K) \quad for all x, y \in K.$$
(1.1)

Then $COP_K(g, T) \cap \mathcal{F}_K(T) \neq \emptyset$.

In [11], they also gave some coincidence and fixed point theorems for multivalued nonself-maps of Mizoguchi-Takahashi type, Berinde-Berinde type and Du type.

Theorem 1.2 [11, Theorem 19] Let (X, d) be a complete metric space, K be a nonempty closed subset of $X, T : K \to C\mathcal{B}(X)$ be a multivalued map and $g : K \to X$ be a continuous map. Suppose that conditions (D1) and (D2) as in Theorem 1.1 hold. If there exist an \mathcal{MT} -function $\varphi : [0, \infty) \to [0, 1)$ and a function $h : K \to [0, \infty)$ such that

$$\mathcal{H}(Tx, Ty \cap K) \le \varphi(d(x, y))d(x, y) + h(y)d(gy, Tx \cap K) \quad \text{for all } x, y \in K,$$
(1.2)

then $COP_K(g, T) \cap \mathcal{F}_K(T) \neq \emptyset$.

In this work, we give new short proofs of Du-Karapinar-Shahzad's intersection theorems of $COP_K(g, T)$ and $\mathcal{F}_K(T)$ for multivalued non-self-maps (*i.e.*, Theorems 1.1 and 1.2) by applying an existence theorem for approximate fixed point property.

2 Some auxiliary key results

Let (X, d) be a metric space. Recall that a function $p : X \times X \rightarrow [0, \infty)$ is said to be a τ -*function* [3–5, 7, 8, 20–22], first introduced and studied by Lin and Du, if the following conditions hold:

- (τ 1) $p(x,z) \le p(x,y) + p(y,z)$ for all $x, y, z \in X$;
- (τ 2) if $x \in X$ and $\{y_n\}$ in X with $\lim_{n\to\infty} y_n = y$ such that $p(x, y_n) \le M$ for some M = M(x) > 0, then $p(x, y) \le M$;
- (τ 3) for any sequence { x_n } in X with $\lim_{n\to\infty} \sup\{p(x_n, x_m) : m > n\} = 0$, if there exists a sequence { y_n } in X such that $\lim_{n\to\infty} p(x_n, y_n) = 0$, then $\lim_{n\to\infty} d(x_n, y_n) = 0$;
- (τ 4) for $x, y, z \in X$, p(x, y) = 0 and p(x, z) = 0 imply y = z.

Note that with the additional condition

 $(\tau 5) p(x,x) = 0$ for all $x \in X$,

a τ -function becomes a τ^0 -function [3–5, 7, 8] introduced by Du.

Clearly, any metric *d* is a τ^0 -function. Observe further that if *p* is a τ^0 -function, then, from (τ 4) and (τ 5), *p*(*x*, *y*) = 0 if and only if *x* = *y*.

Example A [7] Let $X = \mathbb{R}$ with the metric d(x, y) = |x - y| and 0 < a < b. Define the function $p : X \times X \rightarrow [0, \infty)$ by

 $p(x, y) = \max\{a(y - x), b(x - y)\}.$

Then *p* is nonsymmetric and hence *p* is not a metric. It is easy to see that *p* is a τ^0 -function.

Lemma 2.1 [22, Lemma 2.1] Let (X,d) be a metric space and $p: X \times X \to [0,\infty)$ be a function. Assume that p satisfies the condition $(\tau 3)$. If a sequence $\{x_n\}$ in X with $\lim_{n\to\infty} \sup\{p(x_n, x_m): m > n\} = 0$, then $\{x_n\}$ is a Cauchy sequence in X.

Let (X, d) be a metric space and p be a τ -function. A multivalued map $T : X \to \mathcal{N}(X)$ is said to have *p*-approximate fixed point property on X provided

 $\inf_{x\in X}p(x,Tx)=0.$

The following characterizations of \mathcal{MT} -functions proved first by Du [6] are quite useful for proving our main results.

Theorem 2.1 [6, Theorem 2.1] Let $\varphi : [0, \infty) \to [0, 1)$ be a function. Then the following statements are equivalent.

- (a) φ is an \mathcal{MT} -function.
- (b) For each $t \in [0, \infty)$, there exist $r_t^{(1)} \in [0, 1)$ and $\varepsilon_t^{(1)} > 0$ such that $\varphi(s) \le r_t^{(1)}$ for all $s \in (t, t + \varepsilon_t^{(1)})$.
- (c) For each $t \in [0, \infty)$, there exist $r_t^{(2)} \in [0, 1)$ and $\varepsilon_t^{(2)} > 0$ such that $\varphi(s) \le r_t^{(2)}$ for all $s \in [t, t + \varepsilon_t^{(2)}]$.
- (d) For each $t \in [0, \infty)$, there exist $r_t^{(3)} \in [0, 1)$ and $\varepsilon_t^{(3)} > 0$ such that $\varphi(s) \le r_t^{(3)}$ for all $s \in (t, t + \varepsilon_t^{(3)}]$.
- (e) For each $t \in [0, \infty)$, there exist $r_t^{(4)} \in [0, 1)$ and $\varepsilon_t^{(4)} > 0$ such that $\varphi(s) \le r_t^{(4)}$ for all $s \in [t, t + \varepsilon_t^{(4)})$.
- (f) For any nonincreasing sequence $\{x_n\}_{n\in\mathbb{N}}$ in $[0,\infty)$, we have $0 \leq \sup_{n\in\mathbb{N}} \varphi(x_n) < 1$.
- (g) φ is a function of contractive factor; that is, for any strictly decreasing sequence $\{x_n\}_{n\in\mathbb{N}}$ in $[0,\infty)$, we have $0 \leq \sup_{n\in\mathbb{N}} \varphi(x_n) < 1$.

The following result was essentially proved by Du *et al.* in [4], but we give the proof for the sake of completeness and the readers convenience.

Lemma 2.2 [4, Lemma 3.1] Let (X, d) be a metric space, p be a τ^0 -function and $T: X \to \mathcal{N}(X)$ be a multivalued map. Then the following statements are equivalent.

(Q1) There exist a function $\xi : [0, \infty) \to [0, \infty)$ and an \mathcal{MT} -function $\varphi : [0, \infty) \to [0, 1)$ such that for each $x \in X$, if $y \in Tx$ with $y \neq x$, then there exists $z \in Ty$ such that

 $p(y,z) \le \varphi(\xi(p(x,y)))p(x,y).$

(Q2) There exist a function $\tau : [0, \infty) \to [0, \infty)$ and an \mathcal{MT} -function $\kappa : [0, \infty) \to [0, 1)$ such that for each $x \in X$,

$$p(y, Ty) \le \kappa (\tau (p(x, y)))p(x, y)$$
 for all $y \in Tx$.

Proof If (Q1) holds, then it is easy to verify that (Q2) also holds with $\kappa \equiv \varphi$ and $\tau \equiv \xi$. So it suffices to prove that '(Q2) \Rightarrow (Q1)'. Suppose that (Q2) holds. Define $\varphi : [0, \infty) \rightarrow [0, 1)$ by $\varphi(t) = \frac{1+\kappa(t)}{2}$. Then φ is also an \mathcal{MT} -function. Indeed, it is obvious that $0 \le \kappa(t) < \varphi(t) < 1$ for all $t \in [0, \infty)$. Let $\{x_n\}_{n \in \mathbb{N}}$ be a strictly decreasing sequence in $[0, \infty)$. Since κ is an \mathcal{MT} -function, by (g) of Theorem 2.1, we get

$$0 \leq \sup_{n \in \mathbb{N}} \kappa(x_n) < 1$$

and hence

$$0 < \sup_{n \in \mathbb{N}} \varphi(x_n) = \frac{1}{2} \left[1 + \sup_{n \in \mathbb{N}} \kappa(x_n) \right] < 1.$$

So, by Theorem 2.1 again, we prove that φ is an \mathcal{MT} -function.

For each $x \in X$, let $y \in Tx$ with $y \neq x$. Then p(x, y) > 0. By (Q2), we have

 $p(y, Ty) < \varphi(\tau(p(x, y)))p(x, y).$

Since $\varphi(t) > 0$ for all $t \in [0, \infty)$, there exists $z \in Ty$ such that

 $p(y,z) < \varphi(\tau(p(x,y)))p(x,y),$

which shows that (Q1) holds with $\xi \equiv \tau$. So, by above, we prove '(Q1) \iff (Q2)'.

Now, we present an existence theorem for *p*-approximate fixed point property and approximate fixed point property, which is indeed a somewhat generalized form of [4, Theorem 3.3] and is one of the key technical devices in the new short proofs of Theorems 1.1 and 1.2.

Theorem 2.2 Let (X,d) be a metric space, p be a τ^0 -function and $T: X \to \mathcal{N}(X)$ be a multivalued map. Assume that one of (L1) and (L2) is satisfied, where

(L1) there exist a nondecreasing function $\xi : [0, \infty) \to [0, \infty)$ and an \mathcal{MT} -function $\varphi : [0, \infty) \to [0, 1)$ such that for each $x \in X$, if $y \in Tx$ with $y \neq x$, then there exists $z \in Ty$ such that

 $p(y,z) \leq \varphi(\xi(p(x,y)))p(x,y);$

(L2) there exist a nondecreasing function $\tau : [0, \infty) \to [0, \infty)$ and an \mathcal{MT} -function $\kappa : [0, \infty) \to [0, 1)$ such that for each $x \in X$,

$$p(y, Ty) \le \kappa (\tau (p(x, y)))p(x, y)$$
 for all $y \in Tx$.

Then the following statements hold.

- (a) There exists a Cauchy sequence {x_n}_{n∈ℕ} in X such that
 (i) x_{n+1} ∈ Tx_n for all n ∈ ℕ,
 (ii) inf_{n∈X} p(x_n, x_{n+1}) = lim_{n→∞} p(x_n, x_{n+1}) = lim_{n→∞} d(x_n, x_{n+1}) = inf_{n∈ℕ} d(x_n, x_{n+1}) = 0.
- (b) $\inf_{x \in X} p(x, Tx) = \inf_{x \in X} d(x, Tx) = 0$; that is, *T* has *p*-approximate fixed point property and approximate fixed point property on *X*.

Proof By Lemma 2.2, it suffices to prove that the conclusions hold under assumption (L1). Let $u \in X$ be given. If $u \in Tu$, then

$$\inf_{x\in X} p(x, Tx) \leq p(u, Tu) \leq p(u, u) = 0,$$

and

$$\inf_{x\in X} d(x, Tx) \leq d(u, u) = 0,$$

which implies that $\inf_{x \in X} p(x, Tx) = \inf_{x \in X} d(x, Tx) = 0$. Let $w_n = u$ for all $n \in \mathbb{N}$. Thus we have

$$w_{n+1} = u \in Tu = Tw_n \quad \text{for all } n \in \mathbb{N},$$
$$\lim_{n \to \infty} p(w_n, w_{n+1}) = \inf_{n \in \mathbb{N}} p(w_n, w_{n+1}) = p(u, u) = 0,$$

and

$$\lim_{n\to\infty} d(w_n, w_{n+1}) = \inf_{n\in\mathbb{N}} d(w_n, w_{n+1}) = d(u, u) = 0$$

Clearly,

$$p(w_{n+1}, w_{n+2}) = 0 = \varphi(\xi(p(w_n, w_{n+1})))p(w_n, w_{n+1}) \text{ for all } n \in \mathbb{N}.$$

So, conclusions (a) and (b) hold in this case $u \in Tu$, no matter what condition one begins with. Suppose that $u \notin Tu$. Put $x_1 = u$ and $x_2 \in Tx_1$. Then $x_2 \neq x_1$ and hence $p(x_1, x_2) > 0$. Assume that condition (L1) is satisfied. Then there exists $x_3 \in Tx_2$ such that

$$p(x_2,x_3) \leq \varphi\bigl(\xi\bigl(p(x_1,x_2)\bigr)\bigr)p(x_1,x_2).$$

If $x_2 = x_3 \in Tx_2$, then, following a similar argument as above, the conclusions are also proved. If $x_3 \neq x_2$, then there exists $x_4 \in Tx_3$ such that

$$p(x_3, x_4) \leq \varphi\bigl(\xi\bigl(p(x_2, x_3)\bigr)\bigr)p(x_2, x_3).$$

By induction, we can obtain a sequence $\{x_n\}$ in *X* satisfying $x_{n+1} \in Tx_n$ and

$$p(x_{n+1}, x_{n+2}) \le \varphi\left(\xi\left(p(x_n, x_{n+1})\right)\right) p(x_n, x_{n+1}) \quad \text{for all } n \in \mathbb{N}.$$

$$(2.1)$$

Since $\varphi(t) < 1$ for all $t \in [0, \infty)$, inequality (2.1) implies that the sequence $\{p(x_n, x_{n+1})\}_{n \in \mathbb{N}}$ is strictly decreasing in $[0, \infty)$. Hence

$$\lim_{n \to \infty} p(x_n, x_{n+1}) = \inf_{n \in \mathbb{N}} p(x_n, x_{n+1}) \ge 0 \quad \text{exists.}$$

$$(2.2)$$

Since ξ is nondecreasing, $\{\xi(p(x_n, x_{n+1}))\}_{n \in \mathbb{N}}$ is a nonincreasing sequence in $[0, \infty)$. Since φ is an \mathcal{MT} -function, by (g) of Theorem 2.1, we have

$$0 \leq \sup_{n \in \mathbb{N}} \varphi \left(\xi \left(p(x_n, x_{n+1}) \right) \right) < 1.$$

Let $\lambda := \sup_{n \in \mathbb{N}} \varphi(\xi(p(x_n, x_{n+1})))$. So $\lambda \in [0, 1)$ and we get from (2.1) that

$$p(x_{n+1}, x_{n+2}) \le \lambda p(x_n, x_{n+1}) \le \dots \le \lambda^n p(x_1, x_2) \quad \text{for each } n \in \mathbb{N}.$$
(2.3)

Since $\lambda \in [0, 1)$, $\lim_{n \to \infty} \lambda^n = 0$ and hence the last inequality implies

$$\lim_{n \to \infty} p(x_n, x_{n+1}) = 0.$$
 (2.4)

By (2.2) and (2.4), we obtain

$$\inf_{n \in \mathbb{N}} p(x_n, x_{n+1}) = \lim_{n \to \infty} p(x_n, x_{n+1}) = 0.$$
(2.5)

Now, we claim that $\{x_n\}$ is a Cauchy sequence in *X*. Let $\alpha_n = \frac{\lambda^{n-1}}{1-\lambda}p(x_1, x_2), n \in \mathbb{N}$. For $m, n \in \mathbb{N}$ with m > n, by (2.3), we have

$$p(x_n, x_m) \leq \sum_{j=n}^{m-1} p(x_j, x_{j+1}) < \alpha_n.$$

Since $\lambda \in [0, 1)$, $\lim_{n \to \infty} \alpha_n = 0$ and hence

$$\lim_{n\to\infty}\sup\{p(x_n,x_m):m>n\}=0.$$

Applying Lemma 2.1, we show that $\{x_n\}$ is a Cauchy sequence in *X*. Hence $\lim_{n\to\infty} d(x_n, x_{n+1}) = 0$. Since $\inf_{n\in\mathbb{N}} d(x_n, x_{n+1}) \le d(x_m, x_{m+1})$ for all $m \in \mathbb{N}$ and $\lim_{m\to\infty} d(x_m, x_{m+1}) = 0$, one also obtains

$$\lim_{n \to \infty} d(x_n, x_{n+1}) = \inf_{n \in \mathbb{N}} d(x_n, x_{n+1}) = 0.$$
(2.6)

So conclusion (a) is proved. To see (b), since $x_{n+1} \in Tx_n$ for each $n \in \mathbb{N}$, we have

$$\inf_{x \in X} p(x, Tx) \le p(x_n, Tx_n) \le p(x_n, fx_{n+1})$$
(2.7)

and

$$\inf_{x \in X} d(x, Tx) \le d(x_n, Tx_n) \le d(x_n, fx_{n+1})$$
(2.8)

for all $n \in \mathbb{N}$. Combining (2.6), (2.7) and (2.8), we get

$$\inf_{x\in X} p(x, Tx) = \inf_{x\in X} d(x, Tx) = 0.$$

The proof is completed.

The following existence theorem is obviously an immediate result from Theorem 2.2.

Theorem 2.3 Let (X,d) be a metric space, p be a τ^0 -function and $T: X \to \mathcal{N}(X)$ be a multivalued map. Assume that one of (H1) and (H2) is satisfied, where

(H1) there exists an \mathcal{MT} -function $\alpha : [0, \infty) \to [0, 1)$ such that for each $x \in X$, if $y \in Tx$ with $y \neq x$, then there exists $z \in Ty$ such that

 $p(y,z) \le \alpha (p(x,y))p(x,y);$

(H2) there exists an \mathcal{MT} -function $\beta : [0, \infty) \to [0, 1)$ such that for each $x \in X$,

 $p(y, Ty) \le \beta(p(x, y))p(x, y)$ for all $y \in Tx$.

Then the following statements hold.

- (a) There exists a Cauchy sequence $\{x_n\}_{n\in\mathbb{N}}$ in X such that
 - (i) $x_{n+1} \in Tx_n$ for all $n \in \mathbb{N}$,
 - (ii) $\inf_{n \in X} p(x_n, x_{n+1}) = \lim_{n \to \infty} p(x_n, x_{n+1}) = \lim_{n \to \infty} d(x_n, x_{n+1}) = \inf_{n \in \mathbb{N}} d(x_n, x_{n+1}) = 0.$
- (b) $\inf_{x \in X} p(x, Tx) = \inf_{x \in X} d(x, Tx) = 0$; that is, T has p-approximate fixed point property and approximate fixed point property on X.

Lemma 2.3 Let $\tau : [0, \infty) \to [0, \infty)$ be a nondecreasing function and $\kappa : [0, \infty) \to [0, 1)$ be an \mathcal{MT} -function. Then $\kappa \circ \tau$ is an \mathcal{MT} -function.

Proof Let $\{x_n\}_{n\in\mathbb{N}}$ be a strictly decreasing sequence in $[0, \infty)$. Since τ is a nondecreasing function, $\{\tau(x_n)\}_{n\in\mathbb{N}}$ is a nonincreasing sequence in $[0, \infty)$. Since κ is an \mathcal{MT} -function, by (f) of Theorem 2.1, we get

$$0\leq \sup_{n\in\mathbb{N}}\kappa\big(\tau(x_n)\big)<1,$$

or, equivalently,

$$0\leq \sup_{n\in\mathbb{N}}(\kappa\circ\tau)(x_n)<1.$$

So, by Theorem 2.1 again, we prove that $\kappa \circ \tau$ is an \mathcal{MT} -function.

Applying Lemma 2.3, we conclude that Theorem 2.2 is also a special case of Theorem 2.3. Therefore we obtain the following important fact.

Theorem 2.4 Theorem 2.2 and Theorem 2.3 are equivalent.

3 Short proofs of Theorems 1.1 and 1.2

Let us see how we can utilize Theorem 2.3 to prove Theorem 1.1.

Short proof of Theorem 1.1 Since *K* is a nonempty closed subset of *X* and *X* is complete, (K, d) is also a complete metric space. Let $x \in K$. Put $k = \frac{\gamma}{1-\gamma}$ and $\lambda = \frac{1+k}{2}$. So, $0 \le k < \lambda < 1$. Let $y \in Tx \cap K$ be arbitrary. So, $d(y, Tx \cap K) = 0$. By (D2), we have $d(gy, Tx \cap K) = 0$. Hence inequality (1.1) implies

$$\mathcal{H}(Tx, Ty \cap K) \le \gamma \left[d(x, Tx \cap K) + \mathcal{H}(Tx, Ty \cap K) \right] \quad \text{for all } y \in Tx \cap K.$$
(3.1)

Inequality (3.1) shows that

$$d(y, Ty \cap K) \le \mathcal{H}(Tx, Ty \cap K) \le kd(x, Tx \cap K) < \lambda d(x, y) \quad \text{for all } y \in Tx \cap K.$$
(3.2)

Define $G: K \to C\mathcal{B}(K)$ by

 $Gx = Tx \cap K$ for all $x \in K$,

and let $\mu : [0, \infty) \rightarrow [0, 1)$ be defined by

 $\eta(t) = \lambda$ for all $t \in [0, \infty)$.

Then μ is an \mathcal{MT} -function. By (3.2), we obtain

$$d(y, Gy) \le \mu(d(x, y))d(x, y)$$
 for all $y \in Gx$.

Applying Theorem 2.3 with $p \equiv d$, there exists a Cauchy sequence $\{x_n\}_{n \in \mathbb{N}}$ in *K* such that

$$x_{n+1} \in Gx_n = Tx_n \cap K \quad \text{for all } n \in \mathbb{N}$$

$$(3.3)$$

and

$$\lim_{n \to \infty} d(x_n, x_{n+1}) = \inf_{n \in \mathbb{N}} d(x_n, x_{n+1}) = 0.$$
(3.4)

By the completeness of *K*, there exists $v \in K$ such that $x_n \to v$ as $n \to \infty$. By (3.3) and (D2), we have

$$gx_{n+1} \in Tx_n \cap K$$
 for each $n \in \mathbb{N}$. (3.5)

Since *g* is continuous and $\lim_{n\to\infty} x_n = v$, we have

$$\lim_{n \to \infty} g x_n = g v. \tag{3.6}$$

Since the function $x \mapsto d(x, Tv)$ is continuous, by (1.1), (3.3), (3.4), (3.5) and (3.6), we get

$$d(\nu, T\nu \cap K) = \lim_{n \to \infty} d(x_{n+1}, T\nu \cap K)$$
$$\leq \lim_{n \to \infty} \mathcal{H}(Tx_n, T\nu \cap K)$$

$$\leq \lim_{n \to \infty} \left\{ \gamma \left[d(x_n, Tx_n \cap K) + d(\nu, Tx_n \cap K) + d(\nu, T\nu \cap K) \right] \right.$$

+ $h(\nu)d(g\nu, Tx_n \cap K) \right\}$
$$\leq \lim_{n \to \infty} \left\{ \gamma \left[d(x_n, x_{n+1}) + d(\nu, x_{n+1}) + d(\nu, T\nu \cap K) \right] + h(\nu)d(g\nu, gx_{n+1}) \right\}$$

= $\gamma d(\nu, T\nu \cap K),$

which implies $d(v, Tv \cap K) = 0$. By the closedness of Tv, we have $v \in Tv \cap K$. From (D2), $gv \in Tv \cap K \subseteq Tv$. Hence we verify $v \in COP_K(g, T) \cap F_K(T)$. The proof is complete. \Box

In order to finish off our work, let us prove Theorem 1.2 by applying Theorem 2.3.

Short proof of Theorem 1.2 Since *K* is a nonempty closed subset of *X* and *X* is complete, (K, d) is also a complete metric space. Note first that for each $x \in K$, by (D2), we have $d(gy, Tx \cap K) = 0$ for all $y \in Tx \cap K$. So, for each $x \in K$, by (1.2), we obtain

$$d(y, Ty \cap K) \le \varphi(d(x, y))d(x, y) \quad \text{for all } y \in Tx \cap K.$$
(3.7)

Define $G: K \to C\mathcal{B}(K)$ by

$$Gx = Tx \cap K$$
 for all $x \in K$.

From (3.7), we obtain

$$d(y, Gy) \le \varphi(d(x, y))d(x, y)$$
 for all $y \in Gx$.

By using Theorem 2.3, there exists a Cauchy sequence $\{x_n\}_{n \in \mathbb{N}}$ in *K* such that

$$x_{n+1} \in Gx_n = Tx_n \cap K \quad \text{for all } n \in \mathbb{N}$$
(3.8)

and

$$\lim_{n \to \infty} d(x_n, x_{n+1}) = \inf_{n \in \mathbb{N}} d(x_n, x_{n+1}) = 0.$$
(3.9)

By the completeness of *K*, there exists $v \in K$ such that $x_n \to v$ as $n \to \infty$. Thanks to (3.8) and (D2), we have

$$gx_{n+1} \in Tx_n \cap K$$
 for each $n \in \mathbb{N}$. (3.10)

Since *g* is continuous and $\lim_{n\to\infty} x_n = v$, we have

$$\lim_{n \to \infty} g x_n = g v. \tag{3.11}$$

Since the function $x \mapsto d(x, Tv)$ is continuous, by (1.2), (3.8), (3.10) and (3.11), we get

$$d(\nu, T\nu \cap K) = \lim_{n \to \infty} d(x_{n+1}, T\nu \cap K)$$
$$\leq \lim_{n \to \infty} \mathcal{H}(Tx_n, T\nu \cap K)$$

$$\leq \lim_{n \to \infty} \left\{ \varphi \left(d(x_n, \nu) \right) d(x_n, \nu) + h(\nu) d(g\nu, Tx_n \cap K) \right\}$$

$$\leq \lim_{n \to \infty} \left\{ \varphi \left(d(x_n, \nu) \right) d(x_n, \nu) + h(\nu) d(g\nu, gx_{n+1}) \right\} = 0,$$

which implies $d(v, Tv \cap K) = 0$. By the closedness of Tv, we have $v \in Tv \cap K$. By (D2), $gv \in Tv \cap K \subseteq Tv$ and hence $v \in COP_K(g, T) \cap \mathcal{F}_K(T)$. The proof is complete.

Competing interests

The author declares that he has no competing interests.

Acknowledgements

In this research, the author was supported by grant No. NSC 102-2115-M-017-001 of the National Science Council of the Republic of China.

Received: 30 July 2013 Accepted: 24 September 2013 Published: 08 Nov 2013

References

- 1. Hussain, N, Amini-Harandi, A, Cho, YJ: Approximate endpoints for set-valued contractions in metric spaces. Fixed Point Theory Appl. 2010, Article ID 614867 (2010). doi:10.1155/2010/614867
- Khamsi, MA: On asymptotically nonexpansive mappings in hyperconvex metric spaces. Proc. Am. Math. Soc. 132, 365-373 (2004)
- 3. Du, W-S: On approximate coincidence point properties and their applications to fixed point theory. J. Appl. Math. 2012, Article ID 302830 (2012). doi:10.1155/2012/302830
- 4. Du, W-S, He, Z, Chen, Y-L: New existence theorems for approximate coincidence point property and approximate fixed point property with applications to metric fixed point theory. J. Nonlinear Convex Anal. **13**(3), 459-474 (2012)
- 5. Du, W-S: New existence results and generalizations for coincidence points and fixed points without global completeness. Abstr. Appl. Anal. **2013**, Article ID 214230 (2013). doi:10.1155/2013/214230
- 6. Du, W-S: On coincidence point and fixed point theorems for nonlinear multivalued maps. Topol. Appl. **159**, 49-56 (2012)
- 7. Du, W-S: Some new results and generalizations in metric fixed point theory. Nonlinear Anal. 73, 1439-1446 (2010)

8. Du, W-S: On generalized weakly directional contractions and approximate fixed point property with applications. Fixed Point Theory Appl. **2012**, 6 (2012). doi:10.1186/1687-1812-2012-6

- Sintunavarat, W, Kumam, P: Common fixed point theorems for hybrid generalized multi-valued contraction mappings. Appl. Math. Lett. 25(1), 52-57 (2012)
- 10. Kumam, P, Aydi, H, Karapinar, E, Sintunavarat, W: Best proximity points and extension of Mizoguchi-Takahashi's fixed point theorems. Fixed Point Theory Appl. (in press)
- 11. Du, W-S, Karapinar, E, Shahzad, N: The study of fixed point theory for various multivalued non-self-maps. Abstr. Appl. Anal. 2013, Article ID 938724 (2013). doi:10.1155/2013/938724
- 12. Browder, FE: Nonexpansive nonlinear operators in Banach space. Proc. Natl. Acad. Sci. USA 54, 1041-1044 (1965)
- Browder, FE, Petryshyn, WV: Construction of fixed points of nonlinear mappings in Hilbert space. J. Math. Anal. Appl. 20, 197-228 (1967)
- 14. Kirk, WA: Remarks on pseudo-contractive map. Proc. Am. Math. Soc. 25, 820-823 (1970)
- Kirk, WA: Fixed point theorems for nonlinear nonexpansive and generalized contraction mappings. Pac. J. Math. 38, 89-94 (1971)
- 16. Assad, NA, Kirk, WA: Fixed point theorems for set-valued mappings of contractive type. Pac. J. Math. 43, 553-562 (1972)
- 17. Reich, S: Fixed points of condensing functions. J. Math. Anal. Appl. 41, 460-467 (1973)
- 18. Assad, NA: A fixed point theorem for some non-self-mappings. Tamkang J. Math. 21(4), 387-393 (1990)
- 19. Alghamdi, MA, Berinde, V, Shahzad, N: Fixed points of multivalued nonself almost contractions. J. Appl. Math. 2013, Article ID 621614 (2013). doi:10.1155/2013/621614
- 20. Lin, L-J, Du, W-S: Ekeland's variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces. J. Math. Anal. Appl. **323**, 360-370 (2006)
- Lin, L-J, Du, W-S: On maximal element theorems, variants of Ekeland's variational principle and their applications. Nonlinear Anal. 68, 1246-1262 (2008)
- 22. Du, W-S: Critical point theorems for nonlinear dynamical systems and their applications. Fixed Point Theory Appl. 2010, Article ID 246382 (2010). doi:10.1155/2010/246382

10.1186/1029-242X-2013-506

Cite this article as: Du: A note on approximate fixed point property and Du-Karapinar-Shahzad's intersection theorems. *Journal of Inequalities and Applications* 2013, 2013:506