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1 Introduction
Let q ≥  be a positive integer. For any integers m and n, the generalized two-term expo-
nential sum C(m,n,k,χ ;q) is defined by

C(m,n,k,χ ;q) =
q∑

a=

χ (a)e
(
mak + na

q

)
,

where χ denotes any Dirichlet character mod q, and e(y) = eπ iy.
Regarding the upper bound estimate ofC(m,n,k,χ ;q), many authors have studied it and

obtained a series of important results; related contents can be found in [–] and []. For
example, fromWeil’s classical work [] one can deduce the estimate

∣∣C(m, , ,χ ;p)
∣∣ ≤  · p 



for (m,p) = .
Recently, Wang [] studied the computational problem of the fourth power mean of

C(m,n,k,χ ;p), and proved the following conclusion:
Let p be an odd prime with p �= a + . Then, for any integer m with (m,p) = , we have

the identity

p∑
n=

∣∣C(m,n, ,χ ;p)
∣∣

=

⎧⎪⎪⎨
⎪⎪⎩
p(p – p – ) if χ is the principal character mod p;

p(p – ) if χ is the Legendre symbol mod p;

p(p – ) otherwise.
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Wang [] studied the hybrid powermeanof the generalizedKloosterman sums
∑p–

a=λ(a)×
e(ma+a

p ) and
∑p–

a= χ (a + a), where λ denotes a Dirichlet character mod p, and gave an
interesting asymptotic formula for it. That is, she proved the following result:
Let p be an odd prime. Then, for any non-principal even character χ mod p and any

character λ mod p with λ �= ( ∗
p ), we have the asymptotic formula

p–∑
m=

∣∣∣∣∣
p–∑
a=

λ(a)e
(
ma + a

p

)∣∣∣∣∣


·
∣∣∣∣∣
p–∑
b=

χ (mb + b)

∣∣∣∣∣


= p +O
(
p

)
.

In this paper, as a note of [] and [], we found that there exists a close relationship
between the fourth powermean ofC(m,n, ,χ ;p) and |∑p–

b= χ (nb+b)|. Themain purpose
of this paper is to show this point. That is, we shall prove the following theorem.

Theorem Let p be an odd prime. Then, for any character χ mod p, we have the identity

p∑
m=

∣∣∣∣∣
p–∑
a=

χ(a)e
(
ma + a

p

)∣∣∣∣∣


=

⎧⎪⎪⎨
⎪⎪⎩
p – p + (–p )p

 – p – (–p )p if χ = χ;

p – p if χ(–) = –;

p – (–p ) · p – p – p · |∑p–
a= χ(a + a)| if χ �= χ and χ(–) = ,

where χ denotes the principal character mod p, a · a ≡  mod p, and ( ∗
p ) is the Legendre

symbol.

From this theorem we may immediately deduce the following corollary.

Corollary Let p be an odd prime.Then, for any non-principal character χ mod p,we have
the inequalities

p – p ≤
p∑

m=

∣∣∣∣∣
p–∑
a=

χ(a)e
(
ma + a

p

)∣∣∣∣∣


≤ p + p.

2 Several lemmas
In this section, we shall give several lemmas, which are necessary in the proof of our the-
orem. Hereinafter, we shall use many properties of character sums and Gauss sums, all of
these can be found in reference [], so they will not be repeated here. First we have the
following.

Lemma  Let p be an odd prime. Then, for any integers m and n with (mn,p) = , we have
the identity

p–∑
b=

e
(
mb + nb

p

)
=

(
m
p

)
e
(
–mn

p

) p–∑
a=

e
(
a

p

)
,

where ( xp ) denotes the Legendre symbol, and mm ≡  mod p.
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Proof See Lemma  in []. �

Lemma  Let p be an odd prime, χ be any fixed character mod p. Then, for any non-real
character χ mod p, we have the identity

∣∣∣∣∣
p–∑
m=

χ (m)

∣∣∣∣∣
p–∑
a=

χ(a)e
(
ma + a

p

)∣∣∣∣∣
∣∣∣∣∣



= p ·
∣∣∣∣∣
p–∑
a=

χ(a + )χ ( + a)

∣∣∣∣∣


.

Proof From the properties of Gauss sums, we have

p–∑
m=

χ (m)

∣∣∣∣∣
p–∑
a=

χ(a)e
(
ma + a

p

)∣∣∣∣∣


=
p–∑
a=

p–∑
b=

χ(ab)
p–∑
m=

χ (m)e
(
m(a – b) + (a – b)

p

)

=
p–∑
a=

p–∑
b=

χ(a)
p–∑
m=

χ (m)e
(
mb(a – ) + b(a – )

p

)

= τ (χ )
p–∑
a=

χ(a)
p–∑
b=

χ
(
b

(
a – 

))
e
(
b(a – )

p

)

= τ (χ )τ
(
χ) p–∑

a=

χ(a)χ
(
a – 

)
χ(a – )

= τ (χ )τ
(
χ) p–∑

a=

χ(a)χ (a + )χ (a – )

= τ (χ )τ
(
χ) p–∑

a=

χ(a + )χ ( + a). ()

Note that χ(p –  + ) = , χ is a non-real character mod p, so χ is also a non-principal
character mod p. Therefore, |τ (χ )| = |τ (χ)| = √p, so from () we may immediately de-
duce Lemma . �

Lemma  Let p be an odd prime, χ be any non-principal character mod p with χ (–) = .
Then we have

∣∣∣∣∣
p–∑
a=

χ (a + a)

∣∣∣∣∣


=
(
–
p

)
·
( p–∑

a=

χ (a)
(
a – 
p

))

and

∣∣∣∣∣
p–∑
a=

χ (a + a)

∣∣∣∣∣ ≤  · √p.
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Proof From the properties of quadratic residue mod p, we have

p–∑
a=

χ (a + a) =
p–∑
b=

χ (b)
p–∑
a=

a+a≡b mod p

 =
p–∑
b=

χ (b)
p–∑
a=

a–ba+≡ mod p



=
p–∑
b=

χ (b)
p–∑
a=

(a–b)≡b– mod p

 = χ ()
p–∑
b=

χ (b)
p–∑
a=

a≡b– mod p



= χ () ·
p–∑
b=

χ (b)
(
 +

(
b – 
p

))
= χ () ·

p–∑
b=

χ (b)
(
b – 
p

)
. ()

Note that

p–∑
b=

χ (b)
(
b – 
p

)
=

p–∑
b=

χ (b)
(
b – 
p

)
=

(
–
p

) p–∑
b=

χ (b)
(
b – 
p

)
,

so from () we may immediately deduce the identity

∣∣∣∣∣
p–∑
a=

χ (a + a)

∣∣∣∣∣


=
(
–
p

)( p–∑
a=

χ (a)
(
a – 
p

))

.

The estimate

∣∣∣∣∣
p–∑
a=

χ (a + a)

∣∣∣∣∣ ≤  · √p

follows from Lemma  of []. This proves Lemma . �

3 Proof of Theorem
In this section, we shall give two different proofs of our theorem. First, if χ is a non-
principal character mod p, then from Lemma  we have

∣∣∣∣∣
p–∑
a=

χ(a)e
(
ma + a

p

)∣∣∣∣∣


=
p–∑
a=

p–∑
b=

χ(ab)e
(
m(a – b) + a – b

p

)

=
p–∑
a=

p–∑
b=

χ(a)e
(
mb(a – ) + b(a – )

p

)

= p –  + χ(–)
p–∑
b=

e
(
–b
p

)
+

p–∑
a=

χ(a)
p–∑
b=

e
(
mb(a – ) + b(a – )

p

)

= p –  – χ(–) +
p–∑
a=

χ(a)
p–∑
b=

e
(
mb(a – ) + b(a – )

p

)
–

p–∑
a=

χ(a)
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= p +
p–∑
a=

χ(a)
p–∑
b=

e
(
m(a + )a –  · b + b

p

)
–

p–∑
a=

χ(a)

= p +G(p) ·
p–∑
a=

χ(a)
(
m(a + )a – 

p

)
e
(
m · a + (a – )

p

)

= p +G(p) ·
p–∑
a=

χ(a)
(
m(a – )

p

)
e
(
m · a + (a – )

p

)
, ()

where G(p) =
∑p–

a= e(
a
p ) and G(p) = (–p ) · p (see Theorem .. of []).

From () and the definition of Gauss sums, we may immediately deduce

p–∑
m=

∣∣∣∣∣
p–∑
a=

χ(a)e
(
ma + a

p

)∣∣∣∣∣


= p(p – ) + pG(p)
p–∑
m=

p–∑
a=

χ(a)
(
m(a – )

p

)
e
(
m · a + (a – )

p

)

+G(p)
p–∑
a=

p–∑
b=

χ(ab)
(
(a – )(b – )

p

)

×
p–∑
m=

e
(
m · (a + (a – ) + b + (b – ))

p

)

= p(p – ) + pG(p)
p–∑
a=

χ(a)
(
(a – )(a – )a + 

p

)

+ pG(p)
p–∑
a=

χ()
(
(a – )(a – )

p

)
–G(p)

( p–∑
a=

χ(a)
(
a – 
p

))

= p(p – ) + pG(p)
p–∑
a=

χ(a) + pG(p)
(
–
p

)
(p – )

–G(p)

( p–∑
a=

χ(a)
(
a – 
p

))

. ()

If χ is a non-principal character mod p with χ(–) = –, then note that

p–∑
a=

χ(a)
(
a – 
p

)
=

p–∑
a=

χ(a)
(
a – 
p

)
= ,

G(p) =

( p–∑
a=

e
(
a

p

))

=
(
–
p

)
· p

and

∣∣∣∣∣
p–∑
a=

χ(a)e
(
 · a + a

p

)∣∣∣∣∣


=

∣∣∣∣∣
p–∑
a=

χ(a)e
(
a
p

)∣∣∣∣∣


= p.
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From () we have

p–∑
m=

∣∣∣∣∣
p–∑
a=

χ(a)e
(
ma + a

p

)∣∣∣∣∣


= p – p. ()

If χ is a non-principal character mod p with χ(–) = , then from () and Lemma  we
have

p–∑
m=

∣∣∣∣∣
p–∑
a=

χ(a)e
(
ma + a

p

)∣∣∣∣∣


= p – 
(
–
p

)
· p – p –

(
–
p

)
· p ·

( p–∑
a=

χ(a)
(
a – 
p

))

= p – 
(
–
p

)
· p – p – p ·

∣∣∣∣∣
p–∑
a=

χ(a + a)

∣∣∣∣∣


. ()

If χ = χ is the principal character mod p, then from the method of proving () and ()
we have

p–∑
m=

∣∣∣∣∣
p–∑
a=

e
(
ma + a

p

)∣∣∣∣∣


= p – p + 
(
–
p

)
p – p – 

(
–
p

)
p. ()

Combining (), () and (), we may immediately deduce our theorem.
The second proof of Theorem. First, from the orthogonality of characters mod p, we

have

∑
χ mod p

∣∣∣∣∣
p–∑
m=

χ (m)

∣∣∣∣∣
p–∑
a=

χ(a)e
(
ma + a

p

)∣∣∣∣∣
∣∣∣∣∣



= (p – ) ·
p–∑
m=

∣∣∣∣∣
p–∑
a=

χ(a)e
(
ma + a

p

)∣∣∣∣∣


. ()

On the other hand, from Lemma  we have

∑
χ mod p

∣∣∣∣∣
p–∑
m=

χ (m)

∣∣∣∣∣
p–∑
a=

χ(a)e
(
ma + a

p

)∣∣∣∣∣
∣∣∣∣∣



= p ·
∑

χ mod p

∣∣∣∣∣
p–∑
a=

χ(a + )χ ( + a)

∣∣∣∣∣


+

( p–∑
m=

∣∣∣∣∣
p–∑
a=

χ(a)e
(
ma + a

p

)∣∣∣∣∣
)

+

∣∣∣∣∣
p–∑
m=

(
m
p

)∣∣∣∣∣
p–∑
a=

χ(a)e
(
ma + a

p

)∣∣∣∣∣
∣∣∣∣∣



– p ·
∣∣∣∣∣
p–∑
a=

χ(a + )χ( + a)

∣∣∣∣∣


– p ·
∣∣∣∣∣
p–∑
a=

χ(a + )
(
 + a
p

)∣∣∣∣∣


≡ pA + B +C – pD – pE. ()
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Applying the orthogonality of characters mod p, we can easily deduce that

A =
∑

χ mod p

∣∣∣∣∣
p–∑
a=

χ(a + )χ ( + a)

∣∣∣∣∣


= (p – )(p – ), ()

B =

( p–∑
m=

∣∣∣∣∣
p–∑
a=

χ(a)e
(
ma + a

p

)∣∣∣∣∣
)

=

⎧⎨
⎩(p – p – ) if χ = χ;

p(p –  – χ(–)) if χ �= χ.
()

From the definition and properties of Gauss sums, we have

C =

∣∣∣∣∣
p–∑
m=

(
m
p

)∣∣∣∣∣
p–∑
a=

χ(a)e
(
ma + a

p

)∣∣∣∣∣
∣∣∣∣∣



= p ·
∣∣∣∣∣
p–∑
a=

χ(a)
(
a – 
p

)∣∣∣∣∣


, ()

D =

∣∣∣∣∣
p–∑
a=

χ(a + )χ( + a)

∣∣∣∣∣


= p – , ()

E =

∣∣∣∣∣
p–∑
a=

χ(a + )
(
 + a
p

)∣∣∣∣∣


=

∣∣∣∣∣
p–∑
a=

χ(a)
(
a – 
p

)∣∣∣∣∣


. ()

Note that if χ(–) = –, then

p–∑
a=

χ(a)
(
a – 
p

)
= .

Combining ()-() and Lemma , we may immediately deduce the identity

p–∑
m=

∣∣∣∣∣
p–∑
a=

χ(a)e
(
ma + a

p

)∣∣∣∣∣


=

⎧⎪⎪⎨
⎪⎪⎩
p – p + (–p )p

 – p – (–p )p –  if χ = χ;

p – p if χ(–) = –;

p – (–p ) · p – p – p · |∑p–
a= χ(a + a)| if χ �= χ and χ(–) = .

This completes another proof of our theorem.
The corollary follows from Theorem and Lemma .
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